Ettema GJC. Effects of contraction history on control and stability in explosive actions.
J Electromyogr Kinesiol 2002;
12:455-61. [PMID:
12435542 DOI:
10.1016/s1050-6411(02)00039-1]
[Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
In this model study, the effect of contraction history in skeletal muscle on joint movement and stability was investigated. A joint system was constructed with two identical (antagonistic) muscles. The muscles were modelled either according to the Hill tradition or as a modified Hill system including history-dependent properties. The joint system underwent movements with full activity of both muscles, mimicking explosive actions with high stability demands. Movements starting away from a balanced mid-position, as well as perturbation experiments, were simulated. The comparison between the Hill and modified Hill systems showed that contraction history improved stability (stiffness under perturbation) and, under certain conditions, caused a shift in the final joint position, which depended on the task characteristics (starting position and perturbations characteristics). This result indicates that modulations of muscle activity, required to move a joint to a particular end-position, do not only depend on the end-position but also on the preceding movements. This finding does not agree with the equilibrium-point hypothesis and is discussed accordingly.
Collapse