1
|
Pratt VM, Cavallari LH, Del Tredici AL, Gaedigk A, Hachad H, Ji Y, Kalman LV, Ly RC, Moyer AM, Scott SA, van Schaik RHN, Whirl-Carrillo M, Weck KE. Recommendations for Clinical CYP2D6 Genotyping Allele Selection: A Joint Consensus Recommendation of the Association for Molecular Pathology, College of American Pathologists, Dutch Pharmacogenetics Working Group of the Royal Dutch Pharmacists Association, and the European Society for Pharmacogenomics and Personalized Therapy. J Mol Diagn 2021; 23:1047-1064. [PMID: 34118403 DOI: 10.1016/j.jmoldx.2021.05.013] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/11/2021] [Accepted: 05/25/2021] [Indexed: 01/14/2023] Open
Abstract
The goals of the Association for Molecular Pathology Clinical Practice Committee's Pharmacogenomics (PGx) Working Group are to define the key attributes of pharmacogenetic alleles recommended for clinical testing, and to determine a minimal set of variants that should be included in clinical PGx genotyping assays. This document series provides recommendations on a minimal panel of variant alleles (Tier 1) and an extended panel of variant alleles (Tier 2) that will aid clinical laboratories in designing assays for PGx testing. When developing these recommendations, the Association for Molecular Pathology PGx Working Group considered the functional impact of the variant alleles, allele frequencies in multiethnic populations, the availability of reference materials, as well as other technical considerations with regard to PGx testing. The ultimate goal of this Working Group is to promote standardization of PGx gene/allele testing across clinical laboratories. This document is focused on clinical CYP2D6 PGx testing that may be applied to all cytochrome P450 2D6-metabolized medications. These recommendations are not meant to be interpreted as prescriptive but to provide a reference guide for clinical laboratories that may be either implementing PGx testing or reviewing and updating their existing platform.
Collapse
Affiliation(s)
- Victoria M Pratt
- The Pharmacogenomics Working Group of the Clinical Practice Committee, Association for Molecular Pathology, Rockville, Maryland; Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana.
| | - Larisa H Cavallari
- The Pharmacogenomics Working Group of the Clinical Practice Committee, Association for Molecular Pathology, Rockville, Maryland; Department of Pharmacotherapy and Translational Research and Center for Pharmacogenomics and Precision Medicine, University of Florida, Gainesville, Florida
| | - Andria L Del Tredici
- The Pharmacogenomics Working Group of the Clinical Practice Committee, Association for Molecular Pathology, Rockville, Maryland; Millennium Health, LLC, San Diego, California
| | - Andrea Gaedigk
- The Pharmacogenomics Working Group of the Clinical Practice Committee, Association for Molecular Pathology, Rockville, Maryland; Division of Clinical Pharmacology, Toxicology & Therapeutic Innovation, Children's Mercy Kansas City, and School of Medicine, University of Missouri-Kansas City, Kansas City, Missouri
| | - Houda Hachad
- The Pharmacogenomics Working Group of the Clinical Practice Committee, Association for Molecular Pathology, Rockville, Maryland; private precision medicine consultancy, Seattle, Washington
| | - Yuan Ji
- The Pharmacogenomics Working Group of the Clinical Practice Committee, Association for Molecular Pathology, Rockville, Maryland; Department of Pathology and ARUP Laboratories, University of Utah School of Medicine, Salt Lake City, Utah
| | - Lisa V Kalman
- The Pharmacogenomics Working Group of the Clinical Practice Committee, Association for Molecular Pathology, Rockville, Maryland; Division of Laboratory Systems, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Reynold C Ly
- The Pharmacogenomics Working Group of the Clinical Practice Committee, Association for Molecular Pathology, Rockville, Maryland; Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Ann M Moyer
- The Pharmacogenomics Working Group of the Clinical Practice Committee, Association for Molecular Pathology, Rockville, Maryland; Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Stuart A Scott
- The Pharmacogenomics Working Group of the Clinical Practice Committee, Association for Molecular Pathology, Rockville, Maryland; Department of Pathology, Stanford University, Stanford, California; Clinical Genomics Program, Stanford Health Care, Palo Alto, California
| | - R H N van Schaik
- The Pharmacogenomics Working Group of the Clinical Practice Committee, Association for Molecular Pathology, Rockville, Maryland; Department of Clinical Chemistry/IFCC Expert center Pharmacogenetics, Erasmus MC University Medical Center, Rotterdam, the Netherlands; European Society of Pharmacogenomics and Personalized Therapy
| | - Michelle Whirl-Carrillo
- The Pharmacogenomics Working Group of the Clinical Practice Committee, Association for Molecular Pathology, Rockville, Maryland; Department of Biomedical Data Science, Stanford University, Stanford, California
| | - Karen E Weck
- The Pharmacogenomics Working Group of the Clinical Practice Committee, Association for Molecular Pathology, Rockville, Maryland; Department of Pathology and Laboratory Medicine and Department of Genetics, University of North Carolina, Chapel Hill, North Carolina
| |
Collapse
|
2
|
Abstract
Cytochrome P450 2D6 (CYP2D6) plays an important role in the metabolism and bioactivation of about 25% of clinically used drugs including many antidepressants, antipsychotics and opioids. CYP2D6 activity is highly variably ranging from no activity in so-called poor metabolizers to ultrarapid metabolism at the other end of the extreme of the activity distribution. A large portion of this variability can be explained by the highly polymorphic nature of the CYP2D6 gene locus for which > 100 variants and subvariants identified to date. Allele frequencies vary markedly between ethnic groups; some have exclusively or predominantly only been observed in certain populations. Pharmacogenetic testing holds the promise of individualizing drug therapy by identifying patients with CYP2D6 diplotypes that puts them at an increased risk of experiencing dose-related adverse events or therapeutic failure. Inferring a patient's CYP2D6 metabolic capacity, or phenotype, however, is a challenging task due to the complexity of the CYP2D6 gene locus. Allelic variation includes SNPs, small insertions and deletions, gene copy number variation and rearrangements with CYP2D7, a highly related non-functional gene. This review provides a summary of the intricacies of CYP2D6 variation and genotype analysis, knowledge that is invaluable for the translation of genotype into clinically useful information.
Collapse
Affiliation(s)
- Andrea Gaedigk
- Children's Mercy Hospital and Clinics, Division of Clinical Pharmacology and Innovative Therapeutics , Kansas City, Missouri , USA
| |
Collapse
|
3
|
Teh LK, Bertilsson L. Pharmacogenomics of CYP2D6: molecular genetics, interethnic differences and clinical importance. Drug Metab Pharmacokinet 2011; 27:55-67. [PMID: 22185816 DOI: 10.2133/dmpk.dmpk-11-rv-121] [Citation(s) in RCA: 150] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
CYP2D6 has received intense attention since the beginning of the pharmacogenetic era in the 1970s. This is because of its involvement in the metabolism of more than 25% of the marketed drugs, the large geographical and inter-ethnic differences in the genetic polymorphism and possible drug-induced toxicity. Many interesting reviews have been published on CYP2D6 and this review aims to reinstate the importance of the genetic polymorphism of CYP2D6 in different populations as well as some clinical implications and important drug interactions.
Collapse
Affiliation(s)
- Lay Kek Teh
- Pharmacogenomics Centre PROMISE, Faculty of Pharmacy, Universiti Teknologi MARA, Selangor DE, Malaysia.
| | | |
Collapse
|
4
|
Lee IS, Kim D. Polymorphic metabolism by functional alterations of human cytochrome P450 enzymes. Arch Pharm Res 2011; 34:1799-816. [PMID: 22139682 DOI: 10.1007/s12272-011-1103-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Accepted: 08/24/2011] [Indexed: 10/14/2022]
Abstract
The study of cytochrome P450 pharmacogenomics is of particular interest because of its promise in the development of rational means to optimize drug therapy with respect to patient's genotype to ensure maximum efficacy with minimal adverse effects. Drug metabolizing P450 enzymes are polymorphic and are the main phase I enzymes responsible for the metabolism of clinical drugs. Therefore, polymorphisms in the P450s have the most impact on the fate of clinical drugs in phase I metabolism since almost 80% of drugs in use today are metabolized by these enzymes. Predictive genotyping for P450 enzymes for a more effective therapy will be routine for specific drugs in the future. In this review, we discuss the current knowledge of polymorphic metabolism by functional alterations in nonsynonymous SNPs of P450 1A2, 2A6, 2C8, 2C9, 2C19, 2D6, and 3A4 enzymes.
Collapse
Affiliation(s)
- Im-Soon Lee
- Department of Biological Sciences and Center for Biotechnology Research in UBITA, Konkuk University, Seoul 143-701, Korea
| | | |
Collapse
|
5
|
Seripa D, Pilotto A, Panza F, Matera MG, Pilotto A. Pharmacogenetics of cytochrome P450 (CYP) in the elderly. Ageing Res Rev 2010; 9:457-74. [PMID: 20601196 DOI: 10.1016/j.arr.2010.06.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2010] [Revised: 05/28/2010] [Accepted: 06/01/2010] [Indexed: 12/22/2022]
Abstract
The genetics of cytochrome P450 (CYP) is a very active area of multidisciplinary research, overlapping the interest of medicine, biology and pharmacology, being the CYP enzyme system responsible for the metabolism of more than 80% of the commercially available drugs. Variations in CYP encoding genes are responsible for inter-individual differences in CYP production or function, with severe clinical consequences as therapeutic failures (TFs) and adverse drug reactions (ADRs), being ADRs worldwide primary causes of morbidity and mortality in elderly people. In fact, the prevalence of both TFs and ADRs strongly increased in the presence of multiple pharmacological treatments, a common status in subjects aging 65 years and over. The present article explored some basic concepts of human genetics that have important implications in the genetics of CYP. An attempted to transfer these basic concepts to the genetic data reported by the Home Page of The Human Cytochrome P450 (CYP) Allele Nomenclature Committee was also made, focusing on the current knowledge of CYP genetics. The status of what we know and what we need to know is the base for the clinical applications of pharmacogenetics, in which personalized drug treatments constituted the main aim, in particular in patients attending a geriatric ward.
Collapse
Affiliation(s)
- Davide Seripa
- Geriatric Unit & Gerontology-Geriatrics Research Laboratory, Department of Medical Sciences, IRCCS Casa Sollievo della Sofferenza, Viale Cappuccini 1, 71013 San Giovanni Rotondo (FG), Italy.
| | | | | | | | | |
Collapse
|
6
|
Borges S, Desta Z, Jin Y, Faouzi A, Robarge JD, Philips S, Philip S, Nguyen A, Stearns V, Hayes D, Rae JM, Skaar TC, Flockhart DA, Li L. Composite functional genetic and comedication CYP2D6 activity score in predicting tamoxifen drug exposure among breast cancer patients. J Clin Pharmacol 2010; 50:450-8. [PMID: 20081063 DOI: 10.1177/0091270009359182] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Accurate assessment of CYP2D6 phenotypes from genotype is inadequate in patients taking CYP2D6 substrate together with CYP2D6 inhibitors. A novel CYP2D6 scoring system is proposed that incorporates the impact of concomitant medications with the genotype in calculating the CYP2D6 activity score. Training (n = 159) and validation (n = 81) data sets were obtained from a prospective cohort tamoxifen pharmacogenetics registry. Two inhibitor factors were defined: 1 genotype independent and 1 genotype based. Three CYP2D6 gene scoring systems, and their combination with the inhibitor factors, were compared. These 3 scores were based on Zineh, Zanger, and Gaedigk's approaches. Endoxifen/NDM-Tam plasma ratio was used as the phenotype. The overall performance of the 3 gene scoring systems without consideration of CYP2D6-inhibiting medications in predicting CYP2D6 phenotype was poor in both the training set (R(2) = 0.24, 0.22, and 0.18) and the validation set (R(2) = 0.30, 0.24, and 0.15). Once the CYP2D6 genotype-independent inhibitor factor was integrated into the score calculation, the R(2) values in the training and validation data sets were nearly twice as high as the genotype-only scoring model: (0.44, 0.43, 0.38) and (0.53, 0.50, 0.41), respectively. The integration of the inhibitory effect of concomitant medications with the CYP2D6 genotype into the composite CYP2D6 activity score doubled the ability to predict the CYP2D6 phenotype. However, endoxifen phenotypes still varied substantially, even with incorporation of CYD2D6 genotype and inhibiting factors, suggesting that other, as yet unidentified factors must be involved in tamoxifen activation.
Collapse
Affiliation(s)
- Silvana Borges
- Division of Biostatistics/Clinical Pharmacology, Indiana University, School of Medicine, 410 W. 10th St., HITS 3000, Indianapolis, IN 46202; e-mail:
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Affiliation(s)
- Shu-Feng Zhou
- Discipline of Chinese Medicine, School of Health Sciences, RMIT University, Victoria, Australia.
| |
Collapse
|
8
|
Zhou SF, Liu JP, Chowbay B. Polymorphism of human cytochrome P450 enzymes and its clinical impact. Drug Metab Rev 2009; 41:89-295. [PMID: 19514967 DOI: 10.1080/03602530902843483] [Citation(s) in RCA: 502] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Pharmacogenetics is the study of how interindividual variations in the DNA sequence of specific genes affect drug response. This article highlights current pharmacogenetic knowledge on important human drug-metabolizing cytochrome P450s (CYPs) to understand the large interindividual variability in drug clearance and responses in clinical practice. The human CYP superfamily contains 57 functional genes and 58 pseudogenes, with members of the 1, 2, and 3 families playing an important role in the metabolism of therapeutic drugs, other xenobiotics, and some endogenous compounds. Polymorphisms in the CYP family may have had the most impact on the fate of therapeutic drugs. CYP2D6, 2C19, and 2C9 polymorphisms account for the most frequent variations in phase I metabolism of drugs, since almost 80% of drugs in use today are metabolized by these enzymes. Approximately 5-14% of Caucasians, 0-5% Africans, and 0-1% of Asians lack CYP2D6 activity, and these individuals are known as poor metabolizers. CYP2C9 is another clinically significant enzyme that demonstrates multiple genetic variants with a potentially functional impact on the efficacy and adverse effects of drugs that are mainly eliminated by this enzyme. Studies into the CYP2C9 polymorphism have highlighted the importance of the CYP2C9*2 and *3 alleles. Extensive polymorphism also occurs in other CYP genes, such as CYP1A1, 2A6, 2A13, 2C8, 3A4, and 3A5. Since several of these CYPs (e.g., CYP1A1 and 1A2) play a role in the bioactivation of many procarcinogens, polymorphisms of these enzymes may contribute to the variable susceptibility to carcinogenesis. The distribution of the common variant alleles of CYP genes varies among different ethnic populations. Pharmacogenetics has the potential to achieve optimal quality use of medicines, and to improve the efficacy and safety of both prospective and currently available drugs. Further studies are warranted to explore the gene-dose, gene-concentration, and gene-response relationships for these important drug-metabolizing CYPs.
Collapse
Affiliation(s)
- Shu-Feng Zhou
- School of Health Sciences, RMIT University, Bundoora, Victoria, Australia.
| | | | | |
Collapse
|
9
|
Zhang WY, Tu YB, Haining RL, Yu AM. Expression and functional analysis of CYP2D6.24, CYP2D6.26, CYP2D6.27, and CYP2D7 isozymes. Drug Metab Dispos 2008; 37:1-4. [PMID: 18838503 DOI: 10.1124/dmd.108.023663] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The objectives of this study were to compare the drug-metabolizing activity of human CYP2D6.24 (I297L), CYP2D6.26 (I369T), and CYP2D6.27 (E410K) allelic isoforms with wild-type CYP2D6.1 and to express the CYP2D7 protein derived from an indel polymorphism (CYP2D7 138delT) and investigate its possible codeine O-demethylase activity. Successful creation of individual cDNAs corresponding to CYP2D6*24 (2853 A>C), CYP2D6*26 (3277 T>C), and CYP2D6*27 (3853 G>A) allelic variants and CYP2D7 was achieved via molecular cloning. The corresponding proteins, CYP2D6.24, CYP2D6.26, CYP2D6.27, and CYP2D7, were expressed in insect cells by using a baculovirus-mediated expression system. All CYP2D proteins showed the empirical carbon monoxide difference spectra. We were surprised to find that the CYP2D7 protein was detected mainly in mitochondrial fractions, whereas all CYP2D6 allelic isoforms were present in the microsomal fraction. Furthermore, CYP2D7 did not produce any morphine from codeine. In contrast, CYP2D6.24, CYP2D6.26, and CYP2D6.27 allelic isoforms all showed active drug-metabolizing activities toward both codeine and dextromethorphan O-demethylation. Whereas CYP2D6.24 exhibited the highest intrinsic clearance in dextromethorphan O-demethylation (approximately 6-fold higher than that by CYP2D6.1), it had the lowest enzyme efficiency in codeine O-demethylation (approximately 50% lower than that by CYP2D6.1). Overall, the enzymatic consequences of CYP2D6 allelic isozymes are substrate dependent. These data would help preclinical and clinical assessments of the metabolic elimination of drugs that are mediated by human CYP2D enzyme.
Collapse
Affiliation(s)
- Wei-Yan Zhang
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, West Virginia 26506, USA
| | | | | | | |
Collapse
|
10
|
Bechtel LK, Holstege CP. Criminal poisoning: drug-facilitated sexual assault. Emerg Med Clin North Am 2007; 25:499-525; abstract x. [PMID: 17482030 DOI: 10.1016/j.emc.2007.02.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Drug-facilitated sexual assault (DFSA) is a complex and ever-prevalent problem presenting to emergency departments. Emergency personnel should consider DFSA in patients who are amnestic to the specific details of the event following a reported sexual assault. The presence of ethanol or a positive routine drug screen in a sexual assault victim does not exclude the potential of a surreptitious drug being present. In addition, a negative routine drug screen does not exclude all potential agents that are used in DFSA. This article discusses agents reported in DFSA. It is imperative for emergency personnel to clearly document the history and the presenting signs and symptoms to assist laboratory personnel to hone in and detect the correct agent used in a DFSA.
Collapse
Affiliation(s)
- Laura K Bechtel
- Blue Ridge Poison Center, University of Virginia Health System, Charlottesville, VA 22908-0774, USA
| | | |
Collapse
|
11
|
Gaedigk A, Eklund JD, Pearce RE, Leeder JS, Alander SW, Phillips MS, Bradford LD, Kennedy MJ. Identification and Characterization of CYP2D6*56B, an Allele Associated with the Poor Metabolizer Phenotype. Clin Pharmacol Ther 2007; 81:817-20. [PMID: 17392730 DOI: 10.1038/sj.clpt.6100125] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A 5-year-old African-American girl presented with a CYP2D6*4xN/*10 genotype that was discordant with her poor metabolizer phenotype determined with the probe drug dextromethorphan. Both phenotype and genotype were confirmed in repeat assessments, suggesting that the CYP2D6*10 allele carried a novel debilitating sequence variation(s). The rationale for this study was to resolve the discordance and to describe the novel non-functional allelic variant of CYP2D6 and its frequency in populations of different ethnic backgrounds.
Collapse
Affiliation(s)
- A Gaedigk
- Section of Developmental Pharmacology and Experimental Therapeutics, Children's Mercy Hospital and Clinics, Kansas City, Missouri, USA.
| | | | | | | | | | | | | | | |
Collapse
|