1
|
Chow-Shi-Yée M, Briard JG, Grondin M, Averill-Bates DA, Ben RN, Ouellet F. Inhibition of ice recrystallization and cryoprotective activity of wheat proteins in liver and pancreatic cells. Protein Sci 2016; 25:974-86. [PMID: 26889747 DOI: 10.1002/pro.2903] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Revised: 02/09/2016] [Accepted: 02/12/2016] [Indexed: 01/08/2023]
Abstract
Efficient cryopreservation of cells at ultralow temperatures requires the use of substances that help maintain viability and metabolic functions post-thaw. We are developing new technology where plant proteins are used to substitute the commonly-used, but relatively toxic chemical dimethyl sulfoxide. Recombinant forms of four structurally diverse wheat proteins, TaIRI-2 (ice recrystallization inhibition), TaBAS1 (2-Cys peroxiredoxin), WCS120 (dehydrin), and TaENO (enolase) can efficiently cryopreserve hepatocytes and insulin-secreting INS832/13 cells. This study shows that TaIRI-2 and TaENO are internalized during the freeze-thaw process, while TaBAS1 and WCS120 remain at the extracellular level. Possible antifreeze activity of the four proteins was assessed. The "splat cooling" method for quantifying ice recrystallization inhibition activity (a property that characterizes antifreeze proteins) revealed that TaIRI-2 and TaENO are more potent than TaBAS1 and WCS120. Because of their ability to inhibit ice recrystallization, the wheat recombinant proteins TaIRI-2 and TaENO are promising candidates and could prove useful to improve cryopreservation protocols for hepatocytes and insulin-secreting cells, and possibly other cell types. TaENO does not have typical ice-binding domains, and the TargetFreeze tool did not predict an antifreeze capacity, suggesting the existence of nontypical antifreeze domains. The fact that TaBAS1 is an efficient cryoprotectant but does not show antifreeze activity indicates a different mechanism of action. The cryoprotective properties conferred by WCS120 depend on biochemical properties that remain to be determined. Overall, our results show that the proteins' efficiencies vary between cell types, and confirm that a combination of different protection mechanisms is needed to successfully cryopreserve mammalian cells.
Collapse
Affiliation(s)
- Mélanie Chow-Shi-Yée
- Département Des Sciences Biologiques, Université Du Québec À Montréal, Montréal, Canada
| | - Jennie G Briard
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Canada
| | - Mélanie Grondin
- Département Des Sciences Biologiques, Université Du Québec À Montréal, Montréal, Canada
| | - Diana A Averill-Bates
- Département Des Sciences Biologiques, Université Du Québec À Montréal, Montréal, Canada
| | - Robert N Ben
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Canada
| | - François Ouellet
- Département Des Sciences Biologiques, Université Du Québec À Montréal, Montréal, Canada
| |
Collapse
|
2
|
Plant protein 2-Cys peroxiredoxin TaBAS1 alleviates oxidative and nitrosative stresses incurred during cryopreservation of mammalian cells. Biotechnol Bioeng 2016; 113:1511-21. [DOI: 10.1002/bit.25921] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 11/28/2015] [Accepted: 12/28/2015] [Indexed: 12/20/2022]
|
3
|
Bochev I, Belemezova K, Shterev A, Kyurkchiev S. Effect of cryopreservation on the properties of human endometrial stromal cells used in embryo co-culture systems. J Assist Reprod Genet 2016; 33:473-80. [PMID: 26758461 DOI: 10.1007/s10815-016-0651-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 01/03/2016] [Indexed: 11/30/2022] Open
Abstract
PURPOSE Along with comparative investigation of the decidualization potential and IL-6 secretion by fresh and frozen ESCs, we also aimed to evaluate the effectiveness of co-culture systems based on fresh or frozen ESCs in terms of clinical pregnancy rates. METHODS Outcome analysis of a total of 215 IVF cycles with co-culture with fresh or frozen ESCs was performed. Endometrial tissue was obtained from 17 healthy donors. Concentrations of secreted prolactin, IGFBP-1, and IL-6 in conditioned media from cultured fresh and frozen ESCs (decidualized or not) were measured using ELISA or ECLIA. RESULTS Embryo co-culture with frozen ESCs resulted in a much lower pregnancy rate compared to the alternative system using fresh ESCs. Furthermore, cultivated frozen ESCs showed considerably decreased release of prolactin, IGFBP-1, and IL-6 compared to fresh ESCs, indicating that cryopreservation negatively affects their decidualization potential and cytokine production. CONCLUSIONS Altogether, this data illustrates the need for optimization and improvement of the existing autologous endometrial co-culture systems.
Collapse
Affiliation(s)
- Ivan Bochev
- IVF Department, Ob/Gyn Hospital Dr. Shterev, 25-31 Hristo Blagoev Str., 1330, Sofia, Bulgaria.
| | - Kalina Belemezova
- Tissue bank BULGEN, 25-31 Hristo Blagoev Str., 1330, Sofia, Bulgaria
| | - Atanas Shterev
- IVF Department, Ob/Gyn Hospital Dr. Shterev, 25-31 Hristo Blagoev Str., 1330, Sofia, Bulgaria
| | - Stanimir Kyurkchiev
- Tissue bank BULGEN, 25-31 Hristo Blagoev Str., 1330, Sofia, Bulgaria.,Institute of Reproductive Health, 25-31 Hristo Blagoev Str., 1330, Sofia, Bulgaria
| |
Collapse
|
4
|
Séïde M, Marion M, Mateescu MA, Averill-Bates DA. The fungicide thiabendazole causes apoptosis in rat hepatocytes. Toxicol In Vitro 2015; 32:232-9. [PMID: 26748015 DOI: 10.1016/j.tiv.2015.12.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 12/02/2015] [Accepted: 12/28/2015] [Indexed: 02/04/2023]
Abstract
Many pharmaceutical drugs cause hepatotoxicity in humans leading to severe liver diseases, representing a serious public health issue. This study investigates the ability of the anthelmintic and antifungal drug thiabendazole to cause cell death by apoptosis and metabolic changes in primary cultures of rat hepatocytes. Thiabendazole (200-500 μM) induced apoptosis in hepatocytes after 1 to 24h, causing loss of mitochondrial membrane potential, cytochrome c release from mitochondria, Fas-associated death domain (FADD) translocation from the cytosol to membranes, and activation of caspases-3, -8 and -9. Thus, thiabendazole activated both the mitochondrial and death receptor pathways of apoptosis. Under these conditions, cell death by necrosis was not detected following exposure to thiabendazole (100-500 μM) for 24-48 h, measured by lactate dehydrogenase release and propidium iodide uptake. Furthermore, thiabendazole increased activities of cytochrome P450 (CYP) isoenzymes CYP1A and CYP2B after 24 and 48 h, determined by 7-ethoxyresorufin-O-deethylase (EROD) and 7-pentoxyresorufin-O-dealkylase (PROD) activities, respectively. An important finding is that thiabendazole can eliminate hepatocytes by apoptosis, which could be a sensitive marker for hepatic damage and cell death. This study improves understanding of the mode of cell death induced by thiabendazole, which is important given that humans and animals are exposed to this compound as a pharmaceutical agent and in an environmental context.
Collapse
Affiliation(s)
- Marilyne Séïde
- Department of Chemistry, Université du Québec à Montréal (University of Quebec at Montreal), Canada; Department of Biological sciences, Université du Québec à Montréal (University of Quebec at Montreal), Canada
| | - Michel Marion
- Department of Chemistry, Université du Québec à Montréal (University of Quebec at Montreal), Canada
| | - Mircea Alexandru Mateescu
- Department of Chemistry, Université du Québec à Montréal (University of Quebec at Montreal), Canada; BioMedical Research Centre, Université du Québec à Montréal (University of Quebec at Montreal), Canada
| | - Diana A Averill-Bates
- Department of Chemistry, Université du Québec à Montréal (University of Quebec at Montreal), Canada; Department of Biological sciences, Université du Québec à Montréal (University of Quebec at Montreal), Canada; Research Centre for Environmental Toxicology (TOXEN), Université du Québec à Montréal (University of Quebec at Montreal), Canada; BioMedical Research Centre, Université du Québec à Montréal (University of Quebec at Montreal), Canada.
| |
Collapse
|
5
|
Jiang J, Wolters JEJ, van Breda SG, Kleinjans JC, de Kok TM. Development of novel tools for the in vitro investigation of drug-induced liver injury. Expert Opin Drug Metab Toxicol 2015; 11:1523-37. [PMID: 26155718 DOI: 10.1517/17425255.2015.1065814] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
INTRODUCTION Due to its complex mechanisms and unpredictable occurrence, drug-induced liver injury (DILI) complicates drug identification and classification. Since species-specific differences in metabolism and pharmacokinetics exist, data obtained from animal studies may not be sufficient to predict DILI in humans. AREAS COVERED Over the last few decades, numerous in vitro models have been developed to replace animal testing. The advantages and disadvantages of commonly used liver-derived in vitro models (e.g., cell lines, hepatocyte models, liver slices, three-dimensional (3D) hepatospheres, etc.) are discussed. Toxicogenomics-based methodologies (genomics, epigenomics, transcriptomics, proteomics and metabolomics) and next-generation sequencing have also been used to enhance the reliability of DILI prediction. This review presents an overview of the currently used alternative toxicological models and of the most advanced approaches in the field of DILI research. EXPERT OPINION It seems unlikely that a single in vitro system will be able to mimic the complex interactions in the human liver. Three-dimensional multicellular systems may bridge the gap between conventional 2D models and in vivo clinical studies in humans and provide a reliable basis for hepatic toxicity assay development. Next-generation sequencing technologies, in comparison to microarray-based technologies, may overcome the current limitations and are promising for the development of predictive models in the near future.
Collapse
Affiliation(s)
- Jian Jiang
- a 1 Maastricht University, GROW School for Oncology and Developmental Biology, Department of Toxicogenomics , Maastricht, The Netherlands +31 43 3881090 ; +31 43 3884146 ;
| | - Jarno E J Wolters
- b 2 Maastricht University, GROW School for Oncology and Developmental Biology, Department of Toxicogenomics , Maastricht, The Netherlands
| | - Simone G van Breda
- b 2 Maastricht University, GROW School for Oncology and Developmental Biology, Department of Toxicogenomics , Maastricht, The Netherlands
| | - Jos C Kleinjans
- b 2 Maastricht University, GROW School for Oncology and Developmental Biology, Department of Toxicogenomics , Maastricht, The Netherlands
| | - Theo M de Kok
- b 2 Maastricht University, GROW School for Oncology and Developmental Biology, Department of Toxicogenomics , Maastricht, The Netherlands
| |
Collapse
|
6
|
Grondin M, Chow-Shi-Yée M, Ouellet F, Averill-Bates DA. Wheat enolase demonstrates potential as a non-toxic cryopreservation agent for liver and pancreatic cells. Biotechnol J 2015; 10:801-10. [DOI: 10.1002/biot.201400562] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 01/28/2015] [Accepted: 03/04/2015] [Indexed: 11/08/2022]
|
7
|
Gouliarmou V, Pelkonen O, Coecke S. Differentiation-Promoting Medium Additives for Hepatocyte Cultivation and Cryopreservation. Methods Mol Biol 2015; 1250:143-159. [PMID: 26272140 DOI: 10.1007/978-1-4939-2074-7_10] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Isolated primary hepatocytes are considered as the reference system for in vitro hepatic methods. Following the isolation of primary hepatocytes from liver tissue, an unfavorable process named dedifferentiation is initiated leading to the attenuation of the hepatocellular phenotype both at the morphological and functional level. Freshly isolated hepatocytes can be used immediately or can be cryopreserved for future purposes. Currently, a number of antidedifferentiation strategies exist to extend the life span of isolated hepatocytes. The addition of differentiation-promoting compounds to the hepatocyte culture medium is the oldest and simplest antidedifferentiation approach applied. In the present chapter, the most commonly used medium additives for cultivation and cryopreservation of primary hepatocytes are reviewed.
Collapse
Affiliation(s)
- Varvara Gouliarmou
- EURL ECVAM, Systems Toxicology Unit, Institute for Health and Consumer Protection, European Commission, Joint Research Center, Via Fermi 2749, Ispra, 21027, Italy
| | | | | |
Collapse
|
8
|
Moheb A, Grondin M, Ibrahim RK, Roy R, Sarhan F. Winter wheat hull (husk) is a valuable source for tricin, a potential selective cytotoxic agent. Food Chem 2013; 138:931-7. [DOI: 10.1016/j.foodchem.2012.09.129] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Revised: 09/20/2012] [Accepted: 09/25/2012] [Indexed: 11/27/2022]
|
9
|
Cryopreservation of insulin-secreting INS832/13 cells using a wheat protein formulation. Cryobiology 2013; 66:136-43. [DOI: 10.1016/j.cryobiol.2012.12.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Revised: 12/14/2012] [Accepted: 12/15/2012] [Indexed: 11/21/2022]
|
10
|
Hassas-Roudsari M, Goff HD. Ice structuring proteins from plants: Mechanism of action and food application. Food Res Int 2012. [DOI: 10.1016/j.foodres.2011.12.018] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
11
|
Massie I, Selden C, Hodgson H, Fuller B. Cryopreservation of encapsulated liver spheroids for a bioartificial liver: reducing latent cryoinjury using an ice nucleating agent. Tissue Eng Part C Methods 2011; 17:765-74. [PMID: 21410301 DOI: 10.1089/ten.tec.2010.0394] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
INTRODUCTION Acute liver failure has high mortality due to donor organ shortages. A bioartificial liver could "bridge the gap" to transplant or spontaneous recovery. Alginate encapsulation of HepG2 cells enables cell spheroid formation, thus providing sufficient functional biomass. Cryopreservation (CryoP) of these spheroids would allow an off-the-shelf capability for unpredictable emergency use. Cell death during CryoP often results from intracellular ice formation, after supercooling. An ice nucleating agent (INA), crystalline cholesterol, was trialled to reduce supercooling and subsequent cryoinjury. MATERIALS AND METHODS Spheroids were cooled in a controlled rate freezer in 12% dimethylsulfoxide/Celsior +/- INA, and sample temperatures were recorded throughout. Viability was assessed using fluorescent staining with image analysis, cell number by nuclei count, function using assays to detect liver-specific protein synthesis and secretion, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) reduction, and broad-spectrum cytochrome P450 activity. RESULTS Spheroids cryopreserved without INA displayed latent cryoinjury in the first 6 h after thawing. INA reduced supercooling during CryoP and also latent cryoinjury. Cell numbers, viability, and function as measured over 72 h post-thaw were all improved when INA was present during CryoP.
Collapse
Affiliation(s)
- Isobel Massie
- Centre for Hepatology, University College Medical School, Hampstead, London.
| | | | | | | |
Collapse
|
12
|
Abstract
Liver cell transplantation presents clinical benefit in patients with inborn errors of metabolism as an alternative, or at least as a bridge, to orthotopic liver transplantation. The success of such a therapeutic approach remains limited by the quality of the transplanted cells. Cryopreservation remains the best option for long-term storage of hepatocytes, providing a permanent and sufficient cell supply. However, isolated adult hepatocytes are poorly resistant to such a process, with a significant alteration both at the morphological and functional levels. Hence, the aim of the current review is to discuss the state of the art regarding widely-used hepatocyte cryopreservation protocols, as well as the assays performed to analyse the post-thawing cell quality both in vitro and in vivo. The majority of studies agree upon the poor quality and efficiency of cryopreserved/thawed hepatocytes as compared to freshly isolated hepatocytes. Intracellular ice formation or exposure to hyperosmotic solutions remains the main phenomenon of cryopreservation process, and its effects on cell quality and cell death induction will be discussed. The increased knowledge and understanding of the cryopreservation process will lead to research strategies to improve the viability and the quality of the cell suspensions after thawing. Such strategies, such as vitrification, will be discussed with respect to their potential to significantly improve the quality of cell suspensions dedicated to liver cell-based therapies.
Collapse
|