1
|
Abu-Bakar A, Tan BH, Halim H, Ramli S, Pan Y, Ong6 CE. Cytochromes P450: Role in Carcinogenesis and Relevance to Cancers. Curr Drug Metab 2022; 23:355-373. [DOI: 10.2174/1389200223666220328143828] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 12/06/2021] [Accepted: 01/25/2022] [Indexed: 11/22/2022]
Abstract
Abstracts:
Cancer is a leading factor of mortality globally. Cytochrome P450 (CYP) enzymes play a pivotal role in the biotransformation of both endogenous and exogenous compounds. Evidence from numerous epidemiological, animal, and clinical studies points to instrumental role of CYPs in cancer initiation, metastasis, and prevention. Substantial research has found that CYPs are involved in activating different carcinogenic chemicals in the environment, such as polycyclic aromatic hydrocarbons and tobacco-related nitrosamines. Electrophilic intermediates produced from these chemicals can covalently bind to DNA, inducing mutation and cellular transformation that collectively result in cancer development. While bioactivation of procarcinogens and promutagens by CYPs has long been established, the role of CYP-derived endobiotics in carcinogenesis has emerged in recent years. Eicosanoids derived from arachidonic acid via CYP oxidative pathways have been implicated in tumorigenesis, cancer progression and metastasis. The purpose of this review is to update on the current state of knowledge about the cancer molecular mechanism involving CYPs with focus on the biochemical and biotransformation mechanisms in the various CYP-mediated carcinogenesis, and the role of CYP-derived reactive metabolites, from both external and endogenous sources, on cancer growth and tumour formation.
Collapse
Affiliation(s)
- A’edah Abu-Bakar
- Product Stewardship and Toxicology, Group Health, Safety, Security and Environment, PETRONAS, Kuala Lumpur, Malaysia
| | - Boon Hooi Tan
- Division of Applied Biomedical Sciences and Biotechnology, International Medical University, Bukit Jalil, Kuala Lumpur, Malaysia
| | - Hasseri Halim
- Faculty of Pharmacy, Universiti Teknologi MARA, Selangor, 42300 Puncak Alam, Selangor, Malaysia
| | - Salfarina Ramli
- Faculty of Pharmacy, Universiti Teknologi MARA, Selangor, 42300 Puncak Alam, Selangor, Malaysia
| | - Yan Pan
- Department of Biomedical Science, University of Nottingham Malaysia Campus, Semenyih, Selangor, Malaysia
| | - Chin Eng Ong6
- School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur, Malaysia
| |
Collapse
|
2
|
Vrzal R. Genetic and Enzymatic Characteristics of CYP2A13 in Relation to Lung Damage. Int J Mol Sci 2021; 22:12306. [PMID: 34830188 PMCID: PMC8625632 DOI: 10.3390/ijms222212306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/31/2021] [Accepted: 11/12/2021] [Indexed: 11/16/2022] Open
Abstract
Cytochrome P450 2A13 is an omitted brother of CYP2A6 that has an important role in the drug metabolism of liver. Due to extrahepatic expression, it has gained less attention than CYP2A6, despite the fact that it plays a significant role in toxicant-induced pulmonary lesions and, therefore, lung cancer. The purpose of this mini-review is to summarize the basic knowledge about this enzyme in relation to the substrates, inhibitors, genetic polymorphisms, and transcriptional regulation that are known so far (September 2021).
Collapse
Affiliation(s)
- Radim Vrzal
- Department of Cell Biology and Genetics, Faculty of Science, Palacky University, Slechtitelu 27, 783 71 Olomouc, Czech Republic
| |
Collapse
|
3
|
Ma L, Jin G, Yang Y, Pang Y, Wang W, Zhang H, Liu J, Wu P, Wang Z, Wang K, Chang R, Li J, Zhu Z. Association between CYP2A13 polymorphisms and lung cancer: A protocol for systematic review and meta-analysis. Medicine (Baltimore) 2020; 99:e23289. [PMID: 33327254 PMCID: PMC7738112 DOI: 10.1097/md.0000000000023289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 10/22/2020] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Recently, lung cancer has become the most common cause of cancer-related death, several studies indicate that the cytochrome P450 2A13 (CYP2A13) polymorphisms may be correlated with lung cancer susceptibility, but the results have been inconsistent and inconclusive. Therefore, the aim of this meta-analysis is to provide a precise conclusion on the potential association between CYP2A13 polymorphisms and the risk of lung cancer based on case-control studies. METHODS The PubMed, Embase, Cochrane Library, Web of Science, and China National Knowledge Infrastructure (CNKI) databases will be searched for case-control studies published up to September 2020. Odds ratio (OR) and 95% confidence interval (95% CI) were used to determine the effects of the CYP2A13 polymorphism on lung cancer risk, respectively. RESULTS The results of this meta-analysis will be submitted to a peer-reviewed journal for publication. CONCLUSION This meta-analysis will summarize the association between CYP2A13 polymorphisms and the risk of lung cancer. INPLASY REGISTRATION NUMBER INPLASY202090102.
Collapse
Affiliation(s)
- Long Ma
- Department of Clinical Medicine, Gansu University of Traditional Chinese Medicine
- Department of Thoracic Surgery, Gansu Provincial Hospital, Lanzhou, China
| | - Gang Jin
- Department of Thoracic Surgery, Gansu Provincial Hospital, Lanzhou, China
| | - Yi Yang
- Department of Clinical Medicine, Gansu University of Traditional Chinese Medicine
- Department of Thoracic Surgery, Gansu Provincial Hospital, Lanzhou, China
| | - Yao Pang
- Department of Thoracic Surgery, Gansu Provincial Hospital, Lanzhou, China
| | - Wenhao Wang
- Department of Thoracic Surgery, Gansu Provincial Hospital, Lanzhou, China
| | - Hongyi Zhang
- Department of Thoracic Surgery, Gansu Provincial Hospital, Lanzhou, China
| | - Jiawei Liu
- Department of Thoracic Surgery, Gansu Provincial Hospital, Lanzhou, China
| | - Peng Wu
- Department of Clinical Medicine, Gansu University of Traditional Chinese Medicine
- Department of Thoracic Surgery, Gansu Provincial Hospital, Lanzhou, China
| | - Zequan Wang
- Department of Thoracic Surgery, Gansu Provincial Hospital, Lanzhou, China
| | - Kui Wang
- Department of Clinical Medicine, Gansu University of Traditional Chinese Medicine
- Department of Thoracic Surgery, Gansu Provincial Hospital, Lanzhou, China
| | - Ruitong Chang
- Department of Thoracic Surgery, Gansu Provincial Hospital, Lanzhou, China
| | - Jialong Li
- Department of Thoracic Surgery, Gansu Provincial Hospital, Lanzhou, China
| | - Zijiang Zhu
- Department of Thoracic Surgery, Gansu Provincial Hospital, Lanzhou, China
| |
Collapse
|
4
|
Gao Y, Miksys S, Palmour RM, Tyndale RF. The Influence of Tobacco Smoke/Nicotine on CYP2A Expression in Human and African Green Monkey Lungs. Mol Pharmacol 2020; 98:658-668. [PMID: 33055223 DOI: 10.1124/molpharm.120.000100] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 09/17/2020] [Indexed: 11/22/2022] Open
Abstract
CYP2A enzymes metabolically inactivate nicotine and activate tobacco-derived procarcinogens [e.g., 4-[methylnitrosamino]-1-(3-pyridyl)-1-butanone]. Smoking decreases nicotine clearance, and chronic nicotine reduces hepatic CYP2A activity. However, little is known about the impact of smoking or nicotine on the expression of CYP2A in the lung. We investigated 1) the levels of human lung CYP2A mRNA in smokers versus nonsmokers and 2) the impact of daily nicotine treatment on lung CYP2A protein levels in African green monkeys (AGMs). Lung CYP2A13, CYP2A6, and CYP2A7 (and CYP1A2) mRNA levels in smokers and nonsmokers were assessed in Gene Expression Omnibus data sets (GSE30063, GSE108134, and GSE11784). The impact of chronic, twice-daily, subcutaneous nicotine at two doses (0.3 and 0.5 mg/kg) versus vehicle on lung CYP2A protein levels was assessed. The impact of ethanol self-administration was also investigated, with and without nicotine treatment. Smokers versus nonsmokers (from GSE30063 and GSE108134) had lower (1.04- to 1.12-fold) levels of lung CYP2A13, CYP2A6, and CYP2A7 (and higher CYP1A2) mRNA. Both doses of nicotine tested decreased AGM lung CYP2A protein (3- to 7-fold). Ethanol self-administration had no effect on AGM lung CYP2A protein, and there was no interaction between ethanol and nicotine. Our results suggest that smoking was associated with a reduction in human lung CYP2A13, CYP2A6, and CYP2A7 mRNA, consistent with the role of nicotine treatment in reducing AGM lung CYP2A protein. This regulation by smoking/nicotine will increase interindividual variation in lung CYP2A levels, which may impact the localized metabolism of inhaled drugs and tobacco smoke procarcinogens. SIGNIFICANCE STATEMENT: CYP2A13 and CYP2A6 are expressed in the lung and may contribute to local procarcinogen activation. Smokers had lower lung CYP2A mRNA levels compared with nonsmokers. Lung CYP2A protein expression was decreased by systemic treatment with nicotine. Decreased lung CYP2A expression may alter smoking-related lung cancer risk and tissue damage from other inhaled toxins. This novel regulatory impact of nicotine, including nicotine found in smoking-cessation nicotine-replacement therapies, may have potential benefits on smoking-related lung cancer risk.
Collapse
Affiliation(s)
- Yuan Gao
- Department of Pharmacology and Toxicology, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health (CAMH) (Y.G., S.M., R.F.T.) and Department of Psychiatry (R.F.T.), University of Toronto, Toronto, Ontario, Canada and Department of Psychiatry and Human Genetics, McGill University, Montreal, Quebec, Canada (R.M.P.)
| | - Sharon Miksys
- Department of Pharmacology and Toxicology, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health (CAMH) (Y.G., S.M., R.F.T.) and Department of Psychiatry (R.F.T.), University of Toronto, Toronto, Ontario, Canada and Department of Psychiatry and Human Genetics, McGill University, Montreal, Quebec, Canada (R.M.P.)
| | - Roberta M Palmour
- Department of Pharmacology and Toxicology, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health (CAMH) (Y.G., S.M., R.F.T.) and Department of Psychiatry (R.F.T.), University of Toronto, Toronto, Ontario, Canada and Department of Psychiatry and Human Genetics, McGill University, Montreal, Quebec, Canada (R.M.P.)
| | - Rachel F Tyndale
- Department of Pharmacology and Toxicology, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health (CAMH) (Y.G., S.M., R.F.T.) and Department of Psychiatry (R.F.T.), University of Toronto, Toronto, Ontario, Canada and Department of Psychiatry and Human Genetics, McGill University, Montreal, Quebec, Canada (R.M.P.)
| |
Collapse
|
5
|
Hua F, Guo Y, Sun Q, Yang L, Gao F. HapMap-based study: CYP2A13 may be a potential key metabolic enzyme gene in the carcinogenesis of lung cancer in non-smokers. Thorac Cancer 2019; 10:601-606. [PMID: 30807688 PMCID: PMC6449263 DOI: 10.1111/1759-7714.12954] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 12/03/2018] [Accepted: 12/03/2018] [Indexed: 12/30/2022] Open
Abstract
Background The aim of this study was to evaluate the association between CYP2A13 polymorphisms and lung cancer susceptibility using the HapMap database. Methods A case‐control analysis of 532 subjects with lung cancer and 614 controls with no personal history of the disease was performed. The tag SNPs rs1645690 and rs8192789 for CYP2A13 were selected, and the genetic polymorphisms were confirmed experimentally through real‐time PCR, cloning, and sequencing assay. Results SNP frequency in this study was consistent with the HapMap Project database of Han‐Chinese and lung cancer risk was associated with CYP2A13 polymorphisms in non‐smokers. CYP2A13 shares a 93.5% identity with CYP2A6 in the amino acid sequence and the homologous sequences may interfere with the study of SNPs of CYP2A13. Conclusions CYP2A13 may be a potential key metabolic enzyme gene in the carcinogenesis of lung cancer in non‐smokers. The common polymorphisms of CYP2A13 may be candidate biomarkers for lung cancer susceptibility in Han‐Chinese.
Collapse
Affiliation(s)
- Feng Hua
- Department of Thoracic Surgery, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Sciences, Jinan, China
| | - Yonglu Guo
- Department of Respiratory, Jiuquan City People's Hospital, Jiuquan, China
| | - Qiang Sun
- Department of Infection, Jiuquan City People's Hospital, Jiuquan, China
| | - Leizhou Yang
- Department of Internal Medicine, Jining City Yanzhou District Railway Hospital, Jining, China
| | - Fang Gao
- Department of Thoracic Surgery, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Sciences, Jinan, China
| |
Collapse
|
6
|
Ji M, Zhang Y, Li N, Wang C, Xia R, Zhang Z, Wang SL. Nicotine Component of Cigarette Smoke Extract (CSE) Decreases the Cytotoxicity of CSE in BEAS-2B Cells Stably Expressing Human Cytochrome P450 2A13. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2017; 14:ijerph14101221. [PMID: 29027939 PMCID: PMC5664722 DOI: 10.3390/ijerph14101221] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Revised: 10/06/2017] [Accepted: 10/09/2017] [Indexed: 11/16/2022]
Abstract
Cytochrome P450 2A13 (CYP2A13), an extrahepatic enzyme mainly expressed in the human respiratory system, has been reported to mediate the metabolism and toxicity of cigarette smoke. We previously found that nicotine inhibited 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) metabolism by CYP2A13, but its influence on other components of cigarette smoke remains unclear. The nicotine component of cigarette smoke extract (CSE) was separated, purified, and identified using high-performance liquid chromatography (HPLC) and ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS), splitting CSE into a nicotine section (CSE-N) and nicotine-free section (CSE-O). Cell viability and apoptosis by Cell Counting Kit-8 (CCK-8) and flow cytometry assays were conducted on immortalized human bronchial epithelial (BEAS-2B) cells stably expressing CYP2A13 (B-2A13) or vector (B-V), respectively. Interestingly, CSE and CSE-O were toxic to BEAS-2B cells whereas CSE-N showed less cytotoxicity. CSE-O was more toxic to B-2A13 cells than to B-V cells (IC50 of 2.49% vs. 7.06%), which was flatted by 8-methoxypsoralen (8-MOP), a CYP inhibitor. CSE-O rather than CSE or CSE-N increased apoptosis of B-2A13 cells rather than B-V cells. Accordingly, compared to CSE-N and CSE, CSE-O significantly changed the expression of three pairs of pro- and anti-apoptotic proteins, Bcl-2 Associated X Protein/B cell lymphoma-2 (Bax/Bcl-2), Cleaved Poly (Adenosine Diphosphate-Ribose) Polymerase/Poly (Adenosine Diphosphate-Ribose) Polymerase (C-PARP/PARP), and C-caspase-3/caspase-3, in B-2A13 cells. In addition, recombination of CSE-N and CSE-O (CSE-O/N) showed similar cytotoxicity and apoptosis to the original CSE. These results demonstrate that the nicotine component decreases the metabolic activation of CYP2A13 to CSE and aids in understanding the critical role of CYP2A13 in human respiratory diseases caused by cigarette smoking.
Collapse
Affiliation(s)
- Minghui Ji
- Key Lab of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, China.
- State Key Lab of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, China.
- School of Nursing, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, China.
| | - Yudong Zhang
- Key Lab of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, China.
| | - Na Li
- Key Lab of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, China.
| | - Chao Wang
- Key Lab of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, China.
- State Key Lab of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, China.
| | - Rong Xia
- Key Lab of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, China.
| | - Zhan Zhang
- Key Lab of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, China.
- State Key Lab of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, China.
| | - Shou-Lin Wang
- Key Lab of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, China.
- State Key Lab of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, China.
| |
Collapse
|
7
|
Shimada T, Murayama N, Kakimoto K, Takenaka S, Lim YR, Yeom S, Kim D, Yamazaki H, Guengerich FP, Komori M. Oxidation of 1-chloropyrene by human CYP1 family and CYP2A subfamily cytochrome P450 enzymes: catalytic roles of two CYP1B1 and five CYP2A13 allelic variants. Xenobiotica 2017. [PMID: 28648140 DOI: 10.1080/00498254.2017.1347306] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
1. 1-Chloropyrene, one of the major chlorinated polycyclic aromatic hydrocarbon contaminants, was incubated with human cytochrome P450 (P450 or CYP) enzymes including CYP1A1, 1A2, 1B1, 2A6, 2A13, 2B6, 2C9, 2D6, 2E1, 3A4 and 3A5. Catalytic differences in 1-chloropyrene oxidation by polymorphic two CYP1B1 and five CYP2A13 allelic variants were also examined. 2. CYP1A1 oxidized 1-chloropyrene at the 6- and 8-positions more actively than at the 3-position, while both CYP1B1.1 and 1B1.3 preferentially catalyzed 6-hydroxylation. 3. Five CYP2A13 allelic variants oxidized 8-hydroxylation much more than 6- and 3-hydroxylation, and the variant CYP2A13.3 was found to slowly catalyze these reactions with a lower kcat value than other CYP2A13.1 variants. 4. CYP2A6 catalyzed 1-chloropyrene 6-hydroxylation at a higher rate than the CYP2A13 enzymes, but the rate was lower than the CYP1A1 and 1B1 variants. Other human P450 enzymes had low activities towards 1-chloropyrene. 5. Molecular docking analysis suggested differences in the interaction of 1-chloropyrene with active sites of CYP1 and 2 A enzymes. In addition, a naturally occurring Thr134 insertion in CYP2A13.3 was found to affect the orientation of Asn297 in the I-helix in interacting with 1-chloropyrene (and also 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone, NNK) and caused changes in the active site of CYP2A13.3 as compared with CYP2A13.1.
Collapse
Affiliation(s)
- Tsutomu Shimada
- a Laboratory of Cellular and Molecular Biology, Osaka Prefecture University , Osaka , Japan
| | - Norie Murayama
- b Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University , Machida , Tokyo
| | | | - Shigeo Takenaka
- d Graduate School of Comprehensive Rehabilitation, Osaka Prefecture University , Osaka , Japan
| | - Young-Ran Lim
- e Department of Biological Sciences , Konkuk University , Seoul , Korea , and
| | - Sora Yeom
- e Department of Biological Sciences , Konkuk University , Seoul , Korea , and
| | - Donghak Kim
- e Department of Biological Sciences , Konkuk University , Seoul , Korea , and
| | - Hiroshi Yamazaki
- b Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University , Machida , Tokyo
| | - F Peter Guengerich
- f Department of Biochemistry , Vanderbilt University School of Medicine , Nashville, TN , USA
| | - Masayuki Komori
- a Laboratory of Cellular and Molecular Biology, Osaka Prefecture University , Osaka , Japan
| |
Collapse
|
8
|
Liu Z, Megaraj V, Li L, Sell S, Hu J, Ding X. Suppression of pulmonary CYP2A13 expression by carcinogen-induced lung tumorigenesis in a CYP2A13-humanized mouse model. Drug Metab Dispos 2015; 43:698-702. [PMID: 25710941 DOI: 10.1124/dmd.115.063305] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
CYP2A13 is a human cytochrome P450 (P450) enzyme important in the bioactivation of the tobacco-specific lung procarcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK). CYP2A13 expression levels vary dramatically among lung biopsy samples from patients, presumably owing in part to a suppression of CYP2A13 expression by disease-associated inflammation. Here, we determined whether CYP2A13 expression in the lungs of CYP2A13-humanized mice is suppressed by the presence of lung tumors. Tissues from an NNK lung tumor bioassay were examined. CYP2A13-humanized mice (95-100%) had multiple lung tumors at 16 weeks after NNK (30 or 50 mg/kg) treatment; whereas only ∼9% of saline-treated CYP2A13-humanized mice had lung tumor (∼1/lung). Mice with lung tumors, from the NNK-treated groups, were used for dissecting adjacent tumor-free lung tissues; whereas mice without visible lung tumors, from the saline-treated group, were used as controls. Compared with the controls, the levels of CYP2A13 protein and mRNA were both reduced significantly (by ≥50%) in the NNK-treated groups. The levels of mouse CYP2B10 and CYP2F2 mRNAs were also significantly lower in the dissected normal lung tissues from tumor-bearing mice than in lungs from the control mice. Pulmonary tissue levels of three proinflammatory cytokines, tumor necrosis factor alpha, interferon gamma, and interleukin-6, were significantly higher in the tumor-bearing mice than in the controls, indicating occurrence of low-grade lung inflammation at the time of necropsy. Taken together, these findings support the hypothesis that CYP2A13 levels in human lungs can be suppressed by disease-associated inflammation in tissue donors, a scenario causing underestimation of CYP2A13 levels in healthy lungs.
Collapse
Affiliation(s)
- Zhihua Liu
- Wadsworth Center, New York State Department of Health, and School of Public Health, University at Albany, Albany, New York (Z.L., V.M., S.S., J.H., X.D.); College of Nanoscale Science and Engineering, SUNY Polytechnic Institute, Albany, New York (L.L., X.D.)
| | - Vandana Megaraj
- Wadsworth Center, New York State Department of Health, and School of Public Health, University at Albany, Albany, New York (Z.L., V.M., S.S., J.H., X.D.); College of Nanoscale Science and Engineering, SUNY Polytechnic Institute, Albany, New York (L.L., X.D.)
| | - Lei Li
- Wadsworth Center, New York State Department of Health, and School of Public Health, University at Albany, Albany, New York (Z.L., V.M., S.S., J.H., X.D.); College of Nanoscale Science and Engineering, SUNY Polytechnic Institute, Albany, New York (L.L., X.D.)
| | - Stewart Sell
- Wadsworth Center, New York State Department of Health, and School of Public Health, University at Albany, Albany, New York (Z.L., V.M., S.S., J.H., X.D.); College of Nanoscale Science and Engineering, SUNY Polytechnic Institute, Albany, New York (L.L., X.D.)
| | - Jing Hu
- Wadsworth Center, New York State Department of Health, and School of Public Health, University at Albany, Albany, New York (Z.L., V.M., S.S., J.H., X.D.); College of Nanoscale Science and Engineering, SUNY Polytechnic Institute, Albany, New York (L.L., X.D.)
| | - Xinxin Ding
- Wadsworth Center, New York State Department of Health, and School of Public Health, University at Albany, Albany, New York (Z.L., V.M., S.S., J.H., X.D.); College of Nanoscale Science and Engineering, SUNY Polytechnic Institute, Albany, New York (L.L., X.D.)
| |
Collapse
|
9
|
Jia K, Li L, Liu Z, Hartog M, Kluetzman K, Zhang QY, Ding X. Generation and characterization of a novel CYP2A13--transgenic mouse model. Drug Metab Dispos 2014; 42:1341-8. [PMID: 24907355 DOI: 10.1124/dmd.114.059188] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
CYP2A13, CYP2B6, and CYP2F1 are neighboring cytochrome P450 genes on human chromosome 19, and the enzymes that they encode overlap in substrate specificity. A CYP2A13/2B6/2F1-transgenic mouse, in which CYP2A13 and 2F1 are both expressed in the respiratory tract and CYP2B6 is expressed in the liver, was recently generated. We generated a CYP2A13 (only) transgenic mouse so that the specific activity of CYP2A13 can be determined. The CYP2B6 and CYP2F1 genes in the CYP2A13/2B6/2F1 genomic clone were inactivated via genetic manipulations, and CYP2A13 was kept intact. A CYP2A13 (only) transgenic (2A13-TG) mouse was generated using the engineered construct and then characterized to confirm transgene integrity and determine copy numbers. The 2A13-TG mice were normal in gross morphology, development, and fertility. As in the CYP2A13/2B6/2F1-transgenic mouse, CYP2A13 expression in the 2A13-TG mouse was limited to the respiratory tract; in contrast, CYP2B6 and 2F1 proteins were not detected. Additional studies using the CYP2A13-humanized (2A13-TG/Cyp2abfgs-null) mouse produced by intercrossing between 2A13-TG and Cyp2abfgs-null mice confirmed that the transgenic CYP2A13 is active in the bioactivation of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), a lung procarcinogen. The 2A13-TG mouse should be valuable for assessing specific roles of human CYP2A13 in xenobiotic toxicity in the respiratory tract.
Collapse
Affiliation(s)
- Kunzhi Jia
- Wadsworth Center, New York State Department of Health, and School of Public Health, State University of New York, Albany, New York
| | - Lei Li
- Wadsworth Center, New York State Department of Health, and School of Public Health, State University of New York, Albany, New York
| | - Zhihua Liu
- Wadsworth Center, New York State Department of Health, and School of Public Health, State University of New York, Albany, New York
| | - Matthew Hartog
- Wadsworth Center, New York State Department of Health, and School of Public Health, State University of New York, Albany, New York
| | - Kerri Kluetzman
- Wadsworth Center, New York State Department of Health, and School of Public Health, State University of New York, Albany, New York
| | - Qing-Yu Zhang
- Wadsworth Center, New York State Department of Health, and School of Public Health, State University of New York, Albany, New York
| | - Xinxin Ding
- Wadsworth Center, New York State Department of Health, and School of Public Health, State University of New York, Albany, New York
| |
Collapse
|
10
|
Megaraj V, Zhou X, Xie F, Liu Z, Yang W, Ding X. Role of CYP2A13 in the bioactivation and lung tumorigenicity of the tobacco-specific lung procarcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone: in vivo studies using a CYP2A13-humanized mouse model. Carcinogenesis 2014; 35:131-7. [PMID: 23917075 PMCID: PMC3871935 DOI: 10.1093/carcin/bgt269] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Revised: 07/18/2013] [Accepted: 07/30/2013] [Indexed: 11/14/2022] Open
Abstract
The tobacco-specific nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), which is abundant in tobacco smoke, is a potent lung procarcinogen. The present study was aimed to prove that transgenic expression of human cytochrome P450 2A13 (CYP2A13), known to be selectively expressed in the respiratory tract and be the most efficient enzyme for NNK bioactivation in vitro, will enhance NNK bioactivation and NNK-induced tumorigenesis in the mouse lung. Kinetic parameters of NNK bioactivation in vitro and incidence of NNK-induced lung tumors in vivo were determined for wild-type, Cyp2a5-null and CYP2A13-humanized (CYP2A13-transgenic/Cyp2a5-null) mice. As expected, in both liver and lung microsomes, the loss of CYP2A5 resulted in significant increases in Michaelis constant (K m) values for the formation of 4-oxo-4-(3-pyridyl)-butanal, representing the reactive intermediate that can lead to the formation of O(6)-methylguanine (O(6)-mG) DNA adducts; however, the gain of CYP2A13 at a fraction of the level of mouse lung CYP2A5 led to recovery of the activity in the lung, but not in the liver. The levels of O(6)-mG, the DNA adduct highly correlated with lung tumorigenesis, were significantly higher in the lungs of CYP2A13-humanized mice than in Cyp2a5-null mice. Moreover, incidences of lung tumorigenesis were significantly greater in CYP2A13-humanized mice than in Cyp2a5-null mice, and the magnitude of the differences in incidence was greater at low (30mg/kg) than at high (200mg/kg) NNK doses. These results indicate that CYP2A13 is a low K m enzyme in catalyzing NNK bioactivation in vivo and support the notion that genetic polymorphisms of CYP2A13 can influence the risks of tobacco-induced lung tumorigenesis in humans.
Collapse
Affiliation(s)
- Vandana Megaraj
- Wadsworth Center, New York State Department of Health, and School of Public Health, State University of New York at Albany, Empire State Plaza, Box 509, Albany, NY 12201-0509, USA
| | - Xin Zhou
- Wadsworth Center, New York State Department of Health, and School of Public Health, State University of New York at Albany, Empire State Plaza, Box 509, Albany, NY 12201-0509, USA
| | - Fang Xie
- Wadsworth Center, New York State Department of Health, and School of Public Health, State University of New York at Albany, Empire State Plaza, Box 509, Albany, NY 12201-0509, USA
| | - Zhihua Liu
- Wadsworth Center, New York State Department of Health, and School of Public Health, State University of New York at Albany, Empire State Plaza, Box 509, Albany, NY 12201-0509, USA
| | - Weizhu Yang
- Wadsworth Center, New York State Department of Health, and School of Public Health, State University of New York at Albany, Empire State Plaza, Box 509, Albany, NY 12201-0509, USA
| | - Xinxin Ding
- Wadsworth Center, New York State Department of Health, and School of Public Health, State University of New York at Albany, Empire State Plaza, Box 509, Albany, NY 12201-0509, USA
| |
Collapse
|
11
|
Wu H, Liu Z, Ling G, Lawrence D, Ding X. Transcriptional suppression of CYP2A13 expression by lipopolysaccharide in cultured human lung cells and the lungs of a CYP2A13-humanized mouse model. Toxicol Sci 2013; 135:476-85. [PMID: 23884085 DOI: 10.1093/toxsci/kft165] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
CYP2A13, a human P450 enzyme preferentially expressed in the respiratory tract, is highly efficient in the metabolic activation of tobacco-specific nitrosamines. The aim of this study was to test the hypothesis that inflammation suppresses CYP2A13 expression in the lung, thus explaining the large interindividual differences in CYP2A13 levels previously found in human lung biopsy samples. We first demonstrated that the bacterial endotoxin lipopolysaccharide (LPS) and the proinflammatory cytokine IL-6 can suppress CYP2A13 messenger RNA (mRNA) expression in the NCI-H441 human lung cell line. We then report that an ip injection of LPS (1mg/kg), which induces systemic and lung inflammation, caused substantial reductions in CYP2A13 mRNA (~50%) and protein levels (~80%) in the lungs of a newly generated CYP2A13-humanized mouse model. We further identified two critical CYP2A13 promoter regions, one (major) between -484 and -1008bp and the other (minor) between -134 and -216bp, for the response to LPS, through reporter gene assays in H441 cells. The potential involvement of the nuclear factor NF-κB in LPS-induced CYP2A13 downregulation was suggested by identification of putative NF-κB binding sites within the LPS response regions and effects of an NF-κB inhibitor (pyrrolidine dithiocarbamate) on CYP2A13 expression in H441 cells. Results from gel shift assays further confirmed binding of NF-κB-like nuclear proteins of H441 cells to the major LPS response region of the CYP2A13 promoter. Thus, our findings strongly support the hypothesis that CYP2A13 levels in human lung can be suppressed by inflammation associated with disease status in tissue donors, causing underestimation of CYP2A13 levels in healthy lung.
Collapse
Affiliation(s)
- Hong Wu
- * Wadsworth Center, New York State Department of Health, Albany, New York 12201
| | | | | | | | | |
Collapse
|
12
|
Chung CJ, Pu YS, Shiue HS, Lee HL, Lin P, Yang HY, Su CT, Hsueh YM. 4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) metabolism-related enzymes gene polymorphisms, NNK metabolites levels and urothelial carcinoma. Toxicol Lett 2012; 216:16-22. [PMID: 23142425 DOI: 10.1016/j.toxlet.2012.11.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Revised: 11/01/2012] [Accepted: 11/02/2012] [Indexed: 11/24/2022]
Abstract
Gene polymorphisms of the 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) metabolism-related enzymes-cytochrome P450 (CYP) monooxygenase 2A13 (CYP2A13) and UDP-glucuronosyltransferases (UGT)-2B7 could contribute to the levels of NNK-related metabolites in urine, thereby increasing the susceptibility to urothelial carcinoma (UC). Therefore, our study aimed to evaluate the roles of two gene polymorphisms (CYP2A13 and UGT2B7) of NNK metabolism-related enzymes in the carcinogenesis of UC in Taiwan. A hospital-based pilot case-control study was conducted. There were 121 UC cases and 121 age- and sex-matched healthy participants recruited from March 2007 to April 2009. Urine samples were analyzed for NNK-related metabolites using the liquid chromatography-tandem mass spectrometry method. Genotyping was conducted using a polymerase chain reaction-restriction fragment length polymorphism technique. ANCOVA and multivariate logistic regression were applied for data analyses. In healthy controls, former smokers had significantly higher total NNAL and higher NNAL-Gluc than never smokers or current smokers. Subjects carrying the UGT2B7 268 His/Tyr or Tyr/Tyr genotype had significantly lower total NNAL than those carrying His/His genotype. However, no association was seen between gene polymorphisms of CYP2A13 and UGT2B7 and UC risk after adjustment for age and sex. Significant dose -response associations between total NNAL, free NNAL, the ratios of free NNAL/total NNAL and NNAL-Gluc/total NNAL and UC risk were observed. In the future, large-scale studies will be required to verify the association between the single nucleotide polymorphisms of NNK metabolism-related enzymes and UC risk.
Collapse
Affiliation(s)
- Chi-Jung Chung
- Department of Health Risk Management, College of Public Health, China Medical University, Taichung, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
13
|
D'Agostino J, Ding X, Zhang P, Jia K, Fang C, Zhu Y, Spink DC, Zhang QY. Potential biological functions of cytochrome P450 reductase-dependent enzymes in small intestine: novel link to expression of major histocompatibility complex class II genes. J Biol Chem 2012; 287:17777-17788. [PMID: 22453923 DOI: 10.1074/jbc.m112.354274] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
NADPH-cytochrome P450 reductase (POR) is essential for the functioning of microsomal cytochrome P450 (P450) monooxygenases and heme oxygenases. The biological roles of the POR-dependent enzymes in the intestine have not been defined, despite the wealth of knowledge on the biochemical properties of the various oxygenases. In this study, cDNA microarray analysis revealed significant changes in gene expression in enterocytes isolated from the small intestine of intestinal epithelium-specific Por knock-out (named IE-Cpr-null) mice compared with that observed in wild-type (WT) littermates. Gene ontology analyses revealed significant changes in terms related to P450s, transporters, cholesterol biosynthesis, and, unexpectedly, antigen presentation/processing. The genomic changes were confirmed at either mRNA or protein level for selected genes, including those of the major histocompatibility complex class II (MHC II). Cholesterol biosynthetic activity was greatly reduced in the enterocytes of the IE-Cpr-null mice, as evidenced by the accumulation of the lanosterol metabolite, 24-dihydrolanosterol. However, no differences in either circulating or enterocyte cholesterol levels were observed between IE-Cpr-null and WT mice. Interestingly, the levels of the cholesterol precursor farnesyl pyrophosphate and its derivative geranylgeranyl pyrophosphate were also increased in the enterocytes of the IE-Cpr-null mice. Furthermore, the expression of STAT1 (signal transducer and activator of transcription 1), a downstream target of geranylgeranyl pyrophosphate signaling, was enhanced. STAT1 is an activator of CIITA, the class II transactivator for MHC II expression; CIITA expression was concomitantly increased in IE-Cpr-null mice. Overall, these findings provide a novel and mechanistic link between POR-dependent enzymes and the expression of MHC II genes in the small intestine.
Collapse
Affiliation(s)
- Jaime D'Agostino
- Wadsworth Center, New York State Department of Health, and School of Public Health, State University of New York, Albany, New York 12201-0509
| | - Xinxin Ding
- Wadsworth Center, New York State Department of Health, and School of Public Health, State University of New York, Albany, New York 12201-0509
| | - Peng Zhang
- Wadsworth Center, New York State Department of Health, and School of Public Health, State University of New York, Albany, New York 12201-0509
| | - Kunzhi Jia
- Wadsworth Center, New York State Department of Health, and School of Public Health, State University of New York, Albany, New York 12201-0509
| | - Cheng Fang
- Wadsworth Center, New York State Department of Health, and School of Public Health, State University of New York, Albany, New York 12201-0509
| | - Yi Zhu
- Wadsworth Center, New York State Department of Health, and School of Public Health, State University of New York, Albany, New York 12201-0509
| | - David C Spink
- Wadsworth Center, New York State Department of Health, and School of Public Health, State University of New York, Albany, New York 12201-0509
| | - Qing-Yu Zhang
- Wadsworth Center, New York State Department of Health, and School of Public Health, State University of New York, Albany, New York 12201-0509.
| |
Collapse
|
14
|
Hackett NR, Butler MW, Shaykhiev R, Salit J, Omberg L, Rodriguez-Flores JL, Mezey JG, Strulovici-Barel Y, Wang G, Didon L, Crystal RG. RNA-Seq quantification of the human small airway epithelium transcriptome. BMC Genomics 2012; 13:82. [PMID: 22375630 PMCID: PMC3337229 DOI: 10.1186/1471-2164-13-82] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Accepted: 02/29/2012] [Indexed: 01/04/2023] Open
Abstract
Background The small airway epithelium (SAE), the cell population that covers the human airway surface from the 6th generation of airway branching to the alveoli, is the major site of lung disease caused by smoking. The focus of this study is to provide quantitative assessment of the SAE transcriptome in the resting state and in response to chronic cigarette smoking using massive parallel mRNA sequencing (RNA-Seq). Results The data demonstrate that 48% of SAE expressed genes are ubiquitous, shared with many tissues, with 52% enriched in this cell population. The most highly expressed gene, SCGB1A1, is characteristic of Clara cells, the cell type unique to the human SAE. Among other genes expressed by the SAE are those related to Clara cell differentiation, secretory mucosal defense, and mucociliary differentiation. The high sensitivity of RNA-Seq permitted quantification of gene expression related to infrequent cell populations such as neuroendocrine cells and epithelial stem/progenitor cells. Quantification of the absolute smoking-induced changes in SAE gene expression revealed that, compared to ubiquitous genes, more SAE-enriched genes responded to smoking with up-regulation, and those with the highest basal expression levels showed most dramatic changes. Smoking had no effect on SAE gene splicing, but was associated with a shift in molecular pattern from Clara cell-associated towards the mucus-secreting cell differentiation pathway with multiple features of cancer-associated molecular phenotype. Conclusions These observations provide insights into the unique biology of human SAE by providing quantit-ative assessment of the global transcriptome under physiological conditions and in response to the stress of chronic cigarette smoking.
Collapse
Affiliation(s)
- Neil R Hackett
- Department of Genetic Medicine, Weill Cornell Medical College, New York, New York, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Zhou X, D'Agostino J, Xie F, Ding X. Role of CYP2A5 in the bioactivation of the lung carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone in mice. J Pharmacol Exp Ther 2012; 341:233-41. [PMID: 22262919 DOI: 10.1124/jpet.111.190173] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The tobacco-specific nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) is a potent lung carcinogen. Previously, we have demonstrated that NNK-induced lung tumorigenesis in mice depends on target-tissue bioactivation by pulmonary cytochrome P450 (P450) enzymes. The present study was designed to test the hypothesis that mouse CYP2A5 plays an essential role in NNK bioactivation in mouse lung. The role of CYP2A5 in NNK bioactivation was studied both in vitro and in vivo, by comparing the kinetic parameters of microsomal NNK metabolism and tissue levels of O(6)-methylguanine (O(6)-mG) (the DNA adduct highly correlated with lung tumorigenesis) between wild-type (WT) and Cyp2a5-null mice. In both liver and lung microsomes, the loss of CYP2A5 resulted in significant increases in the apparent K(m) values for the formation of 4-oxo-4-(3-pyridyl)butanone, which represents the reactive intermediate that produces O(6)-mG in vivo. The loss of CYP2A5 did not change circulating levels of NNK or 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol in mice treated intraperitoneally with NNK at either 20 or 100 mg/kg. However, the levels of lung O(6)-mG were significantly lower in Cyp2a5-null than in WT mice; the extent of the reduction was greater at the 20 mg/kg dose (∼40%) than at the 100 mg/kg dose (∼20%). These results indicate that CYP2A5 is the low-K(m) enzyme for NNK bioactivation in mouse lung. It is noteworthy that the remaining NNK bioactivation activities in the Cyp2a5-null mice could be inhibited by 8-methoxypsoralen, a P450 inhibitor used previously to demonstrate the role of CYP2A5 in NNK-induced lung tumorigenesis. Thus, P450 enzymes other than CYP2A5 probably also contribute to NNK-induced lung tumorigenesis in mice.
Collapse
Affiliation(s)
- Xin Zhou
- Laboratory of Molecular Toxicology, Wadsworth Center, New York State Department of Health, and School of Public Health, State University of New York, Albany, New York, USA
| | | | | | | |
Collapse
|
16
|
Song G, Hsu CH, Riemer C, Zhang Y, Kim HL, Hoffmann F, Zhang L, Hardison RC, Green ED, Miller W. Conversion events in gene clusters. BMC Evol Biol 2011; 11:226. [PMID: 21798034 PMCID: PMC3161012 DOI: 10.1186/1471-2148-11-226] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Accepted: 07/28/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Gene clusters containing multiple similar genomic regions in close proximity are of great interest for biomedical studies because of their associations with inherited diseases. However, such regions are difficult to analyze due to their structural complexity and their complicated evolutionary histories, reflecting a variety of large-scale mutational events. In particular, conversion events can mislead inferences about the relationships among these regions, as traced by traditional methods such as construction of phylogenetic trees or multi-species alignments. RESULTS To correct the distorted information generated by such methods, we have developed an automated pipeline called CHAP (Cluster History Analysis Package) for detecting conversion events. We used this pipeline to analyze the conversion events that affected two well-studied gene clusters (α-globin and β-globin) and three gene clusters for which comparative sequence data were generated from seven primate species: CCL (chemokine ligand), IFN (interferon), and CYP2abf (part of cytochrome P450 family 2). CHAP is freely available at http://www.bx.psu.edu/miller_lab. CONCLUSIONS These studies reveal the value of characterizing conversion events in the context of studying gene clusters in complex genomes.
Collapse
Affiliation(s)
- Giltae Song
- Center for Comparative Genomics and Bioinformatics, Pennsylvania State University, University Park, PA 16802 USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
[Research progress of lung cancer on single nuleotide polymorphism]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2011; 14:156-64. [PMID: 21342648 PMCID: PMC5999771 DOI: 10.3779/j.issn.1009-3419.2011.02.10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
18
|
Mechanisms of differential expression of the CYP2A13 7520C and 7520G alleles in human lung: allelic expression analysis for CYP2A13 heterogeneous nuclear RNA, and evidence for the involvement of multiple cis-regulatory single nucleotide polymorphisms. Pharmacogenet Genomics 2010; 19:852-63. [PMID: 20431511 DOI: 10.1097/fpc.0b013e3283313aa5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVE To identify the mechanisms underlying the decreased allelic expression of a common CYP2A13 allele (7520C>G) in the human lung; CYP2A13 is expressed selectively in the respiratory tract, and is highly efficient in the metabolic activation of several chemical carcinogens. METHODS The 7520C/G alleles were compared for mRNA stability in cells and relative heterogeneous nuclear RNA (hnRNA) levels in human lungs. Promoter region single nucleotide polymorphisms (SNPs) were identified and analyzed through in-vitro reporter gene assays and gel-shift assays, to uncover the causative SNPs responsible for the decreased allelic expression. RESULTS (i) The 7520C>G SNP does not influence CYP2A13 mRNA stability in CYP2A13-transfected human lung or nasal epithelial cells; (ii) levels of the 7520G hnRNA were consistently lower (<10%) than the levels of the 7520C hnRNA in lung samples from nine heterozygous individuals; (iii) three SNPs (-1479T>C, -3101T>G, and -7756G>A) in linkage disequilibrium with the 7520C>G variation were found to cause altered interaction with DNA-binding proteins and decreases in promoter activity; (iv) the suppressive effects of the -1479T>C, -3101T>G, and -7756G>A SNPs on the CYP2A13 promoter were additive, whereas the negative effects of the -1479T>C SNP were enhanced by methylation of -1479C. CONCLUSION The decrease in the expression of 7520G allele was because of the cumulative suppressive effects of multiple SNPs, with each by itself having a relatively small effect on CYP2A13 transcription.
Collapse
|
19
|
[Interference of homologous sequences on the SNP study of CYP2A13 gene]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2010; 13:94-7. [PMID: 20673498 PMCID: PMC6000522 DOI: 10.3779/j.issn.1009-3419.2010.02.02] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2009] [Revised: 01/05/2010] [Indexed: 11/05/2022]
Abstract
BACKGROUND AND OBJECTIVE It has been proven that cytochrome P450 enzyme 2A13 (CYP2A13) played an important role in the association between single nucleotide polymorphisms (SNP) and human diseases. Cytochrome P450 enzymes are a group of isoenzymes, whose sequence homology may interfere with the study for SNP. The aim of this study is to explore the interference on the SNP study of CYP2A13 caused by homologous sequences. METHODS Taqman probe was applied to detect distribution of rs8192789 sites in 573 subjects, and BLAST method was used to analyze the amplified sequences. Partial sequences of CYP2A13 were emplified by PCR from 60 cases. The emplified sequences were TA cloned and sequenced. RESULTS For rs8192789 loci in 573 cases, only 3 cases were TT, while the rest were CT heterozygotes, which was caused by homologous sequences. There are a large number of overlapping peaks in identical sequences of 60 cases, and the SNP of 101 amino acid site reported in the SNP database is not found. The cloned sequences are 247 bp, 235 bp fragments. CONCLUSION The homologous sequences may interfere the study for SNP of CYP2A13, and some SNP may not exist.
Collapse
|
20
|
Zhou SF, Liu JP, Chowbay B. Polymorphism of human cytochrome P450 enzymes and its clinical impact. Drug Metab Rev 2009; 41:89-295. [PMID: 19514967 DOI: 10.1080/03602530902843483] [Citation(s) in RCA: 502] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Pharmacogenetics is the study of how interindividual variations in the DNA sequence of specific genes affect drug response. This article highlights current pharmacogenetic knowledge on important human drug-metabolizing cytochrome P450s (CYPs) to understand the large interindividual variability in drug clearance and responses in clinical practice. The human CYP superfamily contains 57 functional genes and 58 pseudogenes, with members of the 1, 2, and 3 families playing an important role in the metabolism of therapeutic drugs, other xenobiotics, and some endogenous compounds. Polymorphisms in the CYP family may have had the most impact on the fate of therapeutic drugs. CYP2D6, 2C19, and 2C9 polymorphisms account for the most frequent variations in phase I metabolism of drugs, since almost 80% of drugs in use today are metabolized by these enzymes. Approximately 5-14% of Caucasians, 0-5% Africans, and 0-1% of Asians lack CYP2D6 activity, and these individuals are known as poor metabolizers. CYP2C9 is another clinically significant enzyme that demonstrates multiple genetic variants with a potentially functional impact on the efficacy and adverse effects of drugs that are mainly eliminated by this enzyme. Studies into the CYP2C9 polymorphism have highlighted the importance of the CYP2C9*2 and *3 alleles. Extensive polymorphism also occurs in other CYP genes, such as CYP1A1, 2A6, 2A13, 2C8, 3A4, and 3A5. Since several of these CYPs (e.g., CYP1A1 and 1A2) play a role in the bioactivation of many procarcinogens, polymorphisms of these enzymes may contribute to the variable susceptibility to carcinogenesis. The distribution of the common variant alleles of CYP genes varies among different ethnic populations. Pharmacogenetics has the potential to achieve optimal quality use of medicines, and to improve the efficacy and safety of both prospective and currently available drugs. Further studies are warranted to explore the gene-dose, gene-concentration, and gene-response relationships for these important drug-metabolizing CYPs.
Collapse
Affiliation(s)
- Shu-Feng Zhou
- School of Health Sciences, RMIT University, Bundoora, Victoria, Australia.
| | | | | |
Collapse
|
21
|
D'Agostino J, Zhuo X, Shadid M, Morgan DG, Zhang X, Humphreys WG, Shu YZ, Yost GS, Ding X. The pneumotoxin 3-methylindole is a substrate and a mechanism-based inactivator of CYP2A13, a human cytochrome P450 enzyme preferentially expressed in the respiratory tract. Drug Metab Dispos 2009; 37:2018-27. [PMID: 19608696 DOI: 10.1124/dmd.109.027300] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
3-Methylindole (3MI), a respiratory tract toxicant, can be metabolized by a number of cytochromes P450 (P450), primarily through either dehydrogenation or epoxidation of the indole. In the present study, we assessed the bioactivation of 3MI by recombinant CYP2A13, a human P450 predominantly expressed in the respiratory tract. Four metabolites were detected, and the two principal ones were identified as indole-3-carbinol (I-3-C) and 3-methyloxindole (MOI). Bioactivation of 3MI by CYP2A13 was verified by the observation of three glutathione (GSH) adducts designated as GS-A1 (glutathione adduct 1), GS-A2 (glutathione adduct 2), and GS-A3 (glutathione adduct 3) in a NADPH- and GSH-fortified reaction system. GS-A1 and GS-A2 gave the same molecular ion at m/z 437, an increase of 305 Da over 3MI. Their structures are assigned to be 3-glutathionyl-S-methylindole and 3-methyl-2-glutathionyl-S-indole, respectively, on the basis of the mass fragmentation data obtained by high-resolution mass spectrometry. Kinetic parameters were determined for the formation of I-3-C (V(max) = 1.5 nmol/min/nmol of P450; K(m) = 14 muM), MOI (V(max) = 1.9 nmol/min/nmol of P450; K(m) = 15 muM) and 3-glutathionyl-S-methylindole (V(max) = 0.7 nmol/min/nmol of P450; K(m) = 13 muM). The structure of GS-A3, a minor adduct with a protonated molecular ion at m/z 453, is proposed to be 3-glutathionyl-S-3-methyloxindole. We also discovered that 3MI is a mechanism-based inactivator of CYP2A13, given that it produced a time-, cofactor-, and 3MI concentration-dependent loss of activity toward 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone, with a relatively low K(I) value of approximately 10 muM and a k(inact) of 0.046 min(-1). Thus, CYP2A13 metabolizes 3MI through multiple bioactivation pathways, and the process can lead to a suicide inactivation of CYP2A13.
Collapse
Affiliation(s)
- Jaime D'Agostino
- New York State Department of Health, Wadsworth Center, Empire State Plaza, Albany, NY 12201-0509, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Wang LL, Li Y, Zhou SF. A bioinformatics approach for the phenotype prediction of nonsynonymous single nucleotide polymorphisms in human cytochromes P450. Drug Metab Dispos 2009; 37:977-91. [PMID: 19204079 DOI: 10.1124/dmd.108.026047] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Nonsynonymous single nucleotide polymorphisms (nsSNPs) in coding regions that can lead to amino acid changes may cause alteration of protein function and account for susceptivity to disease and altered drug response. Identification of deleterious nsSNPs from tolerant nsSNPs is important for characterizing the genetic basis of human disease, assessing individual susceptibility to disease, understanding the pathogenesis of disease, identifying molecular targets for drug treatment, and conducting individualized pharmacotherapy. Numerous nsSNPs have been found in genes coding for human cytochromes P450 (P450s), but there is poor knowledge on the relationship between the genotype and phenotype of nsSNPs in P450s. We have identified 791 validated nsSNPs in 57 validated human CYP genes from the National Center for Biotechnology Information Database of Single Nucleotide Polymorphism and Swiss-Prot database. Using the polymorphism phenotyping (PolyPhen; http://genetics.bwh.harvard.edu/pph) and sorting intolerant from tolerant (SIFT; http://blocks.fhcrc.org/sift/SIFT.html) algorithms, 39 to 43% of nsSNPs in CYP genes were predicted to have functional impacts on protein function. There was a significant concordance between the predicted results using the SIFT and PolyPhen algorithms. A prediction accuracy analysis found that approximately 70% of nsSNPs were predicted correctly as damaging. Of nsSNPs predicted as deleterious, the prediction scores by the SIFT and PolyPhen algorithms were significantly associated with the numbers of nsSNPs with known phenotype confirmed by benchmarking studies, including site-directed mutagenesis analysis and clinical association studies. These amino acid substitutions are supposed to be the pathogenetic basis for the alteration of P450 enzyme activity and the association with disease susceptivity. This prediction analysis of nsSNPs in human CYP genes would be useful for further genotype-phenotype studies on individual differences in drug clearance and clinical response.
Collapse
Affiliation(s)
- Lin-Lin Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing, China
| | | | | |
Collapse
|
23
|
|