1
|
Njuguna NM, Umehara KI, Huth F, Schiller H, Chibale K, Camenisch G. Improvement of the chemical inhibition phenotyping assay by cross-reactivity correction. Drug Metab Pers Ther 2017; 31:221-228. [PMID: 27718490 DOI: 10.1515/dmpt-2016-0028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 09/13/2016] [Indexed: 11/15/2022]
Abstract
BACKGROUND The fraction of an absorbed drug metabolized by the different hepatic cytochrome P450 (CYP) enzymes, relative to total hepatic CYP metabolism (fmCYP), can be estimated by measuring the inhibitory effects of presumably selective CYP inhibitors on the intrinsic metabolic clearance of a drug using human liver microsomes. However, the chemical inhibition data are often affected by cross-reactivities of the chemical inhibitors used in this assay. METHODS To overcome this drawback, the cross-reactivities exhibited by six chemical inhibitors (furafylline, montelukast, sulfaphenazole, ticlopidine, quinidine and ketoconazole) were quantified using specific CYP enzyme marker reactions. The determined cross-reactivities were used to correct the in vitro fmCYPs of nine marketed drugs. The corrected values were compared with reference data obtained by physiologically based pharmacokinetics simulation using the software SimCYP. RESULTS Uncorrected in vitro fmCYPs of the nine drugs showed poor linear correlation with their reference data (R2=0.443). Correction by factoring in inhibitor cross-reactivities significantly improved the correlation (R2=0.736). CONCLUSIONS Correcting in vitro chemical inhibition results for cross-reactivities appear to offer a straightforward and easily adoptable approach to provide improved fmCYP data for a drug.
Collapse
|
2
|
Wang W, Lv Y, Fang F, Hong S, Guo Q, Hu S, Zou F, Shi L, Lei Z, Ma K, Zhou D, Zhang D, Sun Y, Ma L, Shen B, Zhu C. Identification of proteins associated with pyrethroid resistance by iTRAQ-based quantitative proteomic analysis in Culex pipiens pallens. Parasit Vectors 2015; 8:95. [PMID: 25880395 PMCID: PMC4337324 DOI: 10.1186/s13071-015-0709-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 01/31/2015] [Indexed: 12/30/2022] Open
Abstract
Background Mosquito control based on chemical insecticides is considered as an important element in the current global strategies for the control of mosquito-borne diseases. Unfortunately, the development of pyrethroid resistance in important vector mosquito species jeopardizes the effectiveness of insecticide-based mosquito control. To date, the mechanisms of pyrethroid resistance are still unclear. Recent advances in proteomic techniques can facilitate to identify pyrethroid resistance-associated proteins at a large-scale for improving our understanding of resistance mechanisms, and more importantly, for seeking some genetic markers used for monitoring and predicting the development of resistance. Methods We performed a quantitative proteomic analysis between a deltamethrin-susceptible strain and a deltamethrin-resistant strain of laboratory population of Culex pipiens pallens using isobaric tags for relative and absolute quantitation (iTRAQ) analysis. Gene Ontology (GO) analysis was used to find the relative processes that these differentially expressed proteins were involved in. One differentially expressed protein was chosen to confirm by Western blot in the laboratory and field populations of Cx. pipiens pallens. Results We identified 30 differentially expressed proteins assigned into 10 different categories, including oxidoreductase activity, transporter activity, catalytic activity, structural constituent of cuticle and hypothetical proteins. GO analysis revealed that 25 proteins were sub-categorized into 35 hierarchically-structured GO classifications. Western blot results showed that CYP6AA9 as one of the up-regulated proteins was confirmed to be overexpressed in the deltamethrin-resistant strains compared with the deltamethrin-susceptible strains both in the laboratory and field populations. Conclusions This is the first study to use modern proteomic tools for identifying pyrethroid resistance-related proteins in Cx. pipiens. The present study brought to light many proteins that were not previously thought to be associated with pyrethroid resistance, which further expands our understanding of pyrethroid resistance mechanisms. CYP6AA9 was overexpressed in the deltamethrin-resistant strains, indicating that CYP6AA9 may be involved in pyrethroid resistance and may be used as a potential genetic marker to monitor and predict the pyrethroid resistance level of field populations. Electronic supplementary material The online version of this article (doi:10.1186/s13071-015-0709-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Weijie Wang
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, China. .,Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing Medical University, Nanjing, China. .,Department of Pathogen Biology, Hebei Medical University, Shijiazhuang, China.
| | - Yuan Lv
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, China. .,Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing Medical University, Nanjing, China.
| | - Fujin Fang
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, China. .,Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing Medical University, Nanjing, China.
| | - Shanchao Hong
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, China. .,Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing Medical University, Nanjing, China.
| | - Qin Guo
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, China. .,Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing Medical University, Nanjing, China.
| | - Shengli Hu
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, China. .,Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing Medical University, Nanjing, China.
| | - Feifei Zou
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, China. .,Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing Medical University, Nanjing, China.
| | - Linna Shi
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, China. .,Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing Medical University, Nanjing, China.
| | - Zhentao Lei
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, China. .,Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing Medical University, Nanjing, China.
| | - Kai Ma
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, China. .,Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing Medical University, Nanjing, China.
| | - Dan Zhou
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, China. .,Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing Medical University, Nanjing, China.
| | - Donghui Zhang
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, China. .,Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing Medical University, Nanjing, China.
| | - Yan Sun
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, China. .,Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing Medical University, Nanjing, China.
| | - Lei Ma
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, China. .,Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing Medical University, Nanjing, China.
| | - Bo Shen
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, China. .,Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing Medical University, Nanjing, China.
| | - Changliang Zhu
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, China. .,Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
3
|
Brown GT, Cash BG, Blihoghe D, Johansson P, Alnabulsi A, Murray GI. The expression and prognostic significance of retinoic acid metabolising enzymes in colorectal cancer. PLoS One 2014; 9:e90776. [PMID: 24608339 PMCID: PMC3946526 DOI: 10.1371/journal.pone.0090776] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Accepted: 02/04/2014] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer is one of the most common types of cancer with over fifty percent of patients presenting at an advanced stage. Retinoic acid is a metabolite of vitamin A and is essential for normal cell growth and aberrant retinoic acid metabolism is implicated in tumourigenesis. This study has profiled the expression of retinoic acid metabolising enzymes using a well characterised colorectal cancer tissue microarray containing 650 primary colorectal cancers, 285 lymph node metastasis and 50 normal colonic mucosal samples. Immunohistochemistry was performed on the tissue microarray using monoclonal antibodies which we have developed to the retinoic acid metabolising enzymes CYP26A1, CYP26B1, CYP26C1 and lecithin retinol acyl transferase (LRAT) using a semi-quantitative scoring scheme to assess expression. Moderate or strong expression of CYP26A1was observed in 32.5% of cancers compared to 10% of normal colonic epithelium samples (p<0.001). CYP26B1 was moderately or strongly expressed in 25.2% of tumours and was significantly less expressed in normal colonic epithelium (p<0.001). CYP26C1 was not expressed in any sample. LRAT also showed significantly increased expression in primary colorectal cancers compared with normal colonic epithelium (p<0.001). Strong CYP26B1 expression was significantly associated with poor prognosis (HR = 1.239, 95%CI = 1.104-1.390, χ(2) = 15.063, p = 0.002). Strong LRAT was also associated with poorer outcome (HR = 1.321, 95%CI = 1.034-1.688, χ(2) = 5.039, p = 0.025). In mismatch repair proficient tumours strong CYP26B1 (HR = 1.330, 95%CI = 1.173-1.509, χ(2)= 21.493, p<0.001) and strong LRAT (HR = 1.464, 95%CI = 1.110-1.930, χ(2) = 7.425, p = 0.006) were also associated with poorer prognosis. This study has shown that the retinoic acid metabolising enzymes CYP26A1, CYP26B1 and LRAT are significantly overexpressed in colorectal cancer and that CYP26B1 and LRAT are significantly associated with prognosis both in the total cohort and in those tumours which are mismatch repair proficient. CYP26B1 was independently prognostic in a multivariate model both in the whole patient cohort (HR = 1.177, 95%CI = 1.020-1.216, p = 0.026) and in mismatch repair proficient tumours (HR = 1.255, 95%CI = 1.073-1.467, p = 0.004).
Collapse
Affiliation(s)
- Gordon T Brown
- Pathology, Division of Applied Medicine, School of Medicine and Dentistry, University of Aberdeen, Aberdeen, United Kingdom
| | - Beatriz Gimenez Cash
- Vertebrate Antibodies, Zoology Building, Tillydrone Avenue, Aberdeen, United Kingdom
| | - Daniela Blihoghe
- George S. Wise Faculty of Life Sciences, Department of Zoology, Tel Aviv University, Tel Aviv, Israel
| | - Petronella Johansson
- The Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Ayham Alnabulsi
- Vertebrate Antibodies, Zoology Building, Tillydrone Avenue, Aberdeen, United Kingdom
| | - Graeme I Murray
- Pathology, Division of Applied Medicine, School of Medicine and Dentistry, University of Aberdeen, Aberdeen, United Kingdom
| |
Collapse
|
4
|
Mössner LD, Schmitz A, Theurillat R, Thormann W, Mevissen M. Inhibition of cytochrome P450 enzymes involved in ketamine metabolism by use of liver microsomes and specific cytochrome P450 enzymes from horses, dogs, and humans. Am J Vet Res 2012; 72:1505-13. [PMID: 22023129 DOI: 10.2460/ajvr.72.11.1505] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To identify and characterize cytochrome P450 enzymes (CYPs) responsible for the metabolism of racemic ketamine in 3 mammalian species in vitro by use of chemical inhibitors and antibodies. SAMPLE Human, canine, and equine liver microsomes and human single CYP3A4 and CYP2C9 and their canine orthologs. PROCEDURES Chemical inhibitors selective for human CYP enzymes and anti-CYP antibodies were incubated with racemic ketamine and liver microsomes or specific CYPs. Ketamine N-demethylation to norketamine was determined via enantioselective capillary electrophoresis. RESULTS The general CYP inhibitor 1-aminobenzotriazole almost completely blocked ketamine metabolism in human and canine liver microsomes but not in equine microsomes. Chemical inhibition of norketamine formation was dependent on inhibitor concentration in most circumstances. For all 3 species, inhibitors of CYP3A4, CYP2A6, CYP2C19, CYP2B6, and CYP2C9 diminished N-demethylation of ketamine. Anti-CYP3A4, anti-CYP2C9, and anti-CYP2B6 antibodies also inhibited ketamine N-demethylation. Chemical inhibition was strongest with inhibitors of CYP2A6 and CYP2C19 in canine and equine microsomes and with the CYP3A4 inhibitor in human microsomes. No significant contribution of CYP2D6 to ketamine biotransformation was observed. Although the human CYP2C9 inhibitor blocked ketamine N-demethylation completely in the canine ortholog CYP2C21, a strong inhibition was also obtained by the chemical inhibitors of CYP2C19 and CYP2B6. Ketamine N-demethylation was stereoselective in single human CYP3A4 and canine CYP2C21 enzymes. CONCLUSIONS AND CLINICAL RELEVANCE Human-specific inhibitors of CYP2A6, CYP2C19, CYP3A4, CYP2B6, and CYP2C9 diminished ketamine N-demethylation in dogs and horses. To address drug-drug interactions in these animal species, investigations with single CYPs are needed.
Collapse
Affiliation(s)
- Lone D Mössner
- Division of Veterinary Pharmacology & Toxicology, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland
| | | | | | | | | |
Collapse
|
5
|
Chemical inhibitors of cytochrome P450 isoforms in human liver microsomes: a re-evaluation of P450 isoform selectivity. Eur J Drug Metab Pharmacokinet 2011; 36:1-16. [PMID: 21336516 DOI: 10.1007/s13318-011-0024-2] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2010] [Accepted: 02/01/2011] [Indexed: 01/24/2023]
Abstract
The majority of marketed small-molecule drugs undergo metabolism by hepatic Cytochrome P450 (CYP) enzymes (Rendic 2002). Since these enzymes metabolize a structurally diverse number of drugs, metabolism-based drug-drug interactions (DDIs) can potentially occur when multiple drugs are coadministered to patients. Thus, a careful in vitro assessment of the contribution of various CYP isoforms to the total metabolism is important for predicting whether such DDIs might take place. One method of CYP phenotyping involves the use of potent and selective chemical inhibitors in human liver microsomal incubations in the presence of a test compound. The selectivity of such inhibitors plays a critical role in deciphering the involvement of specific CYP isoforms. Here, we review published data on the potency and selectivity of chemical inhibitors of the major human hepatic CYP isoforms. The most selective inhibitors available are furafylline (in co-incubation and pre-incubation conditions) for CYP1A2, 2-phenyl-2-(1-piperidinyl)propane (PPP) for CYP2B6, montelukast for CYP2C8, sulfaphenazole for CYP2C9, (-)-N-3-benzyl-phenobarbital for CYP2C19 and quinidine for CYP2D6. As for CYP2A6, tranylcypromine is the most widely used inhibitor, but on the basis of initial studies, either 3-(pyridin-3-yl)-1H-pyrazol-5-yl)methanamine (PPM) and 3-(2-methyl-1H-imidazol-1-yl)pyridine (MIP) can replace tranylcypromine as the most selective CYP2A6 inhibitor. For CYP3A4, ketoconazole is widely used in phenotyping studies, although azamulin is a far more selective CYP3A inhibitor. Most of the phenotyping studies do not include CYP2E1, mostly because of the limited number of new drug candidates that are metabolized by this enzyme. Among the inhibitors for this enzyme, 4-methylpyrazole appears to be selective.
Collapse
|