Samuni U, Czapski G, Goldstein S. Nitroxide radicals as research tools: Elucidating the kinetics and mechanisms of catalase-like and "suicide inactivation" of metmyoglobin.
Biochim Biophys Acta Gen Subj 2016;
1860:1409-16. [PMID:
27062906 DOI:
10.1016/j.bbagen.2016.04.002]
[Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 03/28/2016] [Accepted: 04/04/2016] [Indexed: 10/22/2022]
Abstract
BACKGROUND
Metmyoglobin (MbFe(III)) reaction with H(2)O(2) has been a subject of study over many years. H(2)O(2) alone promotes heme destruction frequently denoted "suicide inactivation," yet the mechanism underlying H(2)O(2) dismutation associated with MbFe(III) inactivation remains obscure.
METHODS
MbFe(III) reaction with excess H(2)O(2) in the absence and presence of the nitroxide was studied at pH 5.3-8.1 and 25°C by direct determination of reaction rate constants using rapid-mixing stopped-flow technique, by following H(2)O(2) depletion, O(2) evolution, spectral changes of the heme protein, and the fate of the nitroxide by EPR spectroscopy.
RESULTS
The rates of both H(2)O(2) dismutation and heme inactivation processes depend on [MbFe(III)], [H(2)O(2)] and pH. Yet the inactivation stoichiometry is independent of these variables and each MbFe(III) molecule catalyzes the dismutation of 50±10 H(2)O(2) molecules until it is inactivated. The nitroxide catalytically enhances the catalase-like activity of MbFe(III) while protecting the heme against inactivation. The rate-determining step in the absence and presence of the nitroxide is the reduction of MbFe(IV)O by H(2)O(2) and by nitroxide, respectively.
CONCLUSIONS
The nitroxide effects on H(2)O(2) dismutation catalyzed by MbFe(III) demonstrate that MbFe(IV)O reduction by H(2)O(2) is the rate-determining step of this process. The proposed mechanism, which adequately fits the pro-catalytic and protective effects of the nitroxide, implies the intermediacy of a compound I-H(2)O(2) adduct, which decomposes to a MbFe(IV)O and an inactivated heme at a ratio of 25:1.
GENERAL SIGNIFICANCE
The effects of nitroxides are instrumental in elucidating the mechanism underlying the catalysis and inactivation routes of heme proteins.
Collapse