1
|
Miao X, Dear GJ, Beaumont C, Vitulli G, Collins G, Gorycki PD, Harrell AW, Sakatis MZ. Cyanide Trapping of Iminium Ion Reactive Metabolites: Implications for Clinical Hepatotoxicity. Chem Res Toxicol 2024; 37:698-710. [PMID: 38619497 DOI: 10.1021/acs.chemrestox.3c00402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Reactive metabolite formation is a major mechanism of hepatotoxicity. Although reactive electrophiles can be soft or hard in nature, screening strategies have generally focused on the use of glutathione trapping assays to screen for soft electrophiles, with many data sets available to support their use. The use of a similar assay for hard electrophiles using cyanide as the trapping agent is far less common, and there is a lack of studies with sufficient supporting data. Using a set of 260 compounds with a defined hepatotoxicity status by the FDA, a comprehensive literature search yielded cyanide trapping data on an unbalanced set of 20 compounds that were all clinically hepatotoxic. Thus, a further set of 19 compounds was selected to generate cyanide trapping data, resulting in a more balanced data set of 39 compounds. Analysis of the data demonstrated that the cyanide trapping assay had high specificity (92%) and a positive predictive value (83%) such that hepatotoxic compounds would be confidently flagged. Structural analysis of the adducts formed revealed artifactual methylated cyanide adducts to also occur, highlighting the importance of full structural identification to confirm the nature of the adduct formed. The assay was demonstrated to add the most value for compounds containing typical structural alerts for hard electrophile formation: half of the severe hepatotoxins with these structural alerts formed cyanide adducts, while none of the severe hepatotoxins with no relevant structural alerts formed adducts. The assay conditions used included cytosolic enzymes (e.g., aldehyde oxidase) and an optimized cyanide concentration to minimize the inhibition of cytochrome P450 enzymes by cyanide. Based on the demonstrated added value of this assay, it is to be initiated for use at GSK as part of the integrated hepatotoxicity strategy, with its performance being reviewed periodically as more data is generated.
Collapse
Affiliation(s)
- Xiusheng Miao
- Drug Metabolism and Pharmacokinetics, GSK, Collegeville, Pennsylvania 19426, United States
| | - Gordon J Dear
- Drug Metabolism and Pharmacokinetics, GSK, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Claire Beaumont
- Drug Metabolism and Pharmacokinetics, GSK, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Giovanni Vitulli
- Drug Metabolism and Pharmacokinetics, GSK, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Gary Collins
- Drug Metabolism and Pharmacokinetics, GSK, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Peter D Gorycki
- Drug Metabolism and Pharmacokinetics, GSK, Collegeville, Pennsylvania 19426, United States
| | - Andrew W Harrell
- Drug Metabolism and Pharmacokinetics, GSK, Stevenage, Hertfordshire SG1 2NY, U.K
| | | |
Collapse
|
2
|
Usai EM, Manca I, Pettinau F, Mastino A, Pittau B. Chemical Characterization and in vitro
Metabolism of a Novel Class of Delta Opioid Receptor Agonists, Analogs of SNC-80. ChemistrySelect 2019. [DOI: 10.1002/slct.201803906] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Elisabetta Maria Usai
- Institute of Translational Pharmacology; National Research Council; 09010 Pula (CA) Italy
| | - Ilaria Manca
- Institute of Translational Pharmacology; National Research Council; 09010 Pula (CA) Italy
| | - Francesca Pettinau
- Institute of Translational Pharmacology; National Research Council; 09010 Pula (CA) Italy
| | - Antonio Mastino
- Institute of Translational Pharmacology; National Research Council; 09010 Pula (CA) Italy
- Department of Chemical; Biological, Pharmaceutical, and Environmental Sciences; University of Messina; Messina Italy
| | - Barbara Pittau
- Institute of Translational Pharmacology; National Research Council; 09010 Pula (CA) Italy
| |
Collapse
|
4
|
Menet MC, Marchal J, Dal-Pan A, Taghi M, Nivet-Antoine V, Dargère D, Laprévote O, Beaudeux JL, Aujard F, Epelbaum J, Cottart CH. Resveratrol metabolism in a non-human primate, the grey mouse lemur (Microcebus murinus), using ultra-high-performance liquid chromatography-quadrupole time of flight. PLoS One 2014; 9:e91932. [PMID: 24663435 PMCID: PMC3963864 DOI: 10.1371/journal.pone.0091932] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 02/18/2014] [Indexed: 12/12/2022] Open
Abstract
The grey mouse lemur (Microcebus murinus) is a non-human primate used to study the ageing process. Resveratrol is a polyphenol that may increase lifespan by delaying age-associated pathologies. However, no information about resveratrol absorption and metabolism is available for this primate. Resveratrol and its metabolites were qualitatively and quantitatively analyzed in male mouse-lemur plasma (after 200 mg.kg−1 of oral resveratrol) by ultra-high performance liquid chromatography (UHPLC), coupled to a quadrupole-time-of-flight (Q-TOF) mass spectrometer used in full-scan mode. Data analyses showed, in MSE mode, an ion common to resveratrol and all its metabolites: m/z 227.072, and an ion common to dihydro-resveratrol metabolites: m/z 229.08. A semi-targeted study enabled us to identify six hydrophilic resveratrol metabolites (one diglucurono-conjugated, two monoglucurono-conjugated, one monosulfo-conjugated and two both sulfo- and glucurono-conjugated derivatives) and three hydrophilic metabolites of dihydro-resveratrol (one monoglucurono-conjugated, one monosulfo-conjugated, and one both sulfo- and glucurono-conjugated derivatives). The presence of such metabolites has been already detected in the mouse, rat, pig, and humans. Free resveratrol was measurable for several hours in mouse-lemur plasma, and its two main metabolites were trans-resveratrol-3-O-glucuronide and trans-resveratrol-3-sulfate. Free dihydro-resveratrol was not measurable whatever the time of plasma collection, while its hydrophilic metabolites were present at 24 h after intake. These data will help us interpret the effect of resveratrol in mouse lemurs and provide further information on the inter-species characteristics of resveratrol metabolism.
Collapse
Affiliation(s)
- Marie-Claude Menet
- EA 4463, Faculté des Sciences Pharmaceutiques et Biologiques, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
- * E-mail:
| | - Julia Marchal
- Mécanismes Adaptatifs et Evolution, UMR 7179, Centre National de la Recherche Scientifique, Muséum National d'Histoire Naturelle, Brunoy, France
| | - Alexandre Dal-Pan
- Mécanismes Adaptatifs et Evolution, UMR 7179, Centre National de la Recherche Scientifique, Muséum National d'Histoire Naturelle, Brunoy, France
| | - Méryam Taghi
- EA 4463, Faculté des Sciences Pharmaceutiques et Biologiques, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Valérie Nivet-Antoine
- EA 4466, Faculté des Sciences Pharmaceutiques et Biologiques, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
- Service de Biochimie, AP-HP, Hôpital Européen Georges Pompidou, Paris, France
| | - Delphine Dargère
- EA 4463, Faculté des Sciences Pharmaceutiques et Biologiques, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Olivier Laprévote
- EA 4463, Faculté des Sciences Pharmaceutiques et Biologiques, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
- Service de Toxicologie biologique, AP-HP, G.H. Lariboisière – Saint Louis – Fernand Widal, Paris, France
| | - Jean-Louis Beaudeux
- EA 4466, Faculté des Sciences Pharmaceutiques et Biologiques, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
- Service de Biochimie A, G.H. Necker - Enfants malades, AP-HP, Paris, France
| | - Fabienne Aujard
- Mécanismes Adaptatifs et Evolution, UMR 7179, Centre National de la Recherche Scientifique, Muséum National d'Histoire Naturelle, Brunoy, France
| | - Jacques Epelbaum
- Centre de Psychiatrie et Neuroscience, UMR 894 Inserm, Faculté de Médecine, Université Paris Descartes, Paris, France
| | - Charles-Henry Cottart
- EA 4466, Faculté des Sciences Pharmaceutiques et Biologiques, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
- Service de Biochimie A, G.H. Necker - Enfants malades, AP-HP, Paris, France
| |
Collapse
|
6
|
Zhang M, Resuello CM, Guo J, Powell ME, Elmore CS, Hu J, Vishwanathan K. Contribution of Artifacts to N-Methylated Piperazine Cyanide Adduct Formation In Vitro from N-Alkyl Piperazine Analogs. Drug Metab Dispos 2013; 41:1023-34. [DOI: 10.1124/dmd.112.050450] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Affiliation(s)
- Minli Zhang
- Drug Metabolism and Pharmacokinetics, AstraZeneca Pharmaceuticals, 35 Gatehouse Dr., Waltham, MA 02451, USA.
| | | | | | | | | | | | | |
Collapse
|
8
|
Metabolite structure analysis by high-resolution MS: supporting drug-development studies. Bioanalysis 2013; 5:463-79. [DOI: 10.4155/bio.13.3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Effective characterization of drug metabolites in complex biological matrices is facilitated by mass spectrometers with high resolving power, mass accuracy and sensitivity. This review begins with an overview of high-resolution MS terminology and the different types of instrumentation that are currently available. Metabolite structure analysis offers unique challenges and, therefore, the different types of approaches used to solve problems are highlighted through specific examples. Overall, this review describes the value that high-resolution MS brings to drug-metabolism studies.
Collapse
|