1
|
Shafiee A, Chanda S. In Vitro Evaluation of Drug-Drug Interaction Potential of Epetraborole, a Novel Bacterial Leucyl-tRNA Synthetase Inhibitor. Pharmaceuticals (Basel) 2024; 17:120. [PMID: 38256953 PMCID: PMC10818931 DOI: 10.3390/ph17010120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 01/14/2024] [Accepted: 01/15/2024] [Indexed: 01/24/2024] Open
Abstract
Epetraborole (EBO) is a boron-containing inhibitor of bacterial leucyl-tRNA synthetase, with potent activity against nontuberculous mycobacteria (NTM) and Gram-negative bacteria, including Burkholderia pseudomallei. EBO is being developed for the treatment of NTM lung disease and melioidosis, administered in combination with other therapeutic agents in both diseases. Therefore, EBO and its major circulating metabolite M3 were evaluated in comprehensive drug-drug interaction (DDI) in vitro studies. The CYP inhibitory and substrate potential of EBO and M3 were assessed using hepatic microsomes. Stably transfected cells that expressed individual efflux or uptake transporters were used to determine whether EBO or M3 were substrates or inhibitors for these receptors. Stability studies indicated that EBO is a poor substrate for major CYP enzymes. Neither EBO nor M3 was a potent reversible or time-dependent inhibitor of major CYP enzymes. EBO was not an inducer of CYP1A2 mRNA, while it was a weak inducer of CYP2B6 and CYP3A4. EBO was a substrate only for OCT2. At clinically relevant concentrations, neither EBO nor M3 inhibited major human efflux or uptake transporters. Based on these data, at clinically relevant concentrations of EBO and M3, there is a low risk of victim or perpetrator DDI.
Collapse
Affiliation(s)
- Afshin Shafiee
- AN2 Therapeutics Inc., 1800 El Camino Real, Suite D, Menlo Park, CA 94027, USA
| | | |
Collapse
|
2
|
Wang S, Ballard TE, Christopher LJ, Foti RS, Gu C, Khojasteh SC, Liu J, Ma S, Ma B, Obach RS, Schadt S, Zhang Z, Zhang D. The Importance of Tracking "Missing" Metabolites: How and Why? J Med Chem 2023; 66:15586-15612. [PMID: 37769129 DOI: 10.1021/acs.jmedchem.3c01293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
Technologies currently employed to find and identify drug metabolites in complex biological matrices generally yield results that offer a comprehensive picture of the drug metabolite profile. However, drug metabolites can be missed or are captured only late in the drug development process. This could be due to a variety of factors, such as metabolism that results in partial loss of the molecule, covalent bonding to macromolecules, the drug being metabolized in specific human tissues, or poor ionization in a mass spectrometer. These scenarios often draw a great deal of attention from chemistry, safety assessment, and pharmacology. This review will summarize scenarios of missing metabolites, why they are missing, and associated uncovering strategies from deeper investigations. Uncovering previously missed metabolites can have ramifications in drug development with toxicological and pharmacological consequences, and knowledge of these can help in the design of new drugs.
Collapse
Affiliation(s)
- Shuai Wang
- Department of Drug Metabolism and Pharmacokinetics, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - T Eric Ballard
- Takeda Development Center Americas, Inc., 35 Landsdowne St, Cambridge, Massachusetts 02139, United States
| | - Lisa J Christopher
- Department of Clinical Pharmacology, Pharmacometrics, Disposition & Bioanalysis, Bristol-Myers Squibb, Route 206 & Province Line Road, Princeton, New Jersey 08543, United States
| | - Robert S Foti
- Preclinical Development, Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Chungang Gu
- Drug Metabolism and Pharmacokinetics, Biogen Inc., 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - S Cyrus Khojasteh
- Department of Drug Metabolism and Pharmacokinetics, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Joyce Liu
- Department of Drug Metabolism and Pharmacokinetics, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Shuguang Ma
- Drug Metabolism and Pharmacokinetics, Pliant Therapeutics, 260 Littlefield Avenue, South San Francisco, California 94080, United States
| | - Bin Ma
- Department of Drug Metabolism and Pharmacokinetics, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - R Scott Obach
- Pharmacokinetics, Dynamics, and Metabolism, Pfizer, Inc., Eastern Point Road, Groton, Connecticut 06340, United States
| | - Simone Schadt
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacher Strasse 124, 4070 Basel, Switzerland
| | - Zhoupeng Zhang
- DMPK Oncology R&D, AstraZeneca, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Donglu Zhang
- Department of Drug Metabolism and Pharmacokinetics, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| |
Collapse
|
3
|
Prasad NK, Seiple IB, Cirz RT, Rosenberg OS. Leaks in the Pipeline: a Failure Analysis of Gram-Negative Antibiotic Development from 2010 to 2020. Antimicrob Agents Chemother 2022; 66:e0005422. [PMID: 35471042 PMCID: PMC9112940 DOI: 10.1128/aac.00054-22] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The World Health Organization (WHO) has warned that our current arsenal of antibiotics is not innovative enough to face impending infectious diseases, especially those caused by multidrug-resistant Gram-negative pathogens. Although the current preclinical pipeline is well stocked with novel candidates, the last U.S. Food and Drug Administration (FDA)-approved antibiotic with a novel mechanism of action against Gram-negative bacteria was discovered nearly 60 years ago. Of all the antibiotic candidates that initiated investigational new drug (IND) applications in the 2000s, 17% earned FDA approval within 12 years, while an overwhelming 62% were discontinued in that time frame. These "leaks" in the clinical pipeline, where compounds with clinical potential are abandoned during clinical development, indicate that scientific innovations are not reaching the clinic and providing benefits to patients. This is true for not only novel candidates but also candidates from existing antibiotic classes with clinically validated targets. By identifying the sources of the leaks in the clinical pipeline, future developmental efforts can be directed toward strategies that are more likely to flow into clinical use. In this review, we conduct a detailed failure analysis of clinical candidates with Gram-negative activity that have fallen out of the clinical pipeline over the past decade. Although limited by incomplete data disclosure from companies engaging in antibiotic development, we attempt to distill the developmental challenges faced by each discontinued candidate. It is our hope that this insight can help de-risk antibiotic development and bring new, effective antibiotics to the clinic.
Collapse
Affiliation(s)
- Neha K. Prasad
- Chan Zuckerberg Biohub, San Francisco, California, USA
- Department of Medicine, University of California, San Francisco, San Francisco, California, USA
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California, USA
| | - Ian B. Seiple
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California, USA
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, California, USA
| | | | - Oren S. Rosenberg
- Chan Zuckerberg Biohub, San Francisco, California, USA
- Department of Medicine, University of California, San Francisco, San Francisco, California, USA
- Department of Biochemistry, University of California, San Francisco, San Francisco, California, USA
| |
Collapse
|
4
|
Non-cytochrome P450 enzymes involved in the oxidative metabolism of xenobiotics: Focus on the regulation of gene expression and enzyme activity. Pharmacol Ther 2021; 233:108020. [PMID: 34637840 DOI: 10.1016/j.pharmthera.2021.108020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 09/25/2021] [Accepted: 10/04/2021] [Indexed: 12/16/2022]
Abstract
Oxidative metabolism is one of the major biotransformation reactions that regulates the exposure of xenobiotics and their metabolites in the circulatory system and local tissues and organs, and influences their efficacy and toxicity. Although cytochrome (CY)P450s play critical roles in the oxidative reaction, extensive CYP450-independent oxidative metabolism also occurs in some xenobiotics, such as aldehyde oxidase, xanthine oxidoreductase, flavin-containing monooxygenase, monoamine oxidase, alcohol dehydrogenase, or aldehyde dehydrogenase-dependent oxidative metabolism. Drugs form a large portion of xenobiotics and are the primary target of this review. The common reaction mechanisms and roles of non-CYP450 enzymes in metabolism, factors affecting the expression and activity of non-CYP450 enzymes in terms of inhibition, induction, regulation, and species differences in pharmaceutical research and development have been summarized. These non-CYP450 enzymes are detoxifying enzymes, although sometimes they mediate severe toxicity. Synthetic or natural chemicals serve as inhibitors for these non-CYP450 enzymes. However, pharmacokinetic-based drug interactions through these inhibitors have rarely been reported in vivo. Although multiple mechanisms participate in the basal expression and regulation of non-CYP450 enzymes, only a limited number of inducers upregulate their expression. Therefore, these enzymes are considered non-inducible or less inducible. Overall, this review focuses on the potential xenobiotic factors that contribute to variations in gene expression levels and the activities of non-CYP450 enzymes.
Collapse
|
5
|
Dhuria NV, Haro B, Kapadia A, Lobo KA, Matusow B, Schleiff MA, Tantoy C, Sodhi JK. Recent developments in predicting CYP-independent metabolism. Drug Metab Rev 2021; 53:188-206. [PMID: 33941024 DOI: 10.1080/03602532.2021.1923728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
As lead optimization efforts have successfully reduced metabolic liabilities due to cytochrome P450 (CYP)-mediated metabolism, there has been an increase in the frequency of involvement of non-CYP enzymes in the metabolism of investigational compounds. Although there have been numerous notable advancements in the characterization of non-CYP enzymes with respect to their localization, reaction mechanisms, species differences and identification of typical substrates, accurate prediction of non-CYP-mediated clearance, with a particular emphasis with the difficulties in accounting for any extrahepatic contributions, remains a challenge. The current manuscript comprehensively summarizes the recent advancements in the prediction of drug metabolism and the in vitro to in vitro extrapolation of clearance for substrates of non-CYP drug metabolizing enzymes.
Collapse
Affiliation(s)
- Nikhilesh V Dhuria
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Bianka Haro
- School of Medicine and Health Sciences, The George Washington University, Washington, DC, USA
| | - Amit Kapadia
- California Poison Control Center, University of California San Francisco, San Diego, CA, USA
| | | | - Bernice Matusow
- Department of Drug Metabolism and Pharmacokinetics, Plexxikon Inc, Berkeley, CA, USA
| | - Mary A Schleiff
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Christina Tantoy
- Department of Drug Metabolism and Pharmacokinetics, Plexxikon Inc, Berkeley, CA, USA
| | - Jasleen K Sodhi
- Department of Drug Metabolism and Pharmacokinetics, Plexxikon Inc, Berkeley, CA, USA.,Department of Bioengineering and Therapeutic Sciences, Schools of Pharmacy and Medicine, University of California, San Francisco, CA, USA
| |
Collapse
|
6
|
Zhang P, Ma S. Recent development of leucyl-tRNA synthetase inhibitors as antimicrobial agents. MEDCHEMCOMM 2019; 10:1329-1341. [PMID: 31534653 PMCID: PMC6727470 DOI: 10.1039/c9md00139e] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 05/26/2019] [Indexed: 12/14/2022]
Abstract
Aminoacyl-tRNA synthetases (aaRSs) widely exist in organisms and mediate protein synthesis. Inhibiting these synthetases can lead to the termination of protein synthesis and subsequently achieve antibacterial and antiparasitic purposes. Moreover, the structures of aaRSs found in eukaryotes have considerable structural differences compared to those in prokaryotes, based on which it is possible to develop highly selective inhibitors. Leucyl-tRNA synthetase (LeuRS) with unique synthesis and editing sites is one of 20 kinds of aaRSs. Many inhibitors targeting LeuRS have been designed and synthesized, some of which have entered clinical use. For example, the benzoxaborole compound AN2690 has been approved by the FDA for the treatment of onychomycosis. AN3365 is suspended in the phase II clinical trial due to the rapid development of AN3365 resistance, but it may be used in combination with other antibiotics. The aaRSs, especially LeuRS, are being considered as targets of new potential anti-infective drugs for the treatment of not only bacterial or fungal infections but also infections by trypanosomes and malaria parasites. This review mainly describes the development of LeuRS inhibitors, focusing on their mechanisms of action, structure-activity relationships (SARs), and in vitro and in vivo activities.
Collapse
Affiliation(s)
- Panpan Zhang
- Department of Medicinal Chemistry , Key Laboratory of Chemical Biology , Ministry of Education , School of Pharmaceutical Sciences , Shandong University , 44, West Culture Road , Jinan 250012 , P. R. China . E mail:
| | - Shutao Ma
- Department of Medicinal Chemistry , Key Laboratory of Chemical Biology , Ministry of Education , School of Pharmaceutical Sciences , Shandong University , 44, West Culture Road , Jinan 250012 , P. R. China . E mail:
| |
Collapse
|
7
|
Garcia AA, Rayevski A, Andrade-Jorge E, Trujillo-Ferrara JG. Structural and biological overview of Boron-containing amino acids in the medicinal chemistry field. Curr Med Chem 2018; 26:5077-5089. [PMID: 30259808 DOI: 10.2174/0929867325666180926150403] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Revised: 09/06/2018] [Accepted: 09/06/2018] [Indexed: 11/22/2022]
Abstract
Amino acids are the basic structural units of proteins as well as the precursors of many compounds with biological activity. The addition of boron reportedly induces changes in the chemical-biological profile of amino acids. METHODS We compiled information on the biological effect of some compounds and discuss the structure-activity relationship of the addition of boron. The specific focus presently is on borinic derivatives of α-amino acids, the specific changes in biological activity caused by the addition of a boron-containing moiety, and the identification of some attractive compounds for testing as potential new drugs. RESULTS Borinic derivatives of α-amino acids have been widely synthesized and tested as potential new therapeutic tools. The B-N (1.65 A°) or B-C (1.61 A°) or B-O (1.50 A°) bond is often key for the stability at different pHs and temperatures and activity of these compounds. The chemical features of synthesized derivatives, such as the specific moieties and the logP, polarizability and position of the boron atom are clearly linked to their pharmacodynamic and pharmacokinetic profiles. Some mechanisms of action have been suggested or demonstrated, while those responsible for other effects remain unknown. CONCLUSION The increasing number of synthetic borinic derivatives of α-amino acids as well as the recently reported crystal structures are providing new insights into the stability of these compounds at different pHs and temperatures, their interactions on drug targets, and the ring formation of five-membered heterocycles. Further research is required to clarify the ways to achieve specific synthesis, the mechanisms involved in the observed biological effect, and the toxicological profile of this type of boron-containing compounds (BCCs).
Collapse
Affiliation(s)
- Antonio Abad Garcia
- Departamento de Bioquimica y Seccion de Estudios de Posgrado e Investigación. Escuela Superior de Medicina. Plan de San Luis y Diaz Miron s/n, 11340, Mexico City. Mexico
| | - Alexey Rayevski
- Chuiko Institute of Surface Chemistry, National Academy of Science of Ukranie. 17 Generala Naumova St., 03164, Kyiv. Ukraine
| | - Erik Andrade-Jorge
- Departamento de Bioquimica y Seccion de Estudios de Posgrado e Investigacion. Escuela Superior de Medicina. Plan de San Luis y Diaz Miron s/n, 11340, Mexico City. Mexico
| | - Jose G Trujillo-Ferrara
- Departamento de Bioquímica y Sección de Estudios de Posgrado e Investigación. Escuela Superior de Medicina. Plan de San Luis y Diaz Mirón s/n, 11340, Mexico City. Mexico
| |
Collapse
|
8
|
Nocentini A, Supuran CT, Winum JY. Benzoxaborole compounds for therapeutic uses: a patent review (2010- 2018). Expert Opin Ther Pat 2018; 28:493-504. [PMID: 29727210 DOI: 10.1080/13543776.2018.1473379] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
INTRODUCTION Benzoxaborole is a versatile boron-heterocyclic scaffold which has found in the last 10 years a broad spectrum of applications in medicinal chemistry, due to its physicochemical and drug-like properties. Use of benzoxaborole moiety in the design of compounds led to the discovery of new classes of anti-bacterial, anti-fungal, anti-protozoal, anti-viral as well as anti-inflammatory agents with interesting drug development perspectives. AREAS COVERED This article reviews the patent literature as well as chemistry literature during the period 2010-2018 where in several benzoxaborole derivatives with therapeutic options were reported. EXPERT OPINION Two benzoxaborole derivatives are already clinically used for the treatment of onychomycosis (tavaborole) and atopic dermatitis (crisaborole), with several others in various phases of clinical trials. By inhibiting enzymes essential in the life cycle of fungal, protozoan, bacterial and viral pathogens, it is probable that other compounds may soon enter the armamentarium of anti-infective agents. On the other hand, phosphodiesterase 4 seems to be the human target responsible of the anti-inflammatory action of some benzoxaboroles. The chemical versatility, peculiar mechanism of action related to the electron deficient nature of the boron atom, and ease of preparation make benzoxaboroles a highly interesting field for the pharmaceutical industry.
Collapse
Affiliation(s)
- Alessio Nocentini
- a Department of Neurofarba, Section of Pharmaceutical and Nutraceutical Sciences , University of Florence, Polo Scientifico , Firenze , Italy.,b Institut des Biomolécules Max Mousseron (IBMM), UMR 5247 CNRS, ENSCM , Université de Montpellier , Montpellier , France
| | - Claudiu T Supuran
- a Department of Neurofarba, Section of Pharmaceutical and Nutraceutical Sciences , University of Florence, Polo Scientifico , Firenze , Italy
| | - Jean-Yves Winum
- b Institut des Biomolécules Max Mousseron (IBMM), UMR 5247 CNRS, ENSCM , Université de Montpellier , Montpellier , France
| |
Collapse
|
9
|
In Vitro and In Vivo Activities of DS86760016, a Novel Leucyl-tRNA Synthetase Inhibitor for Gram-Negative Pathogens. Antimicrob Agents Chemother 2018; 62:AAC.01987-17. [PMID: 29437618 DOI: 10.1128/aac.01987-17] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 01/27/2018] [Indexed: 11/20/2022] Open
Abstract
The emergence of multidrug-resistant (MDR) Gram-negative bacilli is a major concern in the treatment of nosocomial infections. Antibacterial agents with novel modes of action can be useful, as these pathogens have become resistant to almost all existing standard-of-care agents. GSK2251052, a leucyl-tRNA synthetase inhibitor, has a novel mode of action against Gram-negative bacteria. However, the phase 2 studies with this drug were terminated due to microbiological failures based on the rapid emergence of drug resistance during the treatment of complicated urinary tract infections. DS86760016 is a novel leucyl-tRNA synthetase inhibitor active against MDR Gram-negative bacteria, such as Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa, with an improved pharmacokinetic profile. DS86760016 showed lower plasma clearance, longer plasma half-life, and higher renal excretion than GSK2251052 did in mice, rats, monkeys and dogs. DS86760016 also showed lower mutant prevention concentrations against P. aeruginosa than did GSK2251052. No resistant bacteria were observed in murine urinary tract infection models at a dose that maintained urinary concentrations above the mutant prevention concentration. DS86760016 also showed a lower risk of resistance development than did GSK2251052 in comparative in vivo studies with murine urinary tract infection models. These results suggest that DS86760016 has potential as a new drug for the treatment of MDR Gram-negative bacterial infections, with a lower risk of drug resistance development than that of GSK2251052.
Collapse
|
10
|
Zhang N, Zoltner M, Leung KF, Scullion P, Hutchinson S, del Pino RC, Vincent IM, Zhang YK, Freund YR, Alley MRK, Jacobs RT, Read KD, Barrett MP, Horn D, Field MC. Host-parasite co-metabolic activation of antitrypanosomal aminomethyl-benzoxaboroles. PLoS Pathog 2018; 14:e1006850. [PMID: 29425238 PMCID: PMC5823473 DOI: 10.1371/journal.ppat.1006850] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 02/22/2018] [Accepted: 01/03/2018] [Indexed: 12/22/2022] Open
Abstract
Recent development of benzoxaborole-based chemistry gave rise to a collection of compounds with great potential in targeting diverse infectious diseases, including human African Trypanosomiasis (HAT), a devastating neglected tropical disease. However, further medicinal development is largely restricted by a lack of insight into mechanism of action (MoA) in pathogenic kinetoplastids. We adopted a multidisciplinary approach, combining a high-throughput forward genetic screen with functional group focused chemical biological, structural biology and biochemical analyses, to tackle the complex MoAs of benzoxaboroles in Trypanosoma brucei. We describe an oxidative enzymatic pathway composed of host semicarbazide-sensitive amine oxidase and a trypanosomal aldehyde dehydrogenase TbALDH3. Two sequential reactions through this pathway serve as the key underlying mechanism for activating a series of 4-aminomethylphenoxy-benzoxaboroles as potent trypanocides; the methylamine parental compounds as pro-drugs are transformed first into intermediate aldehyde metabolites, and further into the carboxylate metabolites as effective forms. Moreover, comparative biochemical and crystallographic analyses elucidated the catalytic specificity of TbALDH3 towards the benzaldehyde benzoxaborole metabolites as xenogeneic substrates. Overall, this work proposes a novel drug activation mechanism dependent on both host and parasite metabolism of primary amine containing molecules, which contributes a new perspective to our understanding of the benzoxaborole MoA, and could be further exploited to improve the therapeutic index of antimicrobial compounds. Human African Trypanomiasis (HAT) is among a list of Neglected Tropical Diseases (NTDs) that impose devastating burdens on both public health and economy of some of the most unprivileged societies across the world. To secure the long-term global control of the disease, it is critical to understand the mechanisms underlying the interactions of drugs and drug candidates with the causative agents as well as resistance potentially arising from use of the compounds. We demonstrated here a metabolic enzymatic cascade dependent on a host-pathogen interaction that determines potency against T. brucei of a series of benzoxaborole compounds. More importantly, this pathway represents a metabolic interaction network between host and pathogen, illuminating an important perspective on understanding mechanism of action.
Collapse
Affiliation(s)
- Ning Zhang
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Martin Zoltner
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Ka-Fai Leung
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Paul Scullion
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Sebastian Hutchinson
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Ricardo C. del Pino
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Isabel M. Vincent
- Wellcome Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Yong-Kang Zhang
- Anacor Pharmaceuticals, Inc., Palo Alto, California, United States of America
| | - Yvonne R. Freund
- Anacor Pharmaceuticals, Inc., Palo Alto, California, United States of America
| | - Michael R. K. Alley
- Anacor Pharmaceuticals, Inc., Palo Alto, California, United States of America
| | - Robert T. Jacobs
- Anacor Pharmaceuticals, Inc., Palo Alto, California, United States of America
| | - Kevin D. Read
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Michael P. Barrett
- Wellcome Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - David Horn
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Mark C. Field
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, United Kingdom
- * E-mail:
| |
Collapse
|
11
|
Di L. Reaction phenotyping to assess victim drug-drug interaction risks. Expert Opin Drug Discov 2017; 12:1105-1115. [DOI: 10.1080/17460441.2017.1367280] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Li Di
- Pharmacokinetics, Dynamics and Metabolism, Pfizer Inc, Groton, CT, USA
| |
Collapse
|
12
|
Farfán-García ED, Castillo-Mendieta NT, Ciprés-Flores FJ, Padilla-Martínez II, Trujillo-Ferrara JG, Soriano-Ursúa MA. Current data regarding the structure-toxicity relationship of boron-containing compounds. Toxicol Lett 2016; 258:115-125. [PMID: 27329537 DOI: 10.1016/j.toxlet.2016.06.018] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 05/29/2016] [Accepted: 06/17/2016] [Indexed: 02/07/2023]
Abstract
Boron is ubiquitous in nature, being an essential element of diverse cells. As a result, humans have had contact with boron containing compounds (BCCs) for a long time. During the 20th century, BCCs were developed as antiseptics, antibiotics, cosmetics and insecticides. Boric acid was freely used in the nosocomial environment as an antiseptic and sedative salt, leading to the death of patients and an important discovery about its critical toxicology for humans. Since then the many toxicological studies done in relation to BCCs have helped to establish the proper limits of their use. During the last 15 years, there has been a boom of research on the design and use of new, potent and efficient boron containing drugs, finding that the addition of boron to some known drugs increases their affinity and selectivity. This mini-review summarizes two aspects of BCCs: toxicological data found with experimental models, and the scarce but increasing data about the structure-activity relationship for toxicity and therapeutic use. As is the case with boron-free compounds, the biological activity of BCCs is related to their chemical structure. We discuss the use of new technology to discover potent and efficient BCCs for medicinal therapy by avoiding toxic effects.
Collapse
Affiliation(s)
- E D Farfán-García
- Departamento de Bioquímica, Sección de Estudios de Posgrado e Investigación. Escuela Superior de Medicina, Instituto Politécnico Nacional. Plan de San Luis y Díaz Mirón, 11340, México City, México; Departamento de Fisiología, Sección de Estudios de Posgrado e Investigación. Escuela Superior de Medicina, Instituto Politécnico Nacional. Plan de San Luis y Díaz Mirón, 11340, México City, México
| | - N T Castillo-Mendieta
- Departamento de Fisiología, Sección de Estudios de Posgrado e Investigación. Escuela Superior de Medicina, Instituto Politécnico Nacional. Plan de San Luis y Díaz Mirón, 11340, México City, México
| | - F J Ciprés-Flores
- Departamento de Bioquímica, Sección de Estudios de Posgrado e Investigación. Escuela Superior de Medicina, Instituto Politécnico Nacional. Plan de San Luis y Díaz Mirón, 11340, México City, México; Departamento de Fisiología, Sección de Estudios de Posgrado e Investigación. Escuela Superior de Medicina, Instituto Politécnico Nacional. Plan de San Luis y Díaz Mirón, 11340, México City, México
| | - I I Padilla-Martínez
- Unidad Profesional Interdisciplinaria de Biotecnología, Instituto Politécnico Nacional, Avenida Acueducto s/n, Barrio La Laguna Ticomán, 07340, México
| | - J G Trujillo-Ferrara
- Departamento de Bioquímica, Sección de Estudios de Posgrado e Investigación. Escuela Superior de Medicina, Instituto Politécnico Nacional. Plan de San Luis y Díaz Mirón, 11340, México City, México
| | - M A Soriano-Ursúa
- Departamento de Fisiología, Sección de Estudios de Posgrado e Investigación. Escuela Superior de Medicina, Instituto Politécnico Nacional. Plan de San Luis y Díaz Mirón, 11340, México City, México.
| |
Collapse
|
13
|
Antimalarial Benzoxaboroles Target Plasmodium falciparum Leucyl-tRNA Synthetase. Antimicrob Agents Chemother 2016; 60:4886-95. [PMID: 27270277 DOI: 10.1128/aac.00820-16] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 05/26/2016] [Indexed: 01/18/2023] Open
Abstract
There is a need for new antimalarials, ideally with novel mechanisms of action. Benzoxaboroles have been shown to be active against bacteria, fungi, and trypanosomes. Therefore, we investigated the antimalarial activity and mechanism of action of 3-aminomethyl benzoxaboroles against Plasmodium falciparum Two 3-aminomethyl compounds, AN6426 and AN8432, demonstrated good potency against cultured multidrug-resistant (W2 strain) P. falciparum (50% inhibitory concentration [IC50] of 310 nM and 490 nM, respectively) and efficacy against murine Plasmodium berghei infection when administered orally once daily for 4 days (90% effective dose [ED90], 7.4 and 16.2 mg/kg of body weight, respectively). To characterize mechanisms of action, we selected parasites with decreased drug sensitivity by culturing with stepwise increases in concentration of AN6426. Resistant clones were characterized by whole-genome sequencing. Three generations of resistant parasites had polymorphisms in the predicted editing domain of the gene encoding a P. falciparum leucyl-tRNA synthetase (LeuRS; PF3D7_0622800) and in another gene (PF3D7_1218100), which encodes a protein of unknown function. Solution of the structure of the P. falciparum LeuRS editing domain suggested key roles for mutated residues in LeuRS editing. Short incubations with AN6426 and AN8432, unlike artemisinin, caused dose-dependent inhibition of [(14)C]leucine incorporation by cultured wild-type, but not resistant, parasites. The growth of resistant, but not wild-type, parasites was impaired in the presence of the unnatural amino acid norvaline, consistent with a loss of LeuRS editing activity in resistant parasites. In summary, the benzoxaboroles AN6426 and AN8432 offer effective antimalarial activity and act, at least in part, against a novel target, the editing domain of P. falciparum LeuRS.
Collapse
|
14
|
Adamczyk-Woźniak A, Borys KM, Sporzyński A. Recent Developments in the Chemistry and Biological Applications of Benzoxaboroles. Chem Rev 2015; 115:5224-47. [DOI: 10.1021/cr500642d] [Citation(s) in RCA: 154] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
| | - Krzysztof M. Borys
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Andrzej Sporzyński
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| |
Collapse
|
15
|
Kanichar D, Roppiyakuda L, Kosmowska E, Faust MA, Tran KP, Chow F, Buglo E, Groziak MP, Sarina EA, Olmstead MM, Silva I, Xu HH. Synthesis, characterization, and antibacterial activity of structurally complex 2-acylated 2,3,1-benzodiazaborines and related compounds. Chem Biodivers 2015; 11:1381-97. [PMID: 25238079 DOI: 10.1002/cbdv.201400007] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2014] [Indexed: 11/10/2022]
Abstract
A set of 2-acylated 2,3,1-benzodiazaborines and some related boron heterocycles were synthesized, characterized, and tested for antibacterial activity against Escherichia coli and Mycobacterium smegmatis. By high-field solution NMR, the heretofore unknown class of 2-acyl-1-hydroxy-2,3,1-diazaborines has been found to be able to exist in several interconvertable structural forms along a continuum comprised of an open hydrazone a, a monomeric B-hydroxy diazaborine b, and an anhydro dimer c. X-Ray crystallography of one of the anhydro dimers, 17c, revealed it to have an unprecedented structure featuring a double intramolecular O→B chelation. The crystal structure of another compound, 37, showed it to be based on a new pentacyclic B heterocycle framework. Nine compounds were found to possess activities against E. coli, and two others were active against M. smegmatis. The finding that these two contain isoniazid covalently embedded in their structures suggests that they might possibly be acting as prodrugs of this well-known antituberculosis agent in vivo.
Collapse
Affiliation(s)
- Divya Kanichar
- Department of Chemistry and Biochemistry, California State University, East Bay, 25800 Carlos Bee Blvd., Hayward, CA 94542-3089, USA, (phone: +1-510-8853407; fax: +1-510-8854675)
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
|
17
|
Dave M, Nash M, Young GC, Ellens H, Magee MH, Roberts AD, Taylor MA, Greenhill RW, Boyle GW. Disposition and metabolism of darapladib, a lipoprotein-associated phospholipase A2 inhibitor, in humans. Drug Metab Dispos 2013; 42:415-30. [PMID: 24378325 DOI: 10.1124/dmd.113.054486] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The absorption, metabolism, and excretion of darapladib, a novel inhibitor of lipoprotein-associated phospholipase A2, was investigated in healthy male subjects using [(14)C]-radiolabeled material in a bespoke study design. Disposition of darapladib was compared following single i.v. and both single and repeated oral administrations. The anticipated presence of low circulating concentrations of drug-related material required the use of accelerator mass spectrometry as a sensitive radiodetector. Blood, urine, and feces were collected up to 21 days post radioactive dose, and analyzed for drug-related material. The principal circulating drug-related component was unchanged darapladib. No notable metabolites were observed in plasma post-i.v. dosing; however, metabolites resulting from hydroxylation (M3) and N-deethylation (M4) were observed (at 4%-6% of plasma radioactivity) following oral dosing, indicative of some first-pass metabolism. In addition, an acid-catalyzed degradant (M10) resulting from presystemic hydrolysis was also detected in plasma at similar levels of ∼5% of radioactivity post oral dosing. Systemic exposure to radioactive material was reduced within the repeat dose regimen, consistent with the notion of time-dependent pharmacokinetics resulting from enhanced clearance or reduced absorption. Elimination of drug-related material occurred predominantly via the feces, with unchanged darapladib representing 43%-53% of the radioactive dose, and metabolites M3 and M4 also notably accounting for ∼9% and 19% of the dose, respectively. The enhanced study design has provided an increased understanding of the absorption, distribution, metabolism and excretion (ADME) properties of darapladib in humans, and substantially influenced future work on the compound.
Collapse
Affiliation(s)
- Mehul Dave
- Department of Drug Metabolism and Pharmacokinetics (M.D., M.N., G.C.Y., A.D.R., M.A.T., G.W.B.) and Department of Safety Assessment (R.W.G.), GlaxoSmithKline Research & Development, Ware, United Kingdom, and Department of Drug Metabolism and Pharmacokinetics (H.E.) and Clinical Pharmacology, Modeling and Simulation (M.H.M.), GlaxoSmithKline Research & Development, Upper Merion, Philadelphia
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
|