1
|
Watanabe T, Tanaka R, Suzuki Y, Sato H, Negami J, Yoshijima C, Oda A, Ono H, Tatsuta R, Ohno K, Itoh H. Positive correlation between organic anion transporter 1B function indicated by plasma concentration of coproporphyrin-I and blood concentration of cyclosporin A in real-world patients. Br J Clin Pharmacol 2022; 89:1672-1681. [PMID: 36517987 DOI: 10.1111/bcp.15640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/20/2022] [Accepted: 11/21/2022] [Indexed: 12/23/2022] Open
Abstract
AIMS Cyclosporin A (CyA) has potent inhibitory activity on organic anion transporting polypeptide 1B (OATP1B), causing drug-drug interactions with its substrate drugs. 3-carboxy-4-methyl-5-propyl-2-furanpropionate (CMPF), a uraemic toxin, has also been suggested to inhibit OATP1B activity. Recent study has identified coproporphyrin-I (CP-I) as a specific endogenous substrate for OATP1B, which is useful to indicate OATP1B activity. We investigated the relationship of CP-I with CyA and CMPF concentrations in patients taking CyA. METHODS In total, 121 blood samples from 74 patients who took CyA and underwent routine therapeutic drug monitoring were divided into trough and peak samples. RESULTS CyA and CP-I concentrations were significantly higher in peak samples than in trough samples. A positive correlation between CP-I and CyA concentrations was found in all samples and in trough and peak samples, while no correlation was observed between CP-I and CMPF concentrations. Multiple regression analysis identified CyA and C-reactive protein concentrations as independent factors affecting CP-I concentration, with blood CyA concentration having markedly greater contribution to plasma CP-I concentration. CONCLUSION The present study suggests that CyA inhibits OATP1B activity in a concentration-dependent manner in clinical setting, and that dose adjustment of OATP1B substrate drugs coadministered with CyA according to plasma CMPF concentration may not be necessary.
Collapse
Affiliation(s)
- Takuma Watanabe
- Department of Clinical Pharmacy, Oita University Hospital, Yufu, Oita, Japan
| | - Ryota Tanaka
- Department of Clinical Pharmacy, Oita University Hospital, Yufu, Oita, Japan
| | - Yosuke Suzuki
- Department of Medication Use Analysis and Clinical Research, Meiji Pharmaceutical University, Kiyose, Tokyo, Japan
| | - Haruki Sato
- Department of Medication Use Analysis and Clinical Research, Meiji Pharmaceutical University, Kiyose, Tokyo, Japan
| | - Jun Negami
- Department of Medication Use Analysis and Clinical Research, Meiji Pharmaceutical University, Kiyose, Tokyo, Japan
| | - Chisato Yoshijima
- Department of Medication Use Analysis and Clinical Research, Meiji Pharmaceutical University, Kiyose, Tokyo, Japan
| | - Ayako Oda
- Department of Medication Use Analysis and Clinical Research, Meiji Pharmaceutical University, Kiyose, Tokyo, Japan
| | - Hiroyuki Ono
- Department of Clinical Pharmacy, Oita University Hospital, Yufu, Oita, Japan
| | - Ryosuke Tatsuta
- Department of Clinical Pharmacy, Oita University Hospital, Yufu, Oita, Japan
| | - Keiko Ohno
- Department of Medication Use Analysis and Clinical Research, Meiji Pharmaceutical University, Kiyose, Tokyo, Japan
| | - Hiroki Itoh
- Department of Clinical Pharmacy, Oita University Hospital, Yufu, Oita, Japan
| |
Collapse
|
2
|
Shen H, Yang Z, Rodrigues AD. Cynomolgus Monkey as an Emerging Animal Model to Study Drug Transporters: In Vitro, In Vivo, In Vitro-To-In Vivo Translation. Drug Metab Dispos 2021; 50:299-319. [PMID: 34893475 DOI: 10.1124/dmd.121.000695] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 12/06/2021] [Indexed: 11/22/2022] Open
Abstract
Membrane transporters have been recognized as one of the key determinants of pharmacokinetics and are also known to affect the efficacy and toxicity of drugs. Both qualitatively and quantitatively, however, transporter studies conducted using human in vitro systems have not always been predictive. Consequently, researchers have utilized cynomolgus monkeys as a model to study drug transporters and anticipate their effects in humans. Burgeoning reports of data in the last few years necessitates a comprehensive review on the topic of drug transporters in cynomolgus monkeys that includes cell-based tools, sequence homology, tissue expression, in vitro studies, in vivo studies, and in vitro-to-in vivo extrapolation (IVIVE). This review highlights the state-of-the-art applications of monkey transporter models to support the evaluation of transporter-mediated drug-drug interactions, clearance predictions, and endogenous transporter biomarker identification and validation. The data demonstrate that cynomolgus monkey transporter models, when used appropriately, can be an invaluable tool to support drug discovery and development processes. Most importantly, they provide an early IVIVE assessment which provides additional context to human in vitro data. Additionally, comprehending species similarities and differences in transporter tissue expression and activity is crucial when translating monkey data to humans. The challenges and limitations when applying such models to inform decision-making must also be considered. Significance Statement This paper presents a comprehensive review of currently available published reports describing cynomolgus monkey transporter models. The data indicate that cynomolgus monkeys provide mechanistic insight regarding the role of intestinal, hepatic, and renal transporters in drug and biomarker disposition and drug interactions. It is concluded that the data generated with cynomolgus monkey models provide mechanistic insight regarding transporter-mediated absorption and disposition, as well as human clearance prediction, drug-drug interaction assessment, and endogenous biomarker development related to drug transporters.
Collapse
Affiliation(s)
- Hong Shen
- Drug Metabolism and Pharmacokinetics, Bristol Myers Squibb, United States
| | - Zheng Yang
- Metabolism and Pharmacokinetics, Bristol-Myers Squibb Co., United States
| | | |
Collapse
|
3
|
Systematic identification and characterization of cynomolgus macaque solute carrier transporters. Drug Metab Pharmacokinet 2021; 43:100437. [DOI: 10.1016/j.dmpk.2021.100437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 11/24/2021] [Accepted: 12/02/2021] [Indexed: 11/21/2022]
|
4
|
Jala A, Ponneganti S, Vishnubhatla DS, Bhuvanam G, Mekala PR, Varghese B, Radhakrishnanand P, Adela R, Murty US, Borkar RM. Transporter-mediated drug-drug interactions: advancement in models, analytical tools, and regulatory perspective. Drug Metab Rev 2021; 53:285-320. [PMID: 33980079 DOI: 10.1080/03602532.2021.1928687] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 05/05/2021] [Indexed: 02/08/2023]
Abstract
Drug-drug interactions mediated by transporters are a serious clinical concern hence a tremendous amount of work has been done on the characterization of the transporter-mediated proteins in humans and animals. The underlying mechanism for the transporter-mediated drug-drug interaction is the induction or inhibition of the transporter which is involved in the cellular uptake and efflux of drugs. Transporter of the brain, liver, kidney, and intestine are major determinants that alter the absorption, distribution, metabolism, excretion profile of drugs, and considerably influence the pharmacokinetic profile of drugs. As a consequence, transporter proteins may affect the therapeutic activity and safety of drugs. However, mounting evidence suggests that many drugs change the activity and/or expression of the transporter protein. Accordingly, evaluation of drug interaction during the drug development process is an integral part of risk assessment and regulatory requirements. Therefore, this review will highlight the clinical significance of the transporter, their role in disease, possible cause underlying the drug-drug interactions using analytical tools, and update on the regulatory requirement. The recent in-silico approaches which emphasize the advancement in the discovery of drug-drug interactions are also highlighted in this review. Besides, we discuss several endogenous biomarkers that have shown to act as substrates for many transporters, which could be potent determinants to find the drug-drug interactions mediated by transporters. Transporter-mediated drug-drug interactions are taken into consideration in the drug approval process therefore we also provided the extrapolated decision trees from in-vitro to in-vivo, which may trigger the follow-up to clinical studies.
Collapse
Affiliation(s)
- Aishwarya Jala
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, India
| | - Srikanth Ponneganti
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, India
| | - Devi Swetha Vishnubhatla
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, India
| | - Gayathri Bhuvanam
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, India
| | - Prithvi Raju Mekala
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, India
| | - Bincy Varghese
- Department of Pharmacy Practice, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, India
| | - Pullapanthula Radhakrishnanand
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, India
| | - Ramu Adela
- Department of Pharmacy Practice, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, India
| | | | - Roshan M Borkar
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, India
| |
Collapse
|
5
|
Eng H, Bi YA, West MA, Ryu S, Yamaguchi E, Kosa RE, Tess DA, Griffith DA, Litchfield J, Kalgutkar AS, Varma MVS. Organic Anion-Transporting Polypeptide 1B1/1B3-Mediated Hepatic Uptake Determines the Pharmacokinetics of Large Lipophilic Acids: In Vitro-In Vivo Evaluation in Cynomolgus Monkey. J Pharmacol Exp Ther 2021; 377:169-180. [PMID: 33509903 DOI: 10.1124/jpet.120.000457] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 01/25/2021] [Indexed: 12/22/2022] Open
Abstract
It is generally presumed that uptake transport mechanisms are of limited significance in hepatic clearance for lipophilic or high passive-permeability drugs. In this study, we evaluated the mechanistic role of the hepato-selective organic anion-transporting polypeptides (OATPs) 1B1/1B3 in the pharmacokinetics of compounds representing large lipophilic acid space. Intravenous pharmacokinetics of 16 compounds with molecular mass ∼400-730 Da, logP ∼3.5-8, and acid pKa <6 were obtained in cynomolgus monkey after dosing without and with a single-dose rifampicin-OATP1B1/1B3 probe inhibitor. Rifampicin (30 mg/kg oral) significantly (P < 0.05) reduced monkey clearance and/or steady-state volume of distribution (VDss) for 15 of 16 acids evaluated. Additionally, clearance of danoprevir was reduced by about 35%, although statistical significance was not reached. A significant linear relationship was noted between the clearance ratio (i.e., ratio of control to treatment groups) and VDss ratio, suggesting hepatic uptake contributes to the systemic clearance and distribution simultaneously. In vitro transport studies using primary monkey and human hepatocytes showed uptake inhibition by rifampicin (100 µM) for compounds with logP ≤6.5 but not for the very lipophilic acids (logP > 6.5), which generally showed high nonspecific binding in hepatocyte incubations. In vitro uptake clearance and fraction transported by OATP1B1/1B3 (ft,OATP1B) were found to be similar in monkey and human hepatocytes. Finally, for compounds with logP ≤6.5, good agreement was noted between in vitro ft,OATP1B and clearance ratio (as well as VDss ratio) in cynomolgus monkey. In conclusion, this study provides mechanistic evidence for the pivotal role of OATP1B-mediated hepatic uptake in the pharmacokinetics across a wide, large lipophilic acid space. SIGNIFICANCE STATEMENT: This study provides mechanistic insight into the pharmacokinetics of a broad range of large lipophilic acids. Organic anion-transporting polypeptides 1B1/1B3-mediated hepatic uptake is of key importance in the pharmacokinetics and drug-drug interactions of almost all drugs and new molecular entities in this space. Diligent in vitro and in vivo transport characterization is needed to avoid the false negatives often noted because of general limitations in the in vitro assays while handling compounds with such physicochemical attributes.
Collapse
Affiliation(s)
- Heather Eng
- ADME Sciences, Medicine Design, Worldwide Research and Development, Pfizer Inc., Groton, Connecticut (H.E., Y.B., M.A.W., S.R., E.Y., R.E.K., M.V.S.V.), and PDM (D.A.T., J.L., A.S.K.) and Medicinal Chemistry, Medicine Design, Worldwide Research and Development (D.A.G.), Pfizer Inc., Cambridge, Massachusetts
| | - Yi-An Bi
- ADME Sciences, Medicine Design, Worldwide Research and Development, Pfizer Inc., Groton, Connecticut (H.E., Y.B., M.A.W., S.R., E.Y., R.E.K., M.V.S.V.), and PDM (D.A.T., J.L., A.S.K.) and Medicinal Chemistry, Medicine Design, Worldwide Research and Development (D.A.G.), Pfizer Inc., Cambridge, Massachusetts
| | - Mark A West
- ADME Sciences, Medicine Design, Worldwide Research and Development, Pfizer Inc., Groton, Connecticut (H.E., Y.B., M.A.W., S.R., E.Y., R.E.K., M.V.S.V.), and PDM (D.A.T., J.L., A.S.K.) and Medicinal Chemistry, Medicine Design, Worldwide Research and Development (D.A.G.), Pfizer Inc., Cambridge, Massachusetts
| | - Sangwoo Ryu
- ADME Sciences, Medicine Design, Worldwide Research and Development, Pfizer Inc., Groton, Connecticut (H.E., Y.B., M.A.W., S.R., E.Y., R.E.K., M.V.S.V.), and PDM (D.A.T., J.L., A.S.K.) and Medicinal Chemistry, Medicine Design, Worldwide Research and Development (D.A.G.), Pfizer Inc., Cambridge, Massachusetts
| | - Emi Yamaguchi
- ADME Sciences, Medicine Design, Worldwide Research and Development, Pfizer Inc., Groton, Connecticut (H.E., Y.B., M.A.W., S.R., E.Y., R.E.K., M.V.S.V.), and PDM (D.A.T., J.L., A.S.K.) and Medicinal Chemistry, Medicine Design, Worldwide Research and Development (D.A.G.), Pfizer Inc., Cambridge, Massachusetts
| | - Rachel E Kosa
- ADME Sciences, Medicine Design, Worldwide Research and Development, Pfizer Inc., Groton, Connecticut (H.E., Y.B., M.A.W., S.R., E.Y., R.E.K., M.V.S.V.), and PDM (D.A.T., J.L., A.S.K.) and Medicinal Chemistry, Medicine Design, Worldwide Research and Development (D.A.G.), Pfizer Inc., Cambridge, Massachusetts
| | - David A Tess
- ADME Sciences, Medicine Design, Worldwide Research and Development, Pfizer Inc., Groton, Connecticut (H.E., Y.B., M.A.W., S.R., E.Y., R.E.K., M.V.S.V.), and PDM (D.A.T., J.L., A.S.K.) and Medicinal Chemistry, Medicine Design, Worldwide Research and Development (D.A.G.), Pfizer Inc., Cambridge, Massachusetts
| | - David A Griffith
- ADME Sciences, Medicine Design, Worldwide Research and Development, Pfizer Inc., Groton, Connecticut (H.E., Y.B., M.A.W., S.R., E.Y., R.E.K., M.V.S.V.), and PDM (D.A.T., J.L., A.S.K.) and Medicinal Chemistry, Medicine Design, Worldwide Research and Development (D.A.G.), Pfizer Inc., Cambridge, Massachusetts
| | - John Litchfield
- ADME Sciences, Medicine Design, Worldwide Research and Development, Pfizer Inc., Groton, Connecticut (H.E., Y.B., M.A.W., S.R., E.Y., R.E.K., M.V.S.V.), and PDM (D.A.T., J.L., A.S.K.) and Medicinal Chemistry, Medicine Design, Worldwide Research and Development (D.A.G.), Pfizer Inc., Cambridge, Massachusetts
| | - Amit S Kalgutkar
- ADME Sciences, Medicine Design, Worldwide Research and Development, Pfizer Inc., Groton, Connecticut (H.E., Y.B., M.A.W., S.R., E.Y., R.E.K., M.V.S.V.), and PDM (D.A.T., J.L., A.S.K.) and Medicinal Chemistry, Medicine Design, Worldwide Research and Development (D.A.G.), Pfizer Inc., Cambridge, Massachusetts
| | - Manthena V S Varma
- ADME Sciences, Medicine Design, Worldwide Research and Development, Pfizer Inc., Groton, Connecticut (H.E., Y.B., M.A.W., S.R., E.Y., R.E.K., M.V.S.V.), and PDM (D.A.T., J.L., A.S.K.) and Medicinal Chemistry, Medicine Design, Worldwide Research and Development (D.A.G.), Pfizer Inc., Cambridge, Massachusetts
| |
Collapse
|
6
|
Izat N, Sahin S. Hepatic transporter-mediated pharmacokinetic drug-drug interactions: Recent studies and regulatory recommendations. Biopharm Drug Dispos 2021; 42:45-77. [PMID: 33507532 DOI: 10.1002/bdd.2262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 12/16/2020] [Accepted: 01/13/2021] [Indexed: 12/13/2022]
Abstract
Transporter-mediated drug-drug interactions are one of the major mechanisms in pharmacokinetic-based drug interactions and correspondingly affecting drugs' safety and efficacy. Regulatory bodies underlined the importance of the evaluation of transporter-mediated interactions as a part of the drug development process. The liver is responsible for the elimination of a wide range of endogenous and exogenous compounds via metabolism and biliary excretion. Therefore, hepatic uptake transporters, expressed on the sinusoidal membranes of hepatocytes, and efflux transporters mediating the transport from hepatocytes to the bile are determinant factors for pharmacokinetics of drugs, and hence, drug-drug interactions. In parallel with the growing research interest in this area, regulatory guidances have been updated with detailed assay models and criteria. According to well-established preclinical results, observed or expected hepatic transporter-mediated drug-drug interactions can be taken into account for clinical studies. In this paper, various methods including in vitro, in situ, in vivo, in silico approaches, and combinational concepts and several clinical studies on the assessment of transporter-mediated drug-drug interactions were reviewed. Informative and effective evaluation by preclinical tools together with the integration of pharmacokinetic modeling and simulation can reduce unexpected clinical outcomes and enhance the success rate in drug development.
Collapse
Affiliation(s)
- Nihan Izat
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Selma Sahin
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| |
Collapse
|
7
|
Li N, Badrinarayanan A, Ishida K, Li X, Roberts J, Wang S, Hayashi M, Gupta A. Albumin-Mediated Uptake Improves Human Clearance Prediction for Hepatic Uptake Transporter Substrates Aiding a Mechanistic In Vitro-In Vivo Extrapolation (IVIVE) Strategy in Discovery Research. AAPS JOURNAL 2020; 23:1. [DOI: 10.1208/s12248-020-00528-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 10/16/2020] [Indexed: 01/09/2023]
|
8
|
Tess DA, Eng H, Kalgutkar AS, Litchfield J, Edmonds DJ, Griffith DA, Varma MVS. Predicting the Human Hepatic Clearance of Acidic and Zwitterionic Drugs. J Med Chem 2020; 63:11831-11844. [PMID: 32985885 DOI: 10.1021/acs.jmedchem.0c01033] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Prospective predictions of human hepatic clearance for anionic/zwitterionic compounds, which are oftentimes subjected to transporter-mediated uptake, are challenging in drug discovery. We evaluated the utility of preclinical species, rats and cynomolgus monkeys [nonhuman primates (NHPs)], to predict the human hepatic clearance using a diverse set of acidic/zwitterionic drugs. Preclinical clearance data were generated following intravenous dosing in rats/NHPs and compared to the human clearance data (n = 18/27). Single-species scaling of NHP clearance with an allometric exponent of 0.50 allowed for good prediction of human clearance (fold error ∼2.1, bias ∼1.0), with ∼86% predictions within 3-fold. In comparison, rats underpredicted the clearance of lipophilic acids, while overprediction was noted for hydrophilic acids. Finally, an in vitro clearance assay based on human hepatocytes, which is routinely used in discovery setting, markedly underpredicted human clearance (bias ∼0.12). Collectively, this study provides insights into the usefulness of the preclinical models in enabling pharmacokinetic optimization for acid/zwitterionic drug candidates.
Collapse
Affiliation(s)
- David A Tess
- Medicine Design, Pfizer Worldwide Research & Development, Cambridge, Massachusetts 02139, United States
| | - Heather Eng
- Medicine Design, Pfizer Worldwide Research & Development, Groton, Connecticut 06340, United States
| | - Amit S Kalgutkar
- Medicine Design, Pfizer Worldwide Research & Development, Cambridge, Massachusetts 02139, United States
| | - John Litchfield
- Medicine Design, Pfizer Worldwide Research & Development, Cambridge, Massachusetts 02139, United States
| | - David J Edmonds
- Medicine Design, Pfizer Worldwide Research & Development, Cambridge, Massachusetts 02139, United States
| | - David A Griffith
- Medicine Design, Pfizer Worldwide Research & Development, Cambridge, Massachusetts 02139, United States
| | - Manthena V S Varma
- Medicine Design, Pfizer Worldwide Research & Development, Groton, Connecticut 06340, United States
| |
Collapse
|
9
|
Ogawa SI, Shimizu M, Kamiya Y, Uehara S, Suemizu H, Yamazaki H. Increased plasma concentrations of an antidyslipidemic drug pemafibrate co-administered with rifampicin or cyclosporine A in cynomolgus monkeys genotyped for the organic anion transporting polypeptide 1B1. Drug Metab Pharmacokinet 2020; 35:354-360. [DOI: 10.1016/j.dmpk.2020.03.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 03/02/2020] [Accepted: 03/24/2020] [Indexed: 12/21/2022]
|
10
|
Gu X, Wang L, Gan J, Fancher RM, Tian Y, Hong Y, Lai Y, Sinz M, Shen H. Absorption and Disposition of Coproporphyrin I (CPI) in Cynomolgus Monkeys and Mice: Pharmacokinetic Evidence to Support the Use of CPI to Inform the Potential for Organic Anion-Transporting Polypeptide Inhibition. Drug Metab Dispos 2020; 48:724-734. [DOI: 10.1124/dmd.120.090670] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 05/19/2020] [Indexed: 12/16/2022] Open
|
11
|
Alluri RV, Li R, Varma MVS. Transporter–enzyme interplay and the hepatic drug clearance: what have we learned so far? Expert Opin Drug Metab Toxicol 2020; 16:387-401. [DOI: 10.1080/17425255.2020.1749595] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Ravindra V. Alluri
- Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Rui Li
- Modeling and Simulations, Medicine Design, Worldwide Research and Development, Pfizer Inc., Cambridge, MA, USA
| | - Manthena V. S. Varma
- ADME Sciences, Medicine Design, Worldwide Research and Development, Pfizer Inc., Groton, CT, USA
| |
Collapse
|
12
|
Niu C, Wang Y, Zhao X, Tep S, Murakami E, Subramanian R, Smith B, Lai Y. Organic Anion-Transporting Polypeptide Genes Are Not Induced by the Pregnane X Receptor Activator Rifampin: Studies in Hepatocytes In Vitro and in Monkeys In Vivo. Drug Metab Dispos 2019; 47:1433-1442. [PMID: 31582395 DOI: 10.1124/dmd.119.088922] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 09/27/2019] [Indexed: 12/27/2022] Open
Abstract
Induction potentials of the pregnane X receptor (PXR) activator rifampin (RIF) on transporter genes [e.g., organic anion-transporting polypeptides (OATPs)] are still in its infancy or remain controversial in the field. The present investigations characterized changes in transporter gene expression by RIF in sandwich-cultured hepatocytes from multiple donors of human and cynomolgus monkey using real-time quantitative reverse transcription polymerase chain reaction method. Three-day treatment of RIF significantly induced CYP3A4 (∼60-fold induction), but not CYP1A2 and CYP2D6 genes. SLC51B was the most highly induced uptake transporter gene (>10-fold) in both human and monkey hepatocytes. A greater induction of CYP2C9 was observed in monkey hepatocytes than that in humans. ATP-binding cassette (ABC)B1 and ABCC2 were induced slightly above 2-fold in human and monkey hepatocytes and appeared to be dose-dependent. The induction of OATP and other transporter genes was generally less than 2-fold and considered not clinically relevant. SLCO2B1 was not detectable in monkey hepatocytes. To investigate in vivo OATP induction, RIF (18 mg/kg per day) was orally dosed to cynomolgus monkeys for 7 days. Pitavastatin and antipyrine were intravenously dosed before and after RIF treatment as exogenous probes of OATP and CYP activities, respectively. Plasma coproporphyrin-I (CP-I) and coproporphyrin-III (CP-III) were measured as OATP endogenous biomarkers. Although a significant increase of antipyrine clearance (CL) was observed after RIF treatment, the plasma exposures of pitavastatin, CP-I, and CP-III remained unchanged, suggesting that OATP function was not significantly altered. The results suggested that OATP transporters were not significantly induced by PXR ligand RIF. The data are consistent with current regulatory guidances that the in vitro characterization of transporter induction during drug development is not required. SIGNIFICANCE STATEMENT: Organic anion-transporting polypeptide (OATP) genes were not induced by rifampin in sandwich-cultured human and monkey hepatocytes OATP functions measured by OATP probe pitavastatin and endogenous marker coproporphyrins were not altered in monkeys in vivo by 7-day rifampin treatment. The data suggested that OATP transporters are unlikely induced by the pregnane X receptor ligand rifampin, which are consistent with current regulatory guidances that the in vitro characterization of OATP1B induction during drug development is not required.
Collapse
Affiliation(s)
- Congrong Niu
- Drug Metabolism, Gilead Sciences, Foster City, California
| | - Yujin Wang
- Drug Metabolism, Gilead Sciences, Foster City, California
| | - Xiaofeng Zhao
- Drug Metabolism, Gilead Sciences, Foster City, California
| | - Sam Tep
- Drug Metabolism, Gilead Sciences, Foster City, California
| | | | | | - Bill Smith
- Drug Metabolism, Gilead Sciences, Foster City, California
| | - Yurong Lai
- Drug Metabolism, Gilead Sciences, Foster City, California
| |
Collapse
|
13
|
Characterization of non-radiolabeled Thyroxine (T 4) uptake in cryopreserved rat hepatocyte suspensions: Pharmacokinetic implications for PFOA and PFOS chemical exposure. Toxicol In Vitro 2019; 58:230-238. [PMID: 30930230 DOI: 10.1016/j.tiv.2019.03.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 02/28/2019] [Accepted: 03/18/2019] [Indexed: 11/22/2022]
Abstract
The alteration of thyroxine (T4) cellular uptake by an environmental chemical can serve as a contributing factor in thyroid hormone (TH) disruption. Herein, we describe a non-radiolabeled (LC-MS/MS) oil-filtration technique designed to characterize the mechanism(s) responsible for T4 cellular uptake in cryopreserved rat hepatocyte suspensions. The environmental chemicals perfluorooctanoate (PFOA) and perfluorooctane sulfonate (PFOS) were evaluated for their effect on T4 hepatic uptake. At 37 °C, hepatic assays demonstrated saturable kinetics with increasing T4 concentrations, while a linear uptake rate consistent with passive diffusion was detected at 4 °C. Carrier-mediated (37-4 °C) transport of T4 was the predominant hepatic uptake process versus passive diffusion. Cyclosporin A (CsA) chemically inhibited T4 hepatic uptake, whereas PFOA/PFOS displayed no inhibition of T4 translocation. Increasing PFOA/PFOS concentration levels with the T4 serum carrier-protein transthyretin (TTR) present resulted in a dose-response increase in T4 hepatic uptake rates, correlating with increased T4 free fraction values. Hepatic assays conducted in the presence of PFOA/PFOS and TTR displayed an enhanced first-order T4 hepatic uptake rate consistent with carrier-mediated transport. These in vitro findings characterizing increased T4 hepatic uptake provides mechanistic insight regarding decreased T4 serum levels (hypothyroxinemia) previously observed within in vivo rodent studies following perfluorinated chemical exposure.
Collapse
|
14
|
Takehara I, Watanabe N, Mori D, Ando O, Kusuhara H. Effect of Rifampicin on the Plasma Concentrations of Bile Acid-O-Sulfates in Monkeys and Human Liver-Transplanted Chimeric Mice With or Without Bile Flow Diversion. J Pharm Sci 2019; 108:2756-2764. [PMID: 30905707 DOI: 10.1016/j.xphs.2019.03.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 02/16/2019] [Accepted: 03/14/2019] [Indexed: 01/09/2023]
Abstract
The present study examined the significance of enterohepatic circulation and the effect of rifampicin [an inhibitor of organic anion-transporting polypeptide 1B (OATP1B)] on the plasma concentrations of bile acid-O-sulfates (glycochenodeoxycholate-O-sulfate, lithocholate-O-sulfate, glycolithocholate-O-sulfate, and taurolithocholate-O-sulfate) in monkeys and human liver-transplanted chimeric mice (PXB mouse). Rifampicin significantly increased the area under the curve of bile acid-O-sulfates in monkeys (13-69 times) and PXB mice (13-25 times) without bile flow diversion. Bile flow diversion reduced the concentration of plasma bile acid-O-sulfates under control conditions in monkeys and the concentration of plasma glycochenodeoxycholate-O-sulfate in PXB mice. It also diminished diurnal variation of plasma lithocholate-O-sulfate, glycolithocholate-O-sulfate, and taurolithocholate-O-sulfate in PXB mice under control conditions. Bile flow diversion did not affect the plasma concentration of bile acid-O-sulfates in monkeys and PXB mice treated with rifampicin. Plasma coproporphyrin I and III levels were constant in monkeys throughout the study, even with bile flow diversion. This study demonstrated that bile acid-O-sulfates are endogenous OATP1B biomarkers in monkeys and PXB mice. Enterohepatic circulation can affect the baseline levels of plasma bile acid-O-sulfates and modify the effect of OATP1B inhibition.
Collapse
Affiliation(s)
- Issey Takehara
- Biomarker Department, Daiichi Sankyo Co., Ltd., Tokyo, Japan.
| | | | - Daiki Mori
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, the University of Tokyo, Tokyo, Japan
| | - Osamu Ando
- Drug Metabolism & Pharmacokinetics Research Laboratory, Daiichi Sankyo Co., Ltd., Tokyo, Japan
| | - Hiroyuki Kusuhara
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, the University of Tokyo, Tokyo, Japan
| |
Collapse
|
15
|
Takahashi T, Uno Y, Yamazaki H, Kume T. Functional characterization for polymorphic organic anion transporting polypeptides (OATP/SLCO
1B1, 1B3, 2B1) of monkeys recombinantly expressed with various OATP probes. Biopharm Drug Dispos 2019; 40:62-69. [DOI: 10.1002/bdd.2171] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 12/15/2018] [Accepted: 01/02/2019] [Indexed: 11/08/2022]
Affiliation(s)
| | - Yasuhiro Uno
- Shin Nippon Biomedical Laboratories, Ltd., Kainan; Wakayama 642-0017 Japan
| | | | - Toshiyuki Kume
- Mitsubishi Tanabe Pharma Corporation, Toda; Saitama 335-8505 Japan
| |
Collapse
|
16
|
Ogawa SI, Tsunenari Y, Kawai H, Yamazaki H. Pharmacokinetics and metabolism of pemafibrate, a novel selective peroxisome proliferator-activated receptor-alpha modulator, in rats and monkeys. Biopharm Drug Dispos 2019; 40:12-17. [PMID: 30517973 DOI: 10.1002/bdd.2165] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 11/13/2018] [Accepted: 11/26/2018] [Indexed: 11/10/2022]
Abstract
The metabolic profiles and pharmacokinetics of pemafibrate, a novel selective peroxisome proliferator activated receptor-alpha modulator currently launched as an antidyslipidemic drug, were investigated in vitro using hepatocytes from rats, monkeys and humans and in vivo in rats and monkeys. Hepatocytes from rats, monkeys and humans all biotransformed pemafibrate to its demethylated form (M1). The bioavailabilities of pemafibrate in Sprague-Dawley rats and cynomolgus monkeys were 15% and 87%, respectively, after a single oral administration of pemafibrate (1 mg/kg). In rat plasma, unmetabolized pemafibrate was the major form, accounting for 29% of the area under the curve (AUC) of total radioactivity. In monkey plasma, in contrast, the major circulating metabolites were M2/3 (dearylated/dicarboxylic acid forms, 15%), M4 (N-dealkylated form, 21%) and M5 (benzylic oxidative form, 9%), but pemafibrate was the notable minor form (3%). These results, in combination with the reported findings in humans, suggest that the metabolite profile of pemafibrate in plasma was different for rats and monkeys, and that monkeys could be a suitable animal model for further pharmacokinetic studies of pemafibrate in humans.
Collapse
Affiliation(s)
- Shin-Ichiro Ogawa
- Tokyo New Drug Research Laboratories, Kowa Co., Ltd, Higashimurayama, Tokyo, 189-0022, Japan.,Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo, 194-8543, Japan
| | - Yoshihiko Tsunenari
- Tokyo New Drug Research Laboratories, Kowa Co., Ltd, Higashimurayama, Tokyo, 189-0022, Japan
| | - Hiroyuki Kawai
- Tokyo New Drug Research Laboratories, Kowa Co., Ltd, Higashimurayama, Tokyo, 189-0022, Japan
| | - Hiroshi Yamazaki
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo, 194-8543, Japan
| |
Collapse
|
17
|
Kosa RE, Lazzaro S, Bi YA, Tierney B, Gates D, Modi S, Costales C, Rodrigues AD, Tremaine LM, Varma MV. Simultaneous Assessment of Transporter-Mediated Drug-Drug Interactions Using a Probe Drug Cocktail in Cynomolgus Monkey. Drug Metab Dispos 2018; 46:1179-1189. [PMID: 29880631 DOI: 10.1124/dmd.118.081794] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Accepted: 05/30/2018] [Indexed: 12/18/2022] Open
Abstract
We aim to establish an in vivo preclinical model to enable simultaneous assessment of inhibition potential of an investigational drug on clinically relevant drug transporters, organic anion-transporting polypeptide (OATP)1B, breast cancer resistance protein (BCRP), P-glycoprotein (P-gp), and organic anion transporter (OAT)3. Pharmacokinetics of substrate cocktail consisting of pitavastatin (OATP1B substrate), rosuvastatin (OATP1B/BCRP/OAT3), sulfasalazine (BCRP), and talinolol (P-gp) were obtained in cynomolgus monkey-alone or in combination with transporter inhibitors. Single-dose rifampicin (30 mg/kg) significantly (P < 0.01) increased the plasma exposure of all four drugs, with a marked effect on pitavastatin and rosuvastatin [area under the plasma concentration-time curve (AUC) ratio ∼21-39]. Elacridar, BCRP/P-gp inhibitor, increased the AUC of sulfasalazine, talinolol, as well as rosuvastatin and pitavastatin. An OAT1/3 inhibitor (probenecid) significantly (P < 0.05) impacted the renal clearance of rosuvastatin (∼8-fold). In vitro, rifampicin (10 µM) inhibited uptake of pitavastatin, rosuvastatin, and sulfasalazine by monkey and human primary hepatocytes. Transport studies using membrane vesicles suggested that all probe substrates, except talinolol, are transported by cynoBCRP, whereas talinolol is a cynoP-gp substrate. Elacridar and rifampicin inhibited both cynoBCRP and cynoP-gp in vitro, indicating potential for in vivo intestinal efflux inhibition. In conclusion, a probe substrate cocktail was validated to simultaneously evaluate perpetrator impact on multiple clinically relevant transporters using the cynomolgus monkey. The results support the use of the cynomolgus monkey as a model that could enable drug-drug interaction risk assessment, before advancing a new molecular entity into clinical development, as well as providing mechanistic insights on transporter-mediated interactions.
Collapse
Affiliation(s)
- Rachel E Kosa
- Pharmacokinetics, Dynamics, and Metabolism, Medicine Design (R.E.K., S.L., Y.-a.B., B.T., C.C., A.D.R., L.M.T., M.V.V.) and Research Formulations, Pharmaceutical Sciences (D.G., S.M.), Pfizer Worldwide R&D, Groton, Connecticut
| | - Sarah Lazzaro
- Pharmacokinetics, Dynamics, and Metabolism, Medicine Design (R.E.K., S.L., Y.-a.B., B.T., C.C., A.D.R., L.M.T., M.V.V.) and Research Formulations, Pharmaceutical Sciences (D.G., S.M.), Pfizer Worldwide R&D, Groton, Connecticut
| | - Yi-An Bi
- Pharmacokinetics, Dynamics, and Metabolism, Medicine Design (R.E.K., S.L., Y.-a.B., B.T., C.C., A.D.R., L.M.T., M.V.V.) and Research Formulations, Pharmaceutical Sciences (D.G., S.M.), Pfizer Worldwide R&D, Groton, Connecticut
| | - Brendan Tierney
- Pharmacokinetics, Dynamics, and Metabolism, Medicine Design (R.E.K., S.L., Y.-a.B., B.T., C.C., A.D.R., L.M.T., M.V.V.) and Research Formulations, Pharmaceutical Sciences (D.G., S.M.), Pfizer Worldwide R&D, Groton, Connecticut
| | - Dana Gates
- Pharmacokinetics, Dynamics, and Metabolism, Medicine Design (R.E.K., S.L., Y.-a.B., B.T., C.C., A.D.R., L.M.T., M.V.V.) and Research Formulations, Pharmaceutical Sciences (D.G., S.M.), Pfizer Worldwide R&D, Groton, Connecticut
| | - Sweta Modi
- Pharmacokinetics, Dynamics, and Metabolism, Medicine Design (R.E.K., S.L., Y.-a.B., B.T., C.C., A.D.R., L.M.T., M.V.V.) and Research Formulations, Pharmaceutical Sciences (D.G., S.M.), Pfizer Worldwide R&D, Groton, Connecticut
| | - Chester Costales
- Pharmacokinetics, Dynamics, and Metabolism, Medicine Design (R.E.K., S.L., Y.-a.B., B.T., C.C., A.D.R., L.M.T., M.V.V.) and Research Formulations, Pharmaceutical Sciences (D.G., S.M.), Pfizer Worldwide R&D, Groton, Connecticut
| | - A David Rodrigues
- Pharmacokinetics, Dynamics, and Metabolism, Medicine Design (R.E.K., S.L., Y.-a.B., B.T., C.C., A.D.R., L.M.T., M.V.V.) and Research Formulations, Pharmaceutical Sciences (D.G., S.M.), Pfizer Worldwide R&D, Groton, Connecticut
| | - Larry M Tremaine
- Pharmacokinetics, Dynamics, and Metabolism, Medicine Design (R.E.K., S.L., Y.-a.B., B.T., C.C., A.D.R., L.M.T., M.V.V.) and Research Formulations, Pharmaceutical Sciences (D.G., S.M.), Pfizer Worldwide R&D, Groton, Connecticut
| | - Manthena V Varma
- Pharmacokinetics, Dynamics, and Metabolism, Medicine Design (R.E.K., S.L., Y.-a.B., B.T., C.C., A.D.R., L.M.T., M.V.V.) and Research Formulations, Pharmaceutical Sciences (D.G., S.M.), Pfizer Worldwide R&D, Groton, Connecticut
| |
Collapse
|
18
|
De Bruyn T, Ufuk A, Cantrill C, Kosa RE, Bi YA, Niosi M, Modi S, Rodrigues AD, Tremaine LM, Varma MVS, Galetin A, Houston JB. Predicting Human Clearance of Organic Anion Transporting Polypeptide Substrates Using Cynomolgus Monkey: In Vitro–In Vivo Scaling of Hepatic Uptake Clearance. Drug Metab Dispos 2018; 46:989-1000. [DOI: 10.1124/dmd.118.081315] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 04/26/2018] [Indexed: 12/17/2022] Open
|
19
|
Ufuk A, Kosa RE, Gao H, Bi YA, Modi S, Gates D, Rodrigues AD, Tremaine LM, Varma MVS, Houston JB, Galetin A. In Vitro-In Vivo Extrapolation of OATP1B-Mediated Drug-Drug Interactions in Cynomolgus Monkey. J Pharmacol Exp Ther 2018; 365:688-699. [PMID: 29643253 DOI: 10.1124/jpet.118.247767] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 04/06/2018] [Indexed: 12/31/2022] Open
Abstract
Hepatic organic anion-transporting polypeptides (OATP) 1B1 and 1B3 are clinically relevant transporters associated with significant drug-drug interactions (DDIs) and safety concerns. Given that OATP1Bs in cynomolgus monkey share >90% degree of gene and amino acid sequence homology with human orthologs, we evaluated the in vitro-in vivo translation of OATP1B-mediated DDI risk using this preclinical model. In vitro studies using plated cynomolgus monkey hepatocytes showed active uptake Km values of 2.0 and 3.9 µM for OATP1B probe substrates, pitavastatin and rosuvastatin, respectively. Rifampicin inhibited pitavastatin and rosuvastatin active uptake in monkey hepatocytes with IC50 values of 3.0 and 0.54 µM, respectively, following preincubation with the inhibitor. Intravenous pharmacokinetics of 2H4-pitavastatin and 2H6-rosuvastatin (0.2 mg/kg) and the oral pharmacokinetics of cold probes (2 mg/kg) were studied in cynomolgus monkeys (n = 4) without or with coadministration of single oral ascending doses of rifampicin (1, 3, 10, and 30 mg/kg). A rifampicin dose-dependent reduction in i.v. clearance of statins was observed. Additionally, oral pitavastatin and rosuvastatin plasma exposure increased up to 19- and 15-fold at the highest dose of rifampicin, respectively. Use of in vitro IC50 obtained following 1 hour preincubation with rifampicin (0.54 µM) predicted correctly the change in mean i.v. clearance and oral exposure of statins as a function of mean unbound maximum plasma concentration of rifampicin. This study demonstrates quantitative translation of in vitro OATP1B IC50 to predict DDIs using cynomolgus monkey as a preclinical model and provides further confidence in application of in vitro hepatocyte data for the prediction of clinical OATP1B-mediated DDIs.
Collapse
Affiliation(s)
- Ayşe Ufuk
- Centre for Applied Pharmacokinetic Research, School of Health Sciences, University of Manchester, Manchester, United Kingdom (A.U., J.B.H., A.G.); and Pharmacokinetics, Dynamics, and Metabolism (R.E.K., H.G., Y.-A.B., A.D.R., L.M.T., M.V.S.V.) and Research Formulations, Pharmaceutical Sciences (S.M., D.G.), Medicine Design, Pfizer Worldwide R&D, Groton, Connecticut
| | - Rachel E Kosa
- Centre for Applied Pharmacokinetic Research, School of Health Sciences, University of Manchester, Manchester, United Kingdom (A.U., J.B.H., A.G.); and Pharmacokinetics, Dynamics, and Metabolism (R.E.K., H.G., Y.-A.B., A.D.R., L.M.T., M.V.S.V.) and Research Formulations, Pharmaceutical Sciences (S.M., D.G.), Medicine Design, Pfizer Worldwide R&D, Groton, Connecticut
| | - Hongying Gao
- Centre for Applied Pharmacokinetic Research, School of Health Sciences, University of Manchester, Manchester, United Kingdom (A.U., J.B.H., A.G.); and Pharmacokinetics, Dynamics, and Metabolism (R.E.K., H.G., Y.-A.B., A.D.R., L.M.T., M.V.S.V.) and Research Formulations, Pharmaceutical Sciences (S.M., D.G.), Medicine Design, Pfizer Worldwide R&D, Groton, Connecticut
| | - Yi-An Bi
- Centre for Applied Pharmacokinetic Research, School of Health Sciences, University of Manchester, Manchester, United Kingdom (A.U., J.B.H., A.G.); and Pharmacokinetics, Dynamics, and Metabolism (R.E.K., H.G., Y.-A.B., A.D.R., L.M.T., M.V.S.V.) and Research Formulations, Pharmaceutical Sciences (S.M., D.G.), Medicine Design, Pfizer Worldwide R&D, Groton, Connecticut
| | - Sweta Modi
- Centre for Applied Pharmacokinetic Research, School of Health Sciences, University of Manchester, Manchester, United Kingdom (A.U., J.B.H., A.G.); and Pharmacokinetics, Dynamics, and Metabolism (R.E.K., H.G., Y.-A.B., A.D.R., L.M.T., M.V.S.V.) and Research Formulations, Pharmaceutical Sciences (S.M., D.G.), Medicine Design, Pfizer Worldwide R&D, Groton, Connecticut
| | - Dana Gates
- Centre for Applied Pharmacokinetic Research, School of Health Sciences, University of Manchester, Manchester, United Kingdom (A.U., J.B.H., A.G.); and Pharmacokinetics, Dynamics, and Metabolism (R.E.K., H.G., Y.-A.B., A.D.R., L.M.T., M.V.S.V.) and Research Formulations, Pharmaceutical Sciences (S.M., D.G.), Medicine Design, Pfizer Worldwide R&D, Groton, Connecticut
| | - A David Rodrigues
- Centre for Applied Pharmacokinetic Research, School of Health Sciences, University of Manchester, Manchester, United Kingdom (A.U., J.B.H., A.G.); and Pharmacokinetics, Dynamics, and Metabolism (R.E.K., H.G., Y.-A.B., A.D.R., L.M.T., M.V.S.V.) and Research Formulations, Pharmaceutical Sciences (S.M., D.G.), Medicine Design, Pfizer Worldwide R&D, Groton, Connecticut
| | - Larry M Tremaine
- Centre for Applied Pharmacokinetic Research, School of Health Sciences, University of Manchester, Manchester, United Kingdom (A.U., J.B.H., A.G.); and Pharmacokinetics, Dynamics, and Metabolism (R.E.K., H.G., Y.-A.B., A.D.R., L.M.T., M.V.S.V.) and Research Formulations, Pharmaceutical Sciences (S.M., D.G.), Medicine Design, Pfizer Worldwide R&D, Groton, Connecticut
| | - Manthena V S Varma
- Centre for Applied Pharmacokinetic Research, School of Health Sciences, University of Manchester, Manchester, United Kingdom (A.U., J.B.H., A.G.); and Pharmacokinetics, Dynamics, and Metabolism (R.E.K., H.G., Y.-A.B., A.D.R., L.M.T., M.V.S.V.) and Research Formulations, Pharmaceutical Sciences (S.M., D.G.), Medicine Design, Pfizer Worldwide R&D, Groton, Connecticut
| | - J Brian Houston
- Centre for Applied Pharmacokinetic Research, School of Health Sciences, University of Manchester, Manchester, United Kingdom (A.U., J.B.H., A.G.); and Pharmacokinetics, Dynamics, and Metabolism (R.E.K., H.G., Y.-A.B., A.D.R., L.M.T., M.V.S.V.) and Research Formulations, Pharmaceutical Sciences (S.M., D.G.), Medicine Design, Pfizer Worldwide R&D, Groton, Connecticut
| | - Aleksandra Galetin
- Centre for Applied Pharmacokinetic Research, School of Health Sciences, University of Manchester, Manchester, United Kingdom (A.U., J.B.H., A.G.); and Pharmacokinetics, Dynamics, and Metabolism (R.E.K., H.G., Y.-A.B., A.D.R., L.M.T., M.V.S.V.) and Research Formulations, Pharmaceutical Sciences (S.M., D.G.), Medicine Design, Pfizer Worldwide R&D, Groton, Connecticut
| |
Collapse
|
20
|
Uchida M, Tajima Y, Kakuni M, Kageyama Y, Okada T, Sakurada E, Tateno C, Hayashi R. Organic Anion–Transporting Polypeptide (OATP)–Mediated Drug-Drug Interaction Study between Rosuvastatin and Cyclosporine A in Chimeric Mice with Humanized Liver. Drug Metab Dispos 2017; 46:11-19. [DOI: 10.1124/dmd.117.075994] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 10/13/2017] [Indexed: 01/13/2023] Open
|
21
|
Lee SC, Arya V, Yang X, Volpe DA, Zhang L. Evaluation of transporters in drug development: Current status and contemporary issues. Adv Drug Deliv Rev 2017; 116:100-118. [PMID: 28760687 DOI: 10.1016/j.addr.2017.07.020] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 07/19/2017] [Accepted: 07/26/2017] [Indexed: 01/22/2023]
Abstract
Transporters govern the access of molecules to cells or their exit from cells, thereby controlling the overall distribution of drugs to their intracellular site of action. Clinically relevant drug-drug interactions mediated by transporters are of increasing interest in drug development. Drug transporters, acting alone or in concert with drug metabolizing enzymes, can play an important role in modulating drug absorption, distribution, metabolism and excretion, thus affecting the pharmacokinetics and/or pharmacodynamics of a drug. The drug interaction guidance documents from regulatory agencies include various decision criteria that may be used to predict the need for in vivo assessment of transporter-mediated drug-drug interactions. Regulatory science research continues to assess the prediction performances of various criteria as well as to examine the strength and limitations of each prediction criterion to foster discussions related to harmonized decision criteria that may be used to facilitate global drug development. This review discusses the role of transporters in drug development with a focus on methodologies in assessing transporter-mediated drug-drug interactions, challenges in both in vitro and in vivo assessments of transporters, and emerging transporter research areas including biomarkers, assessment of tissue concentrations, and effect of diseases on transporters.
Collapse
Affiliation(s)
- Sue-Chih Lee
- Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - Vikram Arya
- Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - Xinning Yang
- Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - Donna A Volpe
- Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - Lei Zhang
- Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA.
| |
Collapse
|
22
|
Thakare R, Gao H, Kosa RE, Bi YA, Varma MVS, Cerny MA, Sharma R, Kuhn M, Huang B, Liu Y, Yu A, Walker GS, Niosi M, Tremaine L, Alnouti Y, Rodrigues AD. Leveraging of Rifampicin-Dosed Cynomolgus Monkeys to Identify Bile Acid 3-O-Sulfate Conjugates as Potential Novel Biomarkers for Organic Anion-Transporting Polypeptides. Drug Metab Dispos 2017; 45:721-733. [DOI: 10.1124/dmd.117.075275] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Accepted: 04/05/2017] [Indexed: 11/22/2022] Open
|
23
|
Varma MV, Kimoto E, Scialis R, Bi Y, Lin J, Eng H, Kalgutkar AS, El-Kattan AF, Rodrigues AD, Tremaine LM. Transporter-Mediated Hepatic Uptake Plays an Important Role in the Pharmacokinetics and Drug-Drug Interactions of Montelukast. Clin Pharmacol Ther 2016; 101:406-415. [PMID: 27648490 DOI: 10.1002/cpt.520] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 08/25/2016] [Accepted: 09/14/2016] [Indexed: 12/21/2022]
Abstract
Montelukast, a leukotriene receptor antagonist commonly prescribed for treatment of asthma, is primarily metabolized by cytochrome P450 (CYP)2C8, and has been suggested as a probe substrate for investigating CYP2C8 activity in vivo. We evaluated the quantitative role of hepatic uptake transport in its pharmacokinetics and drug-drug interactions (DDIs). Montelukast was characterized with significant active uptake in human hepatocytes, and showed affinity towards organic anion transporting polypeptides (OATPs) in transfected cell systems. Single-dose rifampicin, an OATP inhibitor, decreased montelukast clearance in rats and monkeys. Clinical DDIs of montelukast were evaluated using physiologically based pharmacokinetic modeling; and simulation of the interactions with gemfibrozil-CYP2C8 and OATP1B1/1B3 inhibitor, clarithromycin-CYP3A and OATP1B1/1B3 inhibitor, and itraconazole-CYP3A inhibitor, implicated OATPs-CYP2C8-CYP2C8 interplay as the primary determinant of montelukast pharmacokinetics. In conclusion, hepatic uptake plays a key role in the pharmacokinetics of montelukast, which should be taken into account when interpreting clinical interactions.
Collapse
Affiliation(s)
- M V Varma
- Pharmacokinetics, Dynamics and Metabolism, Pfizer Inc, Groton, Connecticut, USA
| | - E Kimoto
- Pharmacokinetics, Dynamics and Metabolism, Pfizer Inc, Groton, Connecticut, USA
| | - R Scialis
- Pharmacokinetics, Dynamics and Metabolism, Pfizer Inc, Groton, Connecticut, USA
| | - Y Bi
- Pharmacokinetics, Dynamics and Metabolism, Pfizer Inc, Groton, Connecticut, USA
| | - J Lin
- Pharmacokinetics, Dynamics and Metabolism, Pfizer Inc, Groton, Connecticut, USA
| | - H Eng
- Pharmacokinetics, Dynamics and Metabolism, Pfizer Inc, Groton, Connecticut, USA
| | - A S Kalgutkar
- Pharmacokinetics, Dynamics and Metabolism, Pfizer Inc, Cambridge, Massachusetts, USA
| | - A F El-Kattan
- Pharmacokinetics, Dynamics and Metabolism, Pfizer Inc, Cambridge, Massachusetts, USA
| | - A D Rodrigues
- Pharmacokinetics, Dynamics and Metabolism, Pfizer Inc, Groton, Connecticut, USA
| | - L M Tremaine
- Pharmacokinetics, Dynamics and Metabolism, Pfizer Inc, Groton, Connecticut, USA
| |
Collapse
|
24
|
Takahashi T, Ohtsuka T, Uno Y, Utoh M, Yamazaki H, Kume T. Pre-incubation with cyclosporine A potentiates its inhibitory effects on pitavastatin uptake mediated by recombinantly expressed cynomolgus monkey hepatic organic anion transporting polypeptide. Biopharm Drug Dispos 2016; 37:479-490. [DOI: 10.1002/bdd.2039] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 08/18/2016] [Accepted: 08/30/2016] [Indexed: 01/19/2023]
Affiliation(s)
| | | | - Yasuhiro Uno
- Shin Nippon Biomedical Laboratories Ltd; Kainan Wakayama Japan
| | - Masahiro Utoh
- Shin Nippon Biomedical Laboratories Ltd; Kainan Wakayama Japan
| | | | - Toshiyuki Kume
- Mitsubishi Tanabe Pharma Corporation; Toda Saitama Japan
| |
Collapse
|
25
|
Momper JD, Tsunoda SM, Ma JD. Evaluation of Proposed In Vivo Probe Substrates and Inhibitors for Phenotyping Transporter Activity in Humans. J Clin Pharmacol 2016; 56 Suppl 7:S82-98. [DOI: 10.1002/jcph.736] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 02/23/2016] [Accepted: 03/07/2016] [Indexed: 01/10/2023]
Affiliation(s)
- Jeremiah D. Momper
- University of California, San Diego; Skaggs School of Pharmacy & Pharmaceutical Sciences; La Jolla CA USA
| | - Shirley M. Tsunoda
- University of California, San Diego; Skaggs School of Pharmacy & Pharmaceutical Sciences; La Jolla CA USA
| | - Joseph D. Ma
- University of California, San Diego; Skaggs School of Pharmacy & Pharmaceutical Sciences; La Jolla CA USA
| |
Collapse
|
26
|
Shen H, Liu T, Jiang H, Titsch C, Taylor K, Kandoussi H, Qiu X, Chen C, Sukrutharaj S, Kuit K, Mintier G, Krishnamurthy P, Fancher RM, Zeng J, Rodrigues AD, Marathe P, Lai Y. Cynomolgus Monkey as a Clinically Relevant Model to Study Transport Involving Renal Organic Cation Transporters: In Vitro and In Vivo Evaluation. Drug Metab Dispos 2015; 44:238-49. [DOI: 10.1124/dmd.115.066852] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 11/19/2015] [Indexed: 01/12/2023] Open
|
27
|
Ai N, Fan X, Ekins S. In silico methods for predicting drug-drug interactions with cytochrome P-450s, transporters and beyond. Adv Drug Deliv Rev 2015; 86:46-60. [PMID: 25796619 DOI: 10.1016/j.addr.2015.03.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 01/05/2015] [Accepted: 03/11/2015] [Indexed: 12/13/2022]
Abstract
Drug-drug interactions (DDIs) are associated with severe adverse effects that may lead to the patient requiring alternative therapeutics and could ultimately lead to drug withdrawal from the market if they are severe. To prevent the occurrence of DDI in the clinic, experimental systems to evaluate drug interaction have been integrated into the various stages of the drug discovery and development process. A large body of knowledge about DDI has also accumulated through these studies and pharmacovigillence systems. Much of this work to date has focused on the drug metabolizing enzymes such as cytochrome P-450s as well as drug transporters, ion channels and occasionally other proteins. This combined knowledge provides a foundation for a hypothesis-driven in silico approach, using either cheminformatics or physiologically based pharmacokinetics (PK) modeling methods to assess DDI potential. Here we review recent advances in these approaches with emphasis on hypothesis-driven mechanistic models for important protein targets involved in PK-based DDI. Recent efforts with other informatics approaches to detect DDI are highlighted. Besides DDI, we also briefly introduce drug interactions with other substances, such as Traditional Chinese Medicines to illustrate how in silico modeling can be useful in this domain. We also summarize valuable data sources and web-based tools that are available for DDI prediction. We finally explore the challenges we see faced by in silico approaches for predicting DDI and propose future directions to make these computational models more reliable, accurate, and publically accessible.
Collapse
Affiliation(s)
- Ni Ai
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, PR China
| | - Xiaohui Fan
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, PR China.
| | - Sean Ekins
- Collaborations in Chemistry, 5616 Hilltop Needmore Road, Fuquay-Varina, NC 27526, USA.
| |
Collapse
|
28
|
Watanabe M, Watanabe T, Yabuki M, Tamai I. Dehydroepiandrosterone sulfate, a useful endogenous probe for evaluation of drug–drug interaction on hepatic organic anion transporting polypeptide (OATP) in cynomolgus monkeys. Drug Metab Pharmacokinet 2015; 30:198-204. [DOI: 10.1016/j.dmpk.2014.12.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 12/11/2014] [Accepted: 12/28/2014] [Indexed: 11/25/2022]
|
29
|
Chu X, Shih SJ, Shaw R, Hentze H, Chan GH, Owens K, Wang S, Cai X, Newton D, Castro-Perez J, Salituro G, Palamanda J, Fernandis A, Ng CK, Liaw A, Savage MJ, Evers R. Evaluation of cynomolgus monkeys for the identification of endogenous biomarkers for hepatic transporter inhibition and as a translatable model to predict pharmacokinetic interactions with statins in humans. Drug Metab Dispos 2015; 43:851-63. [PMID: 25813937 DOI: 10.1124/dmd.115.063347] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 03/26/2015] [Indexed: 12/31/2022] Open
Abstract
Inhibition of hepatic transporters such as organic anion transporting polypeptides (OATPs) 1B can cause drug-drug interactions (DDIs). Determining the impact of perpetrator drugs on the plasma exposure of endogenous substrates for OATP1B could be valuable to assess the risk for DDIs early in drug development. As OATP1B orthologs are well conserved between human and monkey, we assessed in cynomolgus monkeys the endogenous OATP1B substrates that are potentially suitable to assess DDI risk in humans. The effect of rifampin (RIF), a potent inhibitor for OATP1B, on plasma exposure of endogenous substrates of hepatic transporters was measured. From the 18 biomarkers tested, RIF (18 mg/kg, oral) caused significant elevation of plasma unconjugated and conjugated bilirubin, which may be attributed to inhibition of cOATP1B1 and cOATP1B3 based on in vitro to in vivo extrapolation analysis. To further evaluate whether cynomolgus monkeys are a suitable translational model to study OATP1B-mediated DDIs, we determined the inhibitory effect of RIF on in vitro transport and pharmacokinetics of rosuvastatin (RSV) and atorvastatin (ATV). RIF strongly inhibited the uptake of RSV and ATV by cOATP1B1 and cOATP1B3 in vitro. In agreement with clinical observations, RIF (18 mg/kg, oral) significantly decreased plasma clearance and increased the area under the plasma concentration curve (AUC) of intravenously administered RSV by 2.8- and 2.7-fold, and increased the AUC and maximum plasma concentration of orally administered RSV by 6- and 10.3-fold, respectively. In contrast to clinical findings, RIF did not significantly increase plasma exposure of either intravenous or orally administered ATV, indicating species differences in the rate-limiting elimination pathways.
Collapse
Affiliation(s)
- Xiaoyan Chu
- Merck Sharp & Dohme Corporation, Kenilworth, New Jersey (X.C., G.H.C., K.O., S.W., X.C., D.N., J.C.P., G.S., J.P., A.L., M.J.S., R.E.); Translational Medicine Research Centre, Singapore (S.J.S., R.S., H.H., A.F., C.K.N.)
| | - Shian-Jiun Shih
- Merck Sharp & Dohme Corporation, Kenilworth, New Jersey (X.C., G.H.C., K.O., S.W., X.C., D.N., J.C.P., G.S., J.P., A.L., M.J.S., R.E.); Translational Medicine Research Centre, Singapore (S.J.S., R.S., H.H., A.F., C.K.N.)
| | - Rachel Shaw
- Merck Sharp & Dohme Corporation, Kenilworth, New Jersey (X.C., G.H.C., K.O., S.W., X.C., D.N., J.C.P., G.S., J.P., A.L., M.J.S., R.E.); Translational Medicine Research Centre, Singapore (S.J.S., R.S., H.H., A.F., C.K.N.)
| | - Hannes Hentze
- Merck Sharp & Dohme Corporation, Kenilworth, New Jersey (X.C., G.H.C., K.O., S.W., X.C., D.N., J.C.P., G.S., J.P., A.L., M.J.S., R.E.); Translational Medicine Research Centre, Singapore (S.J.S., R.S., H.H., A.F., C.K.N.)
| | - Grace H Chan
- Merck Sharp & Dohme Corporation, Kenilworth, New Jersey (X.C., G.H.C., K.O., S.W., X.C., D.N., J.C.P., G.S., J.P., A.L., M.J.S., R.E.); Translational Medicine Research Centre, Singapore (S.J.S., R.S., H.H., A.F., C.K.N.)
| | - Karen Owens
- Merck Sharp & Dohme Corporation, Kenilworth, New Jersey (X.C., G.H.C., K.O., S.W., X.C., D.N., J.C.P., G.S., J.P., A.L., M.J.S., R.E.); Translational Medicine Research Centre, Singapore (S.J.S., R.S., H.H., A.F., C.K.N.)
| | - Shubing Wang
- Merck Sharp & Dohme Corporation, Kenilworth, New Jersey (X.C., G.H.C., K.O., S.W., X.C., D.N., J.C.P., G.S., J.P., A.L., M.J.S., R.E.); Translational Medicine Research Centre, Singapore (S.J.S., R.S., H.H., A.F., C.K.N.)
| | - Xiaoxin Cai
- Merck Sharp & Dohme Corporation, Kenilworth, New Jersey (X.C., G.H.C., K.O., S.W., X.C., D.N., J.C.P., G.S., J.P., A.L., M.J.S., R.E.); Translational Medicine Research Centre, Singapore (S.J.S., R.S., H.H., A.F., C.K.N.)
| | - Deborah Newton
- Merck Sharp & Dohme Corporation, Kenilworth, New Jersey (X.C., G.H.C., K.O., S.W., X.C., D.N., J.C.P., G.S., J.P., A.L., M.J.S., R.E.); Translational Medicine Research Centre, Singapore (S.J.S., R.S., H.H., A.F., C.K.N.)
| | - Jose Castro-Perez
- Merck Sharp & Dohme Corporation, Kenilworth, New Jersey (X.C., G.H.C., K.O., S.W., X.C., D.N., J.C.P., G.S., J.P., A.L., M.J.S., R.E.); Translational Medicine Research Centre, Singapore (S.J.S., R.S., H.H., A.F., C.K.N.)
| | - Gino Salituro
- Merck Sharp & Dohme Corporation, Kenilworth, New Jersey (X.C., G.H.C., K.O., S.W., X.C., D.N., J.C.P., G.S., J.P., A.L., M.J.S., R.E.); Translational Medicine Research Centre, Singapore (S.J.S., R.S., H.H., A.F., C.K.N.)
| | - Jairam Palamanda
- Merck Sharp & Dohme Corporation, Kenilworth, New Jersey (X.C., G.H.C., K.O., S.W., X.C., D.N., J.C.P., G.S., J.P., A.L., M.J.S., R.E.); Translational Medicine Research Centre, Singapore (S.J.S., R.S., H.H., A.F., C.K.N.)
| | - Aaron Fernandis
- Merck Sharp & Dohme Corporation, Kenilworth, New Jersey (X.C., G.H.C., K.O., S.W., X.C., D.N., J.C.P., G.S., J.P., A.L., M.J.S., R.E.); Translational Medicine Research Centre, Singapore (S.J.S., R.S., H.H., A.F., C.K.N.)
| | - Choon Keow Ng
- Merck Sharp & Dohme Corporation, Kenilworth, New Jersey (X.C., G.H.C., K.O., S.W., X.C., D.N., J.C.P., G.S., J.P., A.L., M.J.S., R.E.); Translational Medicine Research Centre, Singapore (S.J.S., R.S., H.H., A.F., C.K.N.)
| | - Andy Liaw
- Merck Sharp & Dohme Corporation, Kenilworth, New Jersey (X.C., G.H.C., K.O., S.W., X.C., D.N., J.C.P., G.S., J.P., A.L., M.J.S., R.E.); Translational Medicine Research Centre, Singapore (S.J.S., R.S., H.H., A.F., C.K.N.)
| | - Mary J Savage
- Merck Sharp & Dohme Corporation, Kenilworth, New Jersey (X.C., G.H.C., K.O., S.W., X.C., D.N., J.C.P., G.S., J.P., A.L., M.J.S., R.E.); Translational Medicine Research Centre, Singapore (S.J.S., R.S., H.H., A.F., C.K.N.)
| | - Raymond Evers
- Merck Sharp & Dohme Corporation, Kenilworth, New Jersey (X.C., G.H.C., K.O., S.W., X.C., D.N., J.C.P., G.S., J.P., A.L., M.J.S., R.E.); Translational Medicine Research Centre, Singapore (S.J.S., R.S., H.H., A.F., C.K.N.)
| |
Collapse
|
30
|
Shen H, Su H, Liu T, Yao M, Mintier G, Li L, Fancher RM, Iyer R, Marathe P, Lai Y, Rodrigues AD. Evaluation of Rosuvastatin as an Organic Anion Transporting Polypeptide (OATP) Probe Substrate: In Vitro Transport and In Vivo Disposition in Cynomolgus Monkeys. J Pharmacol Exp Ther 2015; 353:380-91. [DOI: 10.1124/jpet.114.221804] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
31
|
Evaluation of the Usefulness of Breast Cancer Resistance Protein (BCRP) Knockout Mice and BCRP Inhibitor-Treated Monkeys to Estimate the Clinical Impact of BCRP Modulation on the Pharmacokinetics of BCRP Substrates. Pharm Res 2014; 32:1634-47. [DOI: 10.1007/s11095-014-1563-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2014] [Accepted: 10/28/2014] [Indexed: 10/24/2022]
|