1
|
Wang XM, Wang J, Fokina V, Patrikeeva S, Rytting E, Ahmed MS, La JH, Nanovskaya T. Effect of deuteration on the single dose pharmacokinetic properties and postoperative analgesic activity of methadone. Drug Metab Pharmacokinet 2022; 47:100477. [PMID: 36368298 PMCID: PMC9886271 DOI: 10.1016/j.dmpk.2022.100477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 09/26/2022] [Accepted: 10/04/2022] [Indexed: 02/01/2023]
Abstract
Although methadone is effective in the management of acute pain, the complexity of its absorption-distribution-metabolism-excretion profile limits its use as an opioid of choice for perioperative analgesia. Because deuteration is known to improve the pharmacokinetic, pharmacodynamic and toxicological properties of some drugs, here we characterized the single dose pharmacokinetic properties and post-operative analgesic efficacy of d9-methadone. The pharmacokinetic profiles of d9-methadone and methadone administered intravenously to CD-1 male mice revealed that deuteration leads to a 5.7- and 4.4-fold increase in the area under the time-concentration curve and maximum concentration in plasma, respectively, as well as reduction in clearance (0.9 ± 0.3 L/h/kg vs 4.7 ± 0.8 L/h/kg). The lower brain-to-plasma ratio of d9-methadone compared to that of methadone (0.35 ± 0.12 vs 2.05 ± 0.62) suggested that deuteration decreases the transfer of the drug across the blood-brain barrier. The estimated LD50 value for a single intravenous dose of d9-methadone was 2.1-fold higher than that for methadone. Moreover, d9-methadone outperformed methadone in the efficacy against postoperative pain by primarily activating peripheral opioid receptors. Collectively, these data suggest that the replacement of three hydrogen atoms in three methyl groups of methadone altered its pharmacokinetic properties, improved safety, and enhanced its analgesic efficacy.
Collapse
Affiliation(s)
- Xiao-Ming Wang
- Maternal-Fetal Pharmacology and Bio-Development Laboratories, Department of Obstetrics & Gynecology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Jigong Wang
- Department of Neuroscience, Cell Biology and Anatomy, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Valentina Fokina
- Maternal-Fetal Pharmacology and Bio-Development Laboratories, Department of Obstetrics & Gynecology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Svetlana Patrikeeva
- Maternal-Fetal Pharmacology and Bio-Development Laboratories, Department of Obstetrics & Gynecology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Erik Rytting
- Maternal-Fetal Pharmacology and Bio-Development Laboratories, Department of Obstetrics & Gynecology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Mahmoud S Ahmed
- Maternal-Fetal Pharmacology and Bio-Development Laboratories, Department of Obstetrics & Gynecology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Jun-Ho La
- Department of Neuroscience, Cell Biology and Anatomy, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Tatiana Nanovskaya
- Maternal-Fetal Pharmacology and Bio-Development Laboratories, Department of Obstetrics & Gynecology, University of Texas Medical Branch, Galveston, TX, 77555, USA.
| |
Collapse
|
2
|
Guengerich FP. Roles of cytochrome P450 enzymes in pharmacology and toxicology: Past, present, and future. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2022; 95:1-47. [PMID: 35953152 PMCID: PMC9869358 DOI: 10.1016/bs.apha.2021.12.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The development of the cytochrome P450 (P450) field has been remarkable in the areas of pharmacology and toxicology, particularly in drug development. Today it is possible to use the knowledge base and relatively straightforward assays to make intelligent predictions about drug disposition prior to human dosing. Much is known about the structures, regulation, chemistry of catalysis, and the substrate and inhibitor specificity of human P450s. Many aspects of drug-drug interactions and side effects can be understood in terms of P450s. This knowledge has also been useful in pharmacy practice, as well as in the pharmaceutical industry and medical practice. However, there are still basic and practical questions to address regarding P450s and their roles in pharmacology and toxicology. Another aspect is the discovery of drugs that inhibit P450 to treat diseases.
Collapse
Affiliation(s)
- F Peter Guengerich
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, United States.
| |
Collapse
|
3
|
Gajula SNR, Nadimpalli N, Sonti R. Drug metabolic stability in early drug discovery to develop potential lead compounds. Drug Metab Rev 2021; 53:459-477. [PMID: 34406889 DOI: 10.1080/03602532.2021.1970178] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Knowledge of the metabolic stability of a new drug substance eliminated by biotransformation is essential for envisaging the pharmacokinetic parameters required for deciding drug dosing and frequency. Strategies aimed at modifying lead compounds may improve metabolic stability, thereby reducing the drug dosing frequency. Replacement of selective hydrogens with deuterium can effectively enhance the drug's metabolic stability by increasing the biological half-life. Further, cyclization, change in ring size, and chirality can substantially improve the metabolic stability of drugs. The microsomal t1/2 approach for measuring drug in vitro intrinsic clearance by automated LC-MS/MS offers sensitive high-throughput screens with reliable data. The obtained in vitro intrinsic clearance from metabolic stability data helps predict the drug's in vivo total clearance using different scaling factors and hepatic clearance models. This review summarizes all the recent approaches and technological advancements in metabolic stability studies for narrowing down the potential lead compounds in drug discovery. Further, we summarized the potential pitfalls and assumptions made during the in vivo intrinsic clearance estimation from in vitro intrinsic clearance.
Collapse
Affiliation(s)
- Siva Nageswara Rao Gajula
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Nimisha Nadimpalli
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Rajesh Sonti
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| |
Collapse
|
4
|
Steverlynck J, Sitdikov R, Rueping M. The Deuterated "Magic Methyl" Group: A Guide to Site-Selective Trideuteromethyl Incorporation and Labeling by Using CD 3 Reagents. Chemistry 2021; 27:11751-11772. [PMID: 34076925 PMCID: PMC8457246 DOI: 10.1002/chem.202101179] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Indexed: 12/12/2022]
Abstract
In the field of medicinal chemistry, the precise installation of a trideuteromethyl group is gaining ever-increasing attention. Site-selective incorporation of the deuterated "magic methyl" group can provide profound pharmacological benefits and can be considered an important tool for drug optimization and development. This review provides a structured overview, according to trideuteromethylation reagent, of currently established methods for site-selective trideuteromethylation of carbon atoms. In addition to CD3 , the selective introduction of CD2 H and CDH2 groups is also considered. For all methods, the corresponding mechanism and scope are discussed whenever reported. As such, this review can be a starting point for synthetic chemists to further advance trideuteromethylation methodologies. At the same time, this review aims to be a guide for medicinal chemists, offering them the available C-CD3 formation strategies for the preparation of new or modified drugs.
Collapse
Affiliation(s)
- Joost Steverlynck
- Kaust Catalysis Center (KCC)King Abdullah University Science and Technology (KAUST)Thuwal23955-6900Saudi Arabia
| | - Ruzal Sitdikov
- Kaust Catalysis Center (KCC)King Abdullah University Science and Technology (KAUST)Thuwal23955-6900Saudi Arabia
| | - Magnus Rueping
- Kaust Catalysis Center (KCC)King Abdullah University Science and Technology (KAUST)Thuwal23955-6900Saudi Arabia
- Institute for Experimental Molecular ImagingRWTH Aachen UniversityForckenbeckstrasse 5552074Aachen
| |
Collapse
|
5
|
Weis E, Hayes MA, Johansson MJ, Martín-Matute B. Iridium-catalyzed C-H methylation and d 3-methylation of benzoic acids with application to late-stage functionalizations. iScience 2021; 24:102467. [PMID: 34027322 PMCID: PMC8122115 DOI: 10.1016/j.isci.2021.102467] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/24/2021] [Accepted: 04/21/2021] [Indexed: 12/31/2022] Open
Abstract
Late-stage functionalization (LSF) has over the past years emerged as a powerful approach in the drug discovery process. At its best, it allows for rapid access to new analogues from a single drug-like molecule, bypassing the need for de novo synthesis. To be successful, methods able to tolerate the diverse functional groups present in drug-like molecules that perform under mild conditions are required. C-H methylation is of particular interest due to the magic methyl effect in medicinal chemistry. Herein we report an iridium-catalyzed carboxylate-directed ortho C-H methylation and d 3-methylation of benzoic acids. The method uses commercially available reagents and precatalyst and requires no inert atmosphere or exclusion of moisture. Substrates bearing electron-rich and electron-poor groups were successfully methylated, including compounds with competing directing/coordinating groups. The method was also applied to the LSF of several marketed drugs, forming analogues with increased metabolic stability compared with the parent drug.
Collapse
Affiliation(s)
- Erik Weis
- Department of Organic Chemistry, Stockholm University, Stockholm 106 91, Sweden
- Medicinal Chemistry, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), Biopharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Martin A. Hayes
- Hit Discovery, Discovery Sciences, Biopharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Magnus J. Johansson
- Medicinal Chemistry, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), Biopharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Belén Martín-Matute
- Department of Organic Chemistry, Stockholm University, Stockholm 106 91, Sweden
| |
Collapse
|
6
|
Heck CS, Seneviratne HK, Bumpus NN. Twelfth-Position Deuteration of Nevirapine Reduces 12-Hydroxy-Nevirapine Formation and Nevirapine-Induced Hepatocyte Death. J Med Chem 2020; 63:6561-6574. [PMID: 32065749 PMCID: PMC7959450 DOI: 10.1021/acs.jmedchem.9b01990] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Indexed: 01/08/2023]
Abstract
Cytochrome P450-dependent metabolism of the anti-HIV drug nevirapine (NVP) to 12-hydroxy-NVP (12-OHNVP) has been implicated in NVP toxicities. We investigated the impact of twelfth-position trideuteration (12-D3NVP) on the hepatic metabolism of and response to NVP. Formation of 12-OHNVP decreased in human (10.6-fold) and mouse (4.6-fold) hepatocytes incubated with 10 μM 12-D3NVP vs NVP. An observed kinetic isotope effect of 10.1 was measured in human liver microsomes. During mouse hepatocyte treatment (400 μM) with NVP or 12-D3NVP, cell death was reduced 30% with 12-D3NVP vs NVP, while glucuronidated and glutathione-conjugated metabolites increased with 12-D3NVP vs NVP. Using mass spectrometry proteomics, changes in hepatocyte protein expression, including an increase in stress marker insulin-like growth factor-binding protein 1 (IGFBP-1), were observed with 12-D3NVP vs NVP. These results demonstrate that while deuteration can reduce P450 metabolite formation, impacts on phase II metabolism and hepatocyte protein expression should be considered when employing deuteration to reduce P450 metabolite-related hepatotoxicity.
Collapse
Affiliation(s)
- Carley
J. S. Heck
- Department
of Pharmacology & Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Herana Kamal Seneviratne
- Department
of Medicine, Division of Clinical Pharmacology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Namandjé N. Bumpus
- Department
of Pharmacology & Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
- Department
of Medicine, Division of Clinical Pharmacology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| |
Collapse
|
7
|
Zhu C, Bäckvall JE. An Efficient Approach to Regio- and Stereodefined Fully-Substituted Alkenylsilanes by Pd-Catalyzed Allenic C(sp 3 )-H Oxidation. Chemistry 2019; 25:11566-11573. [PMID: 31265176 DOI: 10.1002/chem.201902962] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Indexed: 11/07/2022]
Abstract
A highly efficient palladium-catalyzed functionalization of allenylsilanes to give regio- and stereodefined fully-substituted alkenylsilanes has been developed. This oxidative coupling reaction showed good functional group compatibility with exclusive regio- and stereoselectivity. The pending olefin on the silyl group was shown to be an indispensable element for the initial allenic C(sp3 )-H bond cleavage, and performs as the directing group to control the overall selectivity. The addition of substoichiometric amounts of Et3 N was found to increase the reaction rate leading to a higher reaction yield. The reaction can be easily scaled up and applied for the late-stage functionalization of natural products and pharmaceutical compounds, including amino acids and steroid derivatives. The newly introduced functional groups include aryl, alkynyl, and boryl groups. The highly strained four-membered ring, silacyclobutene was obtained when B2 pin2 was employed as the coupling partner. Mechanistic studies, including kinetic isotope effects, showed that the allenic C(sp3 )-H bond cleavage is the rate-limiting step.
Collapse
Affiliation(s)
- Can Zhu
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, Stockholm, 10691, Sweden
| | - Jan-E Bäckvall
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, Stockholm, 10691, Sweden
| |
Collapse
|
8
|
Pirali T, Serafini M, Cargnin S, Genazzani AA. Applications of Deuterium in Medicinal Chemistry. J Med Chem 2019; 62:5276-5297. [DOI: 10.1021/acs.jmedchem.8b01808] [Citation(s) in RCA: 251] [Impact Index Per Article: 50.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Tracey Pirali
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale, Largo Donegani 2, 28100 Novara, Italy
| | - Marta Serafini
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale, Largo Donegani 2, 28100 Novara, Italy
| | - Sarah Cargnin
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale, Largo Donegani 2, 28100 Novara, Italy
| | - Armando A. Genazzani
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale, Largo Donegani 2, 28100 Novara, Italy
| |
Collapse
|
9
|
Sun H, Piotrowski DW, Orr STM, Warmus JS, Wolford AC, Coffey SB, Futatsugi K, Zhang Y, Vaz ADN. Deuterium isotope effects in drug pharmacokinetics II: Substrate-dependence of the reaction mechanism influences outcome for cytochrome P450 cleared drugs. PLoS One 2018; 13:e0206279. [PMID: 30427871 PMCID: PMC6235261 DOI: 10.1371/journal.pone.0206279] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 10/10/2018] [Indexed: 12/13/2022] Open
Abstract
Two chemotypes were examined in vitro with CYPs 3A4 and 2C19 by molecular docking, metabolic profiles, and intrinsic clearance deuterium isotope effects with specifically deuterated form to assess the potential for enhancement of pharmacokinetic parameters. The results show the complexity of deuteration as an approach for pharmacokinetic enhancement when CYP enzymes are involved in metabolic clearance. With CYP3A4 the rate limiting step was chemotype-dependent. With one chemotype no intrinsic clearance deuterium isotope effect was observed with any deuterated form, whereas with the other chemotype the rate limiting step was isotopically sensitive, and the magnitude of the intrinsic clearance isotope effect was dependent on the position(s) and extent of deuteration. Molecular docking and metabolic profiles aided in identifying sites for deuteration and predicted the possibility for metabolic switching. However, the potential for an isotope effect on the intrinsic clearance cannot be predicted and must be established by examining select deuterated versions of the chemotypes. The results show how in a deuteration strategy molecular docking, in-vitro metabolic profiles, and intrinsic clearance assessments with select deuterated versions of new chemical entities can be applied to determine the potential for pharmacokinetic enhancement in a discovery setting. They also help explain the substantial failures reported in the literature of deuterated versions of drugs to elicit a systemic enhancement on pharmacokinetic parameters.
Collapse
Affiliation(s)
- Hao Sun
- Medicine Design, Pfizer Global Research and Development, Groton, Connecticut, United States of America
- * E-mail: (DWP); (HS); (ADNV)
| | - David W. Piotrowski
- Medicine Design, Pfizer Global Research and Development, Groton, Connecticut, United States of America
- * E-mail: (DWP); (HS); (ADNV)
| | - Suvi T. M. Orr
- Medicine Design, Pfizer Global Research and Development, Groton, Connecticut, United States of America
| | - Joseph S. Warmus
- Medicine Design, Pfizer Global Research and Development, Groton, Connecticut, United States of America
| | - Angela C. Wolford
- Medicine Design, Pfizer Global Research and Development, Groton, Connecticut, United States of America
| | - Steven B. Coffey
- Medicine Design, Pfizer Global Research and Development, Groton, Connecticut, United States of America
| | - Kentaro Futatsugi
- Medicine Design, Pfizer Global Research and Development, Groton, Connecticut, United States of America
| | - Yinsheng Zhang
- Medicine Design, Pfizer Global Research and Development, Groton, Connecticut, United States of America
| | - Alfin D. N. Vaz
- Medicine Design, Pfizer Global Research and Development, Groton, Connecticut, United States of America
- * E-mail: (DWP); (HS); (ADNV)
| |
Collapse
|
10
|
Yin Q, Chen Y, Zhou M, Jiang X, Wu J, Sun Y. Synthesis and photophysical properties of deuteration of pirfenidone. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 204:88-98. [PMID: 29908414 DOI: 10.1016/j.saa.2018.06.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 05/29/2018] [Accepted: 06/04/2018] [Indexed: 06/08/2023]
Abstract
In order to improve the metabolism of pirfenidone (5-methyl-1-phenylpyridin-2-one, PFD), the methyl-deuterated version of pirfenidone via the substitution of hydrogen (H) at C-5 by its isotope deuterium (D, 5D-PFD) was synthesized and its photophysical properties were investigated. The negative solvatochrom was observed in absorption and fluorescence spectra with increasing solvent polarity, which implied that intermolecular charge transfer (ICT) involved n → π* transition for both of PFD and 5D-PFD. The ground state and excited state dipole moment was calculated as 5.30 D and 3.30 D for PFD, and 3.70 D and 2.18 D for 5D-PFD, respectively, which suggested the more polar nature of PFD in the ground state than that of excited state compared with 5D-PFD. Density functional theory (DFT) results demonstrated a significant propensity of ICT from the electron-donor, methyl and carbonyl group to the amine group as an electron donor. The binding of metal ions with PFD or 5D-PFD induced a red-shift of π → π* transition and blue-shift of n → π* transition, respectively, indicating that the pyridone ring showed more stability upon binding of unoccupied orbital of metal ions with lone-pair electron of oxygen atom and thus prompted the electronic distribution on phenyl unit. Upon addition of metal ions, the aromatic region presented the characteristic upfield shifts, and the resonance contributed by 3-H showed a significant downfield chemical shift/deshielding effect, indicating the deduced resonance of 3-H and the improved electron distribution of phenyl unit. The binding and docking of human serum albumin showed that the affinity of 5D-PFD with HSA was lower than that of PFD, and also 5D-PFD might prefer to present free forms in the blood with better efficacy comparing with PFD. The pharmacokinetic of half-time (T1/2) for oral and i.v. administration of 5D-PFD was found around 19 and 30 min, higher than that of i.v. administration of PFD, 8.6 min, reported by Giri et al. The results of this work suggest that the deuteration enhances the metabolism of PFD significantly with little change of physical-chemical property.
Collapse
Affiliation(s)
- Qiuju Yin
- School of Food Science and Technology·School of Chemical Engineering, Hubei University of Arts and Science, No. 296 Longzhong Road, Xiangyang, Hubei 441053, China
| | - Yujie Chen
- School of Food Science and Technology·School of Chemical Engineering, Hubei University of Arts and Science, No. 296 Longzhong Road, Xiangyang, Hubei 441053, China
| | - Meng Zhou
- School of Food Science and Technology·School of Chemical Engineering, Hubei University of Arts and Science, No. 296 Longzhong Road, Xiangyang, Hubei 441053, China
| | - Xiangsheng Jiang
- School of Food Science and Technology·School of Chemical Engineering, Hubei University of Arts and Science, No. 296 Longzhong Road, Xiangyang, Hubei 441053, China
| | - Junjun Wu
- School of Food Science and Technology·School of Chemical Engineering, Hubei University of Arts and Science, No. 296 Longzhong Road, Xiangyang, Hubei 441053, China
| | - Yang Sun
- School of Food Science and Technology·School of Chemical Engineering, Hubei University of Arts and Science, No. 296 Longzhong Road, Xiangyang, Hubei 441053, China; School of Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
11
|
Wang X, Zhu MH, Schuman DP, Zhong D, Wang WY, Wu LY, Liu W, Stoltz BM, Liu WB. General and Practical Potassium Methoxide/Disilane-Mediated Dehalogenative Deuteration of (Hetero)Arylhalides. J Am Chem Soc 2018; 140:10970-10974. [PMID: 30075628 DOI: 10.1021/jacs.8b07597] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Herein we describe a general, mild and scalable method for deuterium incorporation by potassium methoxide/hexamethyldisilane-mediated dehalogenation of arylhalides. With CD3CN as a deuterium source, a wide array of heteroarenes prevalent in pharmaceuticals and bearing diverse functional groups are labeled with excellent deuterium incorporation (>60 examples). The ipso-selectivity of this method provides precise access to libraries of deuterated indoles and quinolines. The synthetic utility of our method has been demonstrated by the incorporation of deuterium into complex natural and drug-like compounds.
Collapse
Affiliation(s)
- Xin Wang
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences , Wuhan University , 299 Bayi Road , Wuhan , Hubei 430072 , China
| | - Ming-Hui Zhu
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences , Wuhan University , 299 Bayi Road , Wuhan , Hubei 430072 , China
| | - David P Schuman
- Division of Chemistry and Chemical Engineering , California Institute of Technology , 1200 E California Blvd , Pasadena , California 91125 , United States
| | - Dayou Zhong
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences , Wuhan University , 299 Bayi Road , Wuhan , Hubei 430072 , China
| | - Wen-Yan Wang
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences , Wuhan University , 299 Bayi Road , Wuhan , Hubei 430072 , China
| | - Lin-Yang Wu
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences , Wuhan University , 299 Bayi Road , Wuhan , Hubei 430072 , China
| | - Wei Liu
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences , Wuhan University , 299 Bayi Road , Wuhan , Hubei 430072 , China
| | - Brian M Stoltz
- Division of Chemistry and Chemical Engineering , California Institute of Technology , 1200 E California Blvd , Pasadena , California 91125 , United States
| | - Wen-Bo Liu
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences , Wuhan University , 299 Bayi Road , Wuhan , Hubei 430072 , China
| |
Collapse
|
12
|
Primary deuterium kinetic isotope effects prolong drug release and polymer biodegradation in a drug delivery system. J Control Release 2018; 278:74-79. [DOI: 10.1016/j.jconrel.2018.03.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 03/21/2018] [Indexed: 11/20/2022]
|
13
|
Atzrodt J, Derdau V, Kerr WJ, Reid M. Deuterium- und tritiummarkierte Verbindungen: Anwendungen in den modernen Biowissenschaften. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201704146] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Jens Atzrodt
- Isotope Chemistry and Metabolite Synthesis, Integrated Drug Discovery, Medicinal Chemistry; Industriepark Höchst, G876 65926 Frankfurt Deutschland
| | - Volker Derdau
- Isotope Chemistry and Metabolite Synthesis, Integrated Drug Discovery, Medicinal Chemistry; Industriepark Höchst, G876 65926 Frankfurt Deutschland
| | - William J. Kerr
- Department of Pure and Applied Chemistry, WestCHEM; University of Strathclyde; 295 Cathedral Street Glasgow Scotland G1 1XL Großbritannien
| | - Marc Reid
- Department of Pure and Applied Chemistry, WestCHEM; University of Strathclyde; 295 Cathedral Street Glasgow Scotland G1 1XL Großbritannien
| |
Collapse
|
14
|
Atzrodt J, Derdau V, Kerr WJ, Reid M. Deuterium- and Tritium-Labelled Compounds: Applications in the Life Sciences. Angew Chem Int Ed Engl 2018; 57:1758-1784. [PMID: 28815899 DOI: 10.1002/anie.201704146] [Citation(s) in RCA: 421] [Impact Index Per Article: 70.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 07/27/2017] [Indexed: 12/19/2022]
Abstract
Hydrogen isotopes are unique tools for identifying and understanding biological and chemical processes. Hydrogen isotope labelling allows for the traceless and direct incorporation of an additional mass or radioactive tag into an organic molecule with almost no changes in its chemical structure, physical properties, or biological activity. Using deuterium-labelled isotopologues to study the unique mass-spectrometric patterns generated from mixtures of biologically relevant molecules drastically simplifies analysis. Such methods are now providing unprecedented levels of insight in a wide and continuously growing range of applications in the life sciences and beyond. Tritium (3 H), in particular, has seen an increase in utilization, especially in pharmaceutical drug discovery. The efforts and costs associated with the synthesis of labelled compounds are more than compensated for by the enhanced molecular sensitivity during analysis and the high reliability of the data obtained. In this Review, advances in the application of hydrogen isotopes in the life sciences are described.
Collapse
Affiliation(s)
- Jens Atzrodt
- Isotope Chemistry and Metabolite Synthesis, Integrated Drug Discovery, Medicinal Chemistry, Industriepark Höchst, G876, 65926, Frankfurt, Germany
| | - Volker Derdau
- Isotope Chemistry and Metabolite Synthesis, Integrated Drug Discovery, Medicinal Chemistry, Industriepark Höchst, G876, 65926, Frankfurt, Germany
| | - William J Kerr
- Department of Pure and Applied Chemistry, WestCHEM, University of Strathclyde, 295 Cathedral Street, Glasgow, Scotland, G1 1XL, UK
| | - Marc Reid
- Department of Pure and Applied Chemistry, WestCHEM, University of Strathclyde, 295 Cathedral Street, Glasgow, Scotland, G1 1XL, UK
| |
Collapse
|
15
|
Jiang J, Pang X, Li L, Dai X, Diao X, Chen X, Zhong D, Wang Y, Chen Y. Effect of N-methyl deuteration on metabolism and pharmacokinetics of enzalutamide. DRUG DESIGN DEVELOPMENT AND THERAPY 2016; 10:2181-91. [PMID: 27462143 PMCID: PMC4939996 DOI: 10.2147/dddt.s111352] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Background The replacement of hydrogen with deuterium invokes a kinetic isotope effect. Thus, this method is an attractive way to slow down the metabolic rate and modulate pharmacokinetics. Purpose Enzalutamide (ENT) acts as a competitive inhibitor of the androgen receptor and has been approved for the treatment of metastatic castration-resistant prostate cancer by the US Food and Drug Administration in 2012. To attenuate the N-demethylation pathway, hydrogen atoms of the N–CH3 moiety were replaced by the relatively stable isotope deuterium, which showed similar pharmacological activities but exhibited favorable pharmacokinetic properties. Methods We estimated in vitro and in vivo pharmacokinetic parameters for ENT and its deuterated analog (d3-ENT). For in vitro studies, intrinsic primary isotope effects (KH/KD) were determined by the ratio of intrinsic clearance (CLint) obtained for ENT and d3-ENT. The CLint values were obtained by the substrate depletion method. For in vivo studies, ENT and d3-ENT were orally given to male Sprague Dawley rats separately and simultaneously to assess the disposition and metabolism of them. We also investigated the main metabolic pathway of ENT by comparing the rate of oxidation and hydrolysis in vitro. Results The in vitro CLint (maximum velocity/Michaelis constant [Vmax/Km]) of d3-ENT in rat and human liver microsomes were 49.7% and 72.9% lower than those of the non-deuterated compound, corresponding to the KH/KD value of ~2. The maximum observed plasma concentration, Cmax, and area under the plasma concentration -time curve from time zero to the last measurable sampling time point (AUC0–t) were 35% and 102% higher than those of ENT when orally administered to rats (10 mg/kg). The exposure of the N-demethyl metabolite M2 was eightfold lower, whereas that of the amide hydrolysis metabolite M1 and other minor metabolites was unchanged. The observed hydrolysis rate of M2 was at least ten times higher than that of ENT and d3-ENT in rat plasma. Conclusion ENT was mainly metabolized through the “parent→M2→M1” pathway based on in vitro and in vivo elimination behavior. The observed in vitro deuterium isotope effect translated into increased exposure of the deuterated analog in rats. Once the carbon–hydrogen was replaced with carbon–deuterium (C–D) bonds, the major metabolic pathway was retarded because of the relatively stable C–D bonds. The systemic exposure to d3-ENT can increase in humans, so the dose requirements can be reduced appropriately.
Collapse
Affiliation(s)
- Jinfang Jiang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai; University of Chinese Academy of Sciences, Beijing
| | - Xuehai Pang
- University of Chinese Academy of Sciences, Beijing; Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences
| | - Liang Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai; University of Chinese Academy of Sciences, Beijing
| | - Xiaojian Dai
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai; University of Chinese Academy of Sciences, Beijing
| | - Xingxing Diao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai
| | - Xiaoyan Chen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai; University of Chinese Academy of Sciences, Beijing
| | - Dafang Zhong
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai; University of Chinese Academy of Sciences, Beijing
| | - Yingwei Wang
- University of Chinese Academy of Sciences, Beijing; Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences
| | - Yuanwei Chen
- University of Chinese Academy of Sciences, Beijing; Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences; Hinova Pharmaceuticals Inc, Chengdu, People's Republic of China
| |
Collapse
|
16
|
Ötvös SB, Hsieh CT, Wu YC, Li JH, Chang FR, Fülöp F. Continuous-Flow Synthesis of Deuterium-Labeled Antidiabetic Chalcones: Studies towards the Selective Deuteration of the Alkynone Core. Molecules 2016; 21:318. [PMID: 26959006 PMCID: PMC6273355 DOI: 10.3390/molecules21030318] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 02/24/2016] [Indexed: 01/17/2023] Open
Abstract
Flow chemistry-based syntheses of deuterium-labeled analogs of important antidiabetic chalcones were achieved via highly controlled partial C≡C bond deuteration of the corresponding 1,3-diphenylalkynones. The benefits of a scalable continuous process in combination with on-demand electrolytic D2 gas generation were exploited to suppress undesired over-reactions and to maximize reaction rates simultaneously. The novel deuterium-containing chalcone derivatives may have interesting biological effects and improved metabolic properties as compared with the parent compounds.
Collapse
Affiliation(s)
- Sándor B Ötvös
- Institute of Pharmaceutical Chemistry, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary.
- MTA-SZTE Stereochemistry Research Group, Hungarian Academy of Sciences, Eötvös u. 6, H-6720 Szeged, Hungary.
| | - Chi-Ting Hsieh
- Institute of Pharmaceutical Chemistry, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary.
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| | - Yang-Chang Wu
- School of Pharmacy, College of Pharmacy, China Medical University, Taichung 40402, Taiwan.
- Chinese Medicine Research and Development Center, China Medical University Hospital, Taichung 40447, Taiwan.
| | - Jih-Heng Li
- Ph.D. Program in Toxicology and School of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| | - Fang-Rong Chang
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
- Center for Infectious Disease and Cancer Research, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| | - Ferenc Fülöp
- Institute of Pharmaceutical Chemistry, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary.
- MTA-SZTE Stereochemistry Research Group, Hungarian Academy of Sciences, Eötvös u. 6, H-6720 Szeged, Hungary.
| |
Collapse
|