1
|
Wang WJ, Zhao YT, Dai HR, Zhang YY, Wang J, Guo HL, Ding XS, Chen F. Successful LC-MS/MS assay development and validation for determination of valproic acid and its metabolites supporting proactive pharmacovigilance. J Pharm Biomed Anal 2023; 234:115538. [PMID: 37354631 DOI: 10.1016/j.jpba.2023.115538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/06/2023] [Accepted: 06/18/2023] [Indexed: 06/26/2023]
Abstract
Valproic acid (VPA) is a well-documented contributor to liver injury, which is likely caused by the formation of its toxic metabolites. Monitoring VPA and its metabolites is very meaningful for the pharmacovigilance, but the availability of a powerful assay is a prerequisite. In this study, for the first time, a sensitive and specific LC-MS/MS method was developed and validated to simultaneously quantify the concentrations of VPA and its six pestering isomer metabolites (3-OH-VPA, 4-OH-VPA, 5-OH-VPA, 2-PGA, VPA-G, and 2-ene-VPA) in human plasma, using 5-OH-VPA-d7 and VPA-d6 as the internal standards (ISs). We also figured out another tricky problem that the concentrations of the parent drug and the metabolites vary widely. Of note, after protein precipitation and dilution with acetonitrile (ACN) and 50% ACN successively, the analytes and the ISs were successfully separated on a Kinetex C18 column. Intriguingly, sacrificing its signal intensity by elevated collision energy of VPA finally achieved the simultaneous determination. As expected, the method showed great linearity (r > 0.998) over the concentration ranges for all analytes. The inter-day and intra-day accuracy and precision were both acceptable. The method was successfully applied in 127 children with epilepsy. This novel assay will support the VPA-associated pharmacovigilance in the future.
Collapse
Affiliation(s)
- Wei-Jun Wang
- Pharmaceutical Sciences Research Center, Department of Pharmacy, Children's Hospital of Nanjing Medical University, Nanjing, China; School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yue-Tao Zhao
- Pharmaceutical Sciences Research Center, Department of Pharmacy, Children's Hospital of Nanjing Medical University, Nanjing, China; School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Hao-Ran Dai
- Pharmaceutical Sciences Research Center, Department of Pharmacy, Children's Hospital of Nanjing Medical University, Nanjing, China; School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yuan-Yuan Zhang
- Pharmaceutical Sciences Research Center, Department of Pharmacy, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Jie Wang
- Pharmaceutical Sciences Research Center, Department of Pharmacy, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Hong-Li Guo
- Pharmaceutical Sciences Research Center, Department of Pharmacy, Children's Hospital of Nanjing Medical University, Nanjing, China.
| | - Xuan-Sheng Ding
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China.
| | - Feng Chen
- Pharmaceutical Sciences Research Center, Department of Pharmacy, Children's Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
2
|
Shnayder NA, Grechkina VV, Khasanova AK, Bochanova EN, Dontceva EA, Petrova MM, Asadullin AR, Shipulin GA, Altynbekov KS, Al-Zamil M, Nasyrova RF. Therapeutic and Toxic Effects of Valproic Acid Metabolites. Metabolites 2023; 13:metabo13010134. [PMID: 36677060 PMCID: PMC9862929 DOI: 10.3390/metabo13010134] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
Valproic acid (VPA) and its salts are psychotropic drugs that are widely used in neurological diseases (epilepsy, neuropathic pain, migraine, etc.) and psychiatric disorders (schizophrenia, bipolar affective disorder, addiction diseases, etc.). In addition, the indications for the appointment of valproate have been expanding in recent years in connection with the study of new mechanisms of action of therapeutic and toxic metabolites of VPA in the human body. Thus, VPA is considered a component of disease-modifying therapy for multiple tumors, neurodegenerative diseases (Huntington's disease, Parkinson's disease, Duchenne progressive dystrophy, etc.), and human immunodeficiency syndrome. The metabolism of VPA is complex and continues to be studied. Known pathways of VPA metabolism include: β-oxidation in the tricarboxylic acid cycle (acetylation); oxidation with the participation of cytochrome P-450 isoenzymes (P-oxidation); and glucuronidation. The complex metabolism of VPA explains the diversity of its active and inactive metabolites, which have therapeutic, neutral, or toxic effects. It is known that some active metabolites of VPA may have a stronger clinical effect than VPA itself. These reasons explain the relevance of this narrative review, which summarizes the results of studies of blood (serum, plasma) and urinary metabolites of VPA from the standpoint of the pharmacogenomics and pharmacometabolomics. In addition, a new personalized approach to assessing the cumulative risk of developing VPA-induced adverse reactions is presented and ways for their correction are proposed depending on the patient's pharmacogenetic profile and the level of therapeutic and toxic VPA metabolites in the human body fluids (blood, urine).
Collapse
Affiliation(s)
- Natalia A. Shnayder
- Institute of Personalized Psychiatry and Neurology, Shared Core Facilities, V.M. Bekhterev National Medical Research Centre for Psychiatry and Neurology, 192019 Saint Petersburg, Russia
- Shared Core Facilities “Molecular and Cell Technologies”, V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia
- Correspondence: (N.A.S.); (R.F.N.); Tel.: +7-(812)-620-0222 (N.A.S. & R.F.N.)
| | - Violetta V. Grechkina
- Institute of Personalized Psychiatry and Neurology, Shared Core Facilities, V.M. Bekhterev National Medical Research Centre for Psychiatry and Neurology, 192019 Saint Petersburg, Russia
| | - Aiperi K. Khasanova
- Department of Psychiatry, Russian Medical Academy for Continual Professional Education, 125993 Moscow, Russia
| | - Elena N. Bochanova
- Shared Core Facilities “Molecular and Cell Technologies”, V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia
| | - Evgenia A. Dontceva
- Shared Core Facilities “Molecular and Cell Technologies”, V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia
| | - Marina M. Petrova
- Shared Core Facilities “Molecular and Cell Technologies”, V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia
| | - Azat R. Asadullin
- Department of Psychiatry and Addiction, Bashkir State Medical University, 45000 Ufa, Russia
| | - German A. Shipulin
- Centre for Strategic Planning and Management of Biomedical Health Risks, 119121 Moscow, Russia
| | - Kuanysh S. Altynbekov
- Republican Scientific and Practical Center of Mental Health, Almaty 050022, Kazakhstan
- Department of Psychiatry and Narcology, S.D. Asfendiarov Kazakh National Medical University, Almaty 050022, Kazakhstan
| | - Mustafa Al-Zamil
- Department of Physiotherapy, Faculty of Continuing Medical Education, Peoples’ Friendship University of Russia, 11798 Moscow, Russia
| | - Regina F. Nasyrova
- Institute of Personalized Psychiatry and Neurology, Shared Core Facilities, V.M. Bekhterev National Medical Research Centre for Psychiatry and Neurology, 192019 Saint Petersburg, Russia
- Correspondence: (N.A.S.); (R.F.N.); Tel.: +7-(812)-620-0222 (N.A.S. & R.F.N.)
| |
Collapse
|
3
|
Effects of p-Cresol on Oxidative Stress, Glutathione Depletion, and Necrosis in HepaRG Cells: Comparisons to Other Uremic Toxins and the Role of p-Cresol Glucuronide Formation. Pharmaceutics 2021; 13:pharmaceutics13060857. [PMID: 34207666 PMCID: PMC8228354 DOI: 10.3390/pharmaceutics13060857] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/03/2021] [Accepted: 06/06/2021] [Indexed: 12/14/2022] Open
Abstract
The toxicological effects of p-cresol have primarily been attributed to its metabolism products; however, very little human data are available in the key organ (i.e., liver) responsible for the generation of these metabolites. Experiments were conducted in HepaRG cells utilizing the following markers of cellular toxicity: 2′-7′-dichlorofluorescein (DCF; oxidative stress) formation, total cellular glutathione (GSH) concentration, and lactate dehydrogenase (LDH; cellular necrosis) release. Concentrations of p-cresol, p-cresol sulfate, and p-cresol glucuronide were determined using validated assays. p-Cresol exposure resulted in concentration- and time-dependent changes in DCF (EC50 = 0.64 ± 0.37 mM at 24 h of exposure) formation, GSH (EC50 = 1.00 ± 0.07 mM) concentration, and LDH (EC50 = 0.85 ± 0.14 mM) release at toxicologically relevant conditions. p-Cresol was also relatively more toxic than 3-carboxy-4-methyl-5-propyl-2-furanpropanoic acid, indole-3-acetic acid, indoxyl sulfate, kynurenic acid, and hippuric acid on all markers. Although the exogenous administration of p-cresol sulfate and p-cresol glucuronide generated high intracellular concentrations of these metabolites, both metabolites were less toxic compared to p-cresol at equal-molar conditions. Moreover, p-cresol glucuronide was the predominant metabolite generated in situ from p-cresol exposure. Selective attenuation of glucuronidation (without affecting p-cresol sulfate formation, while increasing p-cresol accumulation) using independent chemical inhibitors (i.e., 0.75 mM l-borneol, 75 µM amentoflavone, or 100 µM diclofenac) consistently resulted in further increases in LDH release associated with p-cresol exposure (by 28.3 ± 5.3%, 30.0 ± 8.2% or 27.3 ± 6.8%, respectively, compared to p-cresol treatment). These novel data indicated that p-cresol was a relatively potent toxicant, and that glucuronidation was unlikely to be associated with the manifestation of its toxic effects in HepaRG cells.
Collapse
|
4
|
Acyl glucuronide reactivity in perspective. Drug Discov Today 2020; 25:1639-1650. [PMID: 32681884 DOI: 10.1016/j.drudis.2020.07.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 06/22/2020] [Accepted: 07/08/2020] [Indexed: 12/12/2022]
Abstract
Acyl glucuronidation is a common metabolic fate for acidic drugs and their metabolites and, because these metabolites are reactive, they have been linked to adverse drug reactions (ADRs) and drug withdrawals. However, alternative routes of metabolism leading to reactive metabolites (e.g., oxidations and acyl-CoA thioesters) mean that unambiguous proof that acyl glucuronides are toxic is lacking. Here, we review the synthesis and reactivity of these metabolites, and describe the use of molecular modelling and in vitro and in vivo reactivity assessment of acyl glucuronide reactivity. Based on the emerging structure-dependent differences in reactivity and protein adduction methods for risk assessment for acyl glucuronide-forming acid drugs or drug candidates in drug discovery/development are suggested.
Collapse
|
5
|
Fu D, Cardona P, Ho H, Watkins PB, Brouwer KLR. Novel Mechanisms of Valproate Hepatotoxicity: Impaired Mrp2 Trafficking and Hepatocyte Depolarization. Toxicol Sci 2019; 171:431-442. [PMID: 31368504 PMCID: PMC6760262 DOI: 10.1093/toxsci/kfz154] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 07/02/2019] [Accepted: 07/03/2019] [Indexed: 12/14/2022] Open
Abstract
Drug-induced liver injury (DILI) remains a major challenge in drug development. Although numerous mechanisms for DILI have been identified, few studies have focused on loss of hepatocyte polarization as a DILI mechanism. The current study investigated the effects of valproate, an antiepileptic drug with DILI risk, on the cellular mechanisms responsible for loss of hepatocyte polarization. Fully polarized collagen sandwich-cultured rat hepatocytes were treated with valproate (1-20mM) for specified times (3-24hr). Hepatocyte viability was significantly decreased by 10mM and 20mM valproate. Valproate depolarized hepatocytes, even at non-cytotoxic concentrations (=5mM). Depolarization was associated with significantly decreased canalicular levels of multidrug resistance-associated protein 2 (Mrp2) resulting in reduced canalicular excretion of the Mrp2 substrate carboxydichlorofluorescein. The decreased canalicular Mrp2 was associated with intracellular accumulation of Mrp2 in Rab11-positive recycling endosomes and early endosomes. Mechanistic studies suggested that valproate inhibited canalicular trafficking of Mrp2. This effect of valproate on Mrp2 appeared to be selective in that valproate had less impact on canalicular levels of the bile salt export pump (Bsep) and no detectable effect on P-glycoprotein (P-gp) canalicular levels. Treatment with valproate for 24hr also significantly downregulated levels of tight junction-associated protein, zonula occludens 2 (ZO2), but appeared to have no effect on the levels of tight junction proteins claudin 1, claudin 2, occludin, ZO1 and ZO3. These findings reveal that two novel mechanisms may contribute to valproate hepatotoxicity: impaired canalicular trafficking of Mrp2 and disruption of ZO2-associated hepatocyte polarization.
Collapse
Affiliation(s)
- Dong Fu
- UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Panli Cardona
- UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Henry Ho
- UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Paul B Watkins
- UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Kim L R Brouwer
- UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC
| |
Collapse
|
6
|
Rong Y, Kiang TKL. Development and validation of a sensitive liquid-chromatography tandem mass spectrometry assay for mycophenolic acid and metabolites in HepaRG cell culture: Characterization of metabolism interactions between p-cresol and mycophenolic acid. Biomed Chromatogr 2019; 33:e4549. [PMID: 30958902 DOI: 10.1002/bmc.4549] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 03/29/2019] [Accepted: 04/02/2019] [Indexed: 12/24/2022]
Abstract
Mycophenolic acid (MPA), a frequently used immunosuppressant, exhibits large inter-patient pharmacokinetic variability. This study (a) developed and validated a sensitive liquid chromatography-tandem mass spectrometry (LC-MS/MS) assay for MPA and metabolites [MPA glucuronide (MPAG) and acyl-glucuronide (AcMPAG)] in the culture medium of HepaRG cells; and (b) characterized the metabolism interaction between MPA and p-cresol (a common uremic toxin) in this in vitro model as a potential mechanism of pharmacokinetic variability. Chromatographic separation was achieved with a C18 column (4.6 × 250 mm,5 μm) using a gradient elution with water and methanol (with 0.1% formic acid and 2 mm ammonium acetate). A dual ion source ionization mode with positive multiple reaction monitoring was utilized. Multiple reaction monitoring mass transitions (m/z) were: MPA (320.95 → 207.05), MPAG (514.10 → 303.20) and AcMPAG (514.10 → 207.05). MPA-d3 (323.95 → 210.15) and MPAG-d3 (517.00 → 306.10) were utilized as internal standards. The calibration curves were linear from 0.00467 to 3.2 μg/mL for MPA/MPAG and from 0.00467 to 0.1 μg/mL for AcMPAG. The assay was validated based on industry standards. p-Cresol inhibited MPA glucuronidation (IC50 ≈ 55 μm) and increased MPA concentration (up to >2-fold) at physiologically relevant substrate-inhibitor concentrations (n = 3). Our findings suggested that fluctuations in p-cresol concentrations might be in part responsible for the large pharmacokinetic variability observed for MPA in the clinic.
Collapse
Affiliation(s)
- Yan Rong
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Katz Group Centre for Pharmacy and Health Research, Edmonton, Alberta, Canada
| | - Tony K L Kiang
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Katz Group Centre for Pharmacy and Health Research, Edmonton, Alberta, Canada
| |
Collapse
|
7
|
Tetsuka K, Ohbuchi M, Tabata K. Recent Progress in Hepatocyte Culture Models and Their Application to the Assessment of Drug Metabolism, Transport, and Toxicity in Drug Discovery: The Value of Tissue Engineering for the Successful Development of a Microphysiological System. J Pharm Sci 2017; 106:2302-2311. [PMID: 28533121 DOI: 10.1016/j.xphs.2017.05.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 04/23/2017] [Accepted: 05/05/2017] [Indexed: 12/14/2022]
Abstract
Tissue engineering technology has provided many useful culture models. This article reviews the merits of this technology in a hepatocyte culture system and describes the applications of the sandwich-cultured hepatocyte model in drug discovery. In addition, we also review recent investigations of the utility of the 3-dimensional bioprinted human liver tissue model and spheroid model. Finally, we present the future direction and developmental challenges of a hepatocyte culture model for the successful establishment of a microphysiological system, represented as an organ-on-a-chip and even as a human-on-a-chip. A merit of advanced culture models is their potential use for detecting hepatotoxicity through repeated exposure to chemicals as they allow long-term culture while maintaining hepatocyte functionality. As a future direction, such advanced hepatocyte culture systems can be connected to other tissue models for evaluating tissue-to-tissue interaction beyond cell-to-cell interaction. This combination of culture models could represent parts of the human body in a microphysiological system.
Collapse
Affiliation(s)
- Kazuhiro Tetsuka
- Analysis & Pharmacokinetics Research Labs., Astellas Pharma Inc., 21 Miyukigaoka Tsukuba-shi, Ibaraki, Japan.
| | - Masato Ohbuchi
- Analysis & Pharmacokinetics Research Labs., Astellas Pharma Inc., 21 Miyukigaoka Tsukuba-shi, Ibaraki, Japan
| | - Kenji Tabata
- Analysis & Pharmacokinetics Research Labs., Astellas Pharma Inc., 21 Miyukigaoka Tsukuba-shi, Ibaraki, Japan
| |
Collapse
|
8
|
Kawase A, Hashimoto R, Shibata M, Shimada H, Iwaki M. Involvement of Reactive Metabolites of Diclofenac in Cytotoxicity in Sandwich-Cultured Rat Hepatocytes. Int J Toxicol 2017; 36:260-267. [DOI: 10.1177/1091581817700584] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Background and Objectives: Diclofenac (DIC) is metabolized to reactive metabolites such as diclofenac acyl-β-d-glucuronide (DIC-AG). It is possible that such reactive metabolites could cause tissue damage by formation of covalent protein adducts and other modification of cellular proteins or by induction of immune responses against its covalent protein adducts. However, the detailed mechanisms of idiosyncratic drug-induced liver injury (DILI) have been unclear. The objective is to clarify the involvement of DIC-AG and 4′hydroxydiclofenac (4′OH-DIC) in acute DILI. Methods: We examined the effects of inhibiting DIC-AG and 4′OH-DIC production on covalent protein adduct formation and lactate dehydrogenase leakage using sandwich-cultured rat hepatocytes (SCRHs). Results: After pretreatment of SCRH with (−)-borneol (BOR, a uridine diphosphate (UDP)-glucuronosyltransferase inhibitor) or sulfaphenazole (SUL, a cytochrome P450 2C9 inhibitor) for 30 minutes, intracellular concentrations of DIC, DIC-AG, and 4′OH-DIC were determined after further treating cells with 300 μM DIC for 3 hours. The decreased levels of reactive metabolites caused by BOR or SUL pretreatment resulted in decreased lactate dehydrogenase leakage from SCRH, although the formation of covalent protein adducts was not affected. Conclusion: These results suggested that both DIC-AG and 4′OH-DIC may be involved in acute cytotoxicity by DIC.
Collapse
Affiliation(s)
- Atsushi Kawase
- Department of Pharmacy, Faculty of Pharmacy, Kindai University, Higashi-osaka, Osaka, Japan
| | - Ryota Hashimoto
- Department of Pharmacy, Faculty of Pharmacy, Kindai University, Higashi-osaka, Osaka, Japan
| | - Mai Shibata
- Department of Pharmacy, Faculty of Pharmacy, Kindai University, Higashi-osaka, Osaka, Japan
| | - Hiroaki Shimada
- Department of Pharmacy, Faculty of Pharmacy, Kindai University, Higashi-osaka, Osaka, Japan
| | - Masahiro Iwaki
- Department of Pharmacy, Faculty of Pharmacy, Kindai University, Higashi-osaka, Osaka, Japan
| |
Collapse
|
9
|
Willebrords J, Pereira IVA, Maes M, Crespo Yanguas S, Colle I, Van Den Bossche B, Da Silva TC, de Oliveira CPMS, Andraus W, Alves VA, Cogliati B, Vinken M. Strategies, models and biomarkers in experimental non-alcoholic fatty liver disease research. Prog Lipid Res 2015; 59:106-25. [PMID: 26073454 DOI: 10.1016/j.plipres.2015.05.002] [Citation(s) in RCA: 127] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 05/13/2015] [Accepted: 05/13/2015] [Indexed: 12/12/2022]
Abstract
Non-alcoholic fatty liver disease encompasses a spectrum of liver diseases, including simple steatosis, steatohepatitis, liver fibrosis and cirrhosis and hepatocellular carcinoma. Non-alcoholic fatty liver disease is currently the most dominant chronic liver disease in Western countries due to the fact that hepatic steatosis is associated with insulin resistance, type 2 diabetes mellitus, obesity, metabolic syndrome and drug-induced injury. A variety of chemicals, mainly drugs, and diets is known to cause hepatic steatosis in humans and rodents. Experimental non-alcoholic fatty liver disease models rely on the application of a diet or the administration of drugs to laboratory animals or the exposure of hepatic cell lines to these drugs. More recently, genetically modified rodents or zebrafish have been introduced as non-alcoholic fatty liver disease models. Considerable interest now lies in the discovery and development of novel non-invasive biomarkers of non-alcoholic fatty liver disease, with specific focus on hepatic steatosis. Experimental diagnostic biomarkers of non-alcoholic fatty liver disease, such as (epi)genetic parameters and '-omics'-based read-outs are still in their infancy, but show great promise. In this paper, the array of tools and models for the study of liver steatosis is discussed. Furthermore, the current state-of-art regarding experimental biomarkers such as epigenetic, genetic, transcriptomic, proteomic and metabonomic biomarkers will be reviewed.
Collapse
Affiliation(s)
- Joost Willebrords
- Department of In Vitro Toxicology and Dermato-Cosmetology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium.
| | - Isabel Veloso Alves Pereira
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, Av. Prof. Dr. Orlando Marques de Paiva, 87, São Paulo, Brazil.
| | - Michaël Maes
- Department of In Vitro Toxicology and Dermato-Cosmetology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium.
| | - Sara Crespo Yanguas
- Department of In Vitro Toxicology and Dermato-Cosmetology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium.
| | - Isabelle Colle
- Department of Hepatology and Gastroenterology, Algemeen Stedelijk Ziekenhuis Campus Aalst, Merestraat 80, 9300 Aalst, Belgium.
| | - Bert Van Den Bossche
- Department of Abdominal Surgery and Hepato-Pancreatico-Biliary Surgery, Algemeen Stedelijk Ziekenhuis Campus Aalst, Merestraat 80, 9300 Aalst, Belgium.
| | - Tereza Cristina Da Silva
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, Av. Prof. Dr. Orlando Marques de Paiva, 87, São Paulo, Brazil.
| | | | - Wellington Andraus
- Department of Gastroenterology, University of São Paulo School of Medicine, Av. Dr. Arnaldo, 455, São Paulo, Brazil.
| | - Venâncio Avancini Alves
- Laboratory of Medical Investigation, Department of Pathology, University of São Paulo School of Medicine, Av. Dr. Arnaldo, 455, São Paulo, Brazil.
| | - Bruno Cogliati
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, Av. Prof. Dr. Orlando Marques de Paiva, 87, São Paulo, Brazil.
| | - Mathieu Vinken
- Department of In Vitro Toxicology and Dermato-Cosmetology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium.
| |
Collapse
|