1
|
Ma Y, Ran F, Xin M, Gou X, Wang X, Wu X. Albumin-bound kynurenic acid is an appropriate endogenous biomarker for assessment of the renal tubular OATs-MRP4 channel. J Pharm Anal 2023; 13:1205-1220. [PMID: 38024860 PMCID: PMC10657973 DOI: 10.1016/j.jpha.2023.05.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 05/08/2023] [Accepted: 05/12/2023] [Indexed: 12/01/2023] Open
Abstract
Renal tubular secretion mediated by organic anion transporters (OATs) and the multidrug resistance-associated protein 4 (MRP4) is an important means of drug and toxin excretion. Unfortunately, there are no biomarkers to evaluate their function. The aim of this study was to identify and characterize an endogenous biomarker of the renal tubular OATs-MRP4 channel. Twenty-six uremic toxins were selected as candidate compounds, of which kynurenic acid was identified as a potential biomarker by assessing the protein-binding ratio and the uptake in OAT1-, OAT3-, and MRP4-overexpressing cell lines. OAT1/3 and MRP4 mediated the transcellular vectorial transport of kynurenic acid in vitro. Serum kynurenic acid concentration was dramatically increased in rats treated with a rat OAT1/3 (rOAT1/3) inhibitor and in rOAT1/3 double knockout (rOAT1/3-/-) rats, and the renal concentrations were markedly elevated by the rat MRP4 (rMRP4) inhibitor. Kynurenic acid was not filtered at the glomerulus (99% of albumin binding), and was specifically secreted in renal tubules through the OAT1/3-MRP4 channel with an appropriate affinity (Km) (496.7 μM and 382.2 μM for OAT1 and OAT3, respectively) and renal clearance half-life (t1/2) in vivo (3.7 ± 0.7 h). There is a strong correlation in area under the plasma drug concentration-time curve (AUC0-t) between cefmetazole and kynurenic acid, but not with creatinine, after inhibition of rOATs. In addition, the phase of increased kynurenic acid level is earlier than that of creatinine in acute kidney injury process. These results suggest that albumin-bound kynurenic acid is an appropriate endogenous biomarker for adjusting the dosage of drugs secreted by this channel or predicting kidney injury.
Collapse
Affiliation(s)
- Yanrong Ma
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, China
| | - Fenglin Ran
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Mingyan Xin
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Xueyan Gou
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Xinyi Wang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, China
| | - Xinan Wu
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, China
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| |
Collapse
|
2
|
Orozco CC, Neuvonen M, Bi YA, Cerny MA, Mathialagan S, Tylaska L, Rago B, Costales C, King-Ahmad A, Niemi M, Rodrigues AD. Characterization of Bile Acid Sulfate Conjugates as Substrates of Human Organic Anion Transporting Polypeptides. Mol Pharm 2023. [PMID: 37134201 DOI: 10.1021/acs.molpharmaceut.3c00040] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Drug interactions involving the inhibition of hepatic organic anion transporting polypeptides (OATPs) 1B1 and OATP1B3 are considered important. Therefore, we sought to study various sulfated bile acids (BA-S) as potential clinical OATP1B1/3 biomarkers. It was determined that BA-S [e.g., glycochenodeoxycholic acid 3-O-sulfate (GCDCA-S) and glycodeoxycholic acid 3-O-sulfate (GDCA-S)] are substrates of OATP1B1, OATP1B3, and sodium-dependent taurocholic acid cotransporting polypeptide (NTCP) transfected into human embryonic kidney 293 cells, with minimal uptake evident for other solute carriers (SLCs) like OATP2B1, organic anion transporter 2, and organic cation transporter 1. It was also shown that BA-S uptake by plated human hepatocytes (PHH) was inhibited (≥96%) by a pan-SLC inhibitor (rifamycin SV), and there was greater inhibition (≥77% versus ≤12%) with rifampicin (OATP1B1/3-selective inhibitor) than a hepatitis B virus myristoylated-preS1 peptide (NTCP-selective inhibitor). Estrone 3-sulfate was also used as an OATP1B1-selective inhibitor. In this instance, greater inhibition was observed with GDCA-S (76%) than GCDCA-S (52%). The study was expanded to encompass the measurement of GCDCA-S and GDCA-S in plasma of SLCO1B1 genotyped subjects. The geometric mean GDCA-S concentration was 2.6-fold (90% confidence interval 1.6, 4.3; P = 2.1 × 10-4) and 1.3-fold (1.1, 1.7; P = 0.001) higher in individuals homozygous and heterozygous for the SLCO1B1 c.521T > C loss-of-function allele, respectively. For GCDCA-S, no significant difference was noted [1.2-fold (0.8, 1.7; P = 0.384) and 0.9-fold (0.8, 1.1; P = 0.190), respectively]. This supported the in vitro data indicating that GDCA-S is a more OATP1B1-selective substrate (versus GCDCA-S). It is concluded that GCDCA-S and GDCA-S are viable plasma-based OATP1B1/3 biomarkers, but they are both less OATP1B1-selective when compared to their corresponding 3-O-glucuronides (GCDCA-3G and GDCA-3G). Additional studies are needed to determine their utility versus more established biomarkers, such as coproporphyrin I, for assessing inhibitors with different OATP1B1 (versus OATP1B3) inhibition signatures.
Collapse
Affiliation(s)
- Christine C Orozco
- Pharmacokinetics, Dynamics, and Metabolism, Pfizer Worldwide Research and Development, Groton, Connecticut 06340, United States
| | - Mikko Neuvonen
- Department of Clinical Pharmacology, University of Helsinki, Helsinki FI-00014, Finland
- Individualized Drug Therapy Research Program, University of Helsinki, Helsinki FI-00014, Finland
| | - Yi-An Bi
- Pharmacokinetics, Dynamics, and Metabolism, Pfizer Worldwide Research and Development, Groton, Connecticut 06340, United States
| | - Matthew A Cerny
- Pharmacokinetics, Dynamics, and Metabolism, Pfizer Worldwide Research and Development, Groton, Connecticut 06340, United States
| | - Sumathy Mathialagan
- Pharmacokinetics, Dynamics, and Metabolism, Pfizer Worldwide Research and Development, Groton, Connecticut 06340, United States
| | - Laurie Tylaska
- Pharmacokinetics, Dynamics, and Metabolism, Pfizer Worldwide Research and Development, Groton, Connecticut 06340, United States
| | - Brian Rago
- Pharmacokinetics, Dynamics, and Metabolism, Pfizer Worldwide Research and Development, Groton, Connecticut 06340, United States
| | - Chester Costales
- Pharmacokinetics, Dynamics, and Metabolism, Pfizer Worldwide Research and Development, Groton, Connecticut 06340, United States
| | - Amanda King-Ahmad
- Pharmacokinetics, Dynamics, and Metabolism, Pfizer Worldwide Research and Development, Groton, Connecticut 06340, United States
| | - Mikko Niemi
- Department of Clinical Pharmacology, University of Helsinki, Helsinki FI-00014, Finland
- Individualized Drug Therapy Research Program, University of Helsinki, Helsinki FI-00014, Finland
- Department of Clinical Pharmacology, HUS Diagnostic Center, Helsinki University Hospital, Helsinki FI-00029, Finland
| | - A David Rodrigues
- Pharmacokinetics, Dynamics, and Metabolism, Pfizer Worldwide Research and Development, Groton, Connecticut 06340, United States
| |
Collapse
|
3
|
Pelizzo P, Stebel M, Medic N, Sist P, Vanzo A, Anesi A, Vrhovsek U, Tramer F, Passamonti S. Cyanidin 3-glucoside targets a hepatic bilirubin transporter in rats. Biomed Pharmacother 2023; 157:114044. [PMID: 36463829 DOI: 10.1016/j.biopha.2022.114044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/15/2022] [Accepted: 11/25/2022] [Indexed: 12/02/2022] Open
Abstract
One of the organ-specific functions of the liver is the excretion of bilirubin into the bile. Membrane transport of bilirubin from the blood to the liver is not only an orphan function, because there is no link to the protein/gene units that perform this function, but also a poorly characterised function. The aim of this study was to investigate the pharmacology of bilirubin uptake in the liver of the female Wistar rat to improve basic knowledge in this neglected area of liver physiology. We treated isolated perfused livers of female rats with repeated single-pass, albumin-free bilirubin boli. We monitored both bilirubin and bilirubin glucuronide in perfusion effluent with a bio-fluorometric assay. We tested the ability of nine molecules known as substrates or inhibitors of sinusoidal membrane transporters to inhibit hepatic uptake of bilirubin. We found that cyanidin 3-glucoside and malvidin 3-glucoside were the only molecules that inhibited bilirubin uptake. These dietary anthocyanins resemble bromosulfophthalein (BSP), a substrate of several sinusoidal membrane transporters. The SLCO-specific substrates estradiol-17 beta-glucuronide, pravastatin, and taurocholate inhibited only bilirubin glucuronide uptake. Cyanidin 3-glucoside and taurocholate acted at physiological concentrations. The SLC22-specific substrates indomethacin and ketoprofen were inactive. We demonstrated the existence of a bilirubin-glucuronide transporter inhibited by bilirubin, a fact reported only once in the literature. The data suggest that bilirubin and bilirubin glucuronide are transported to the liver via pharmacologically distinct membrane transport pathways. Some dietary anthocyanins may physiologically modulate the uptake of bilirubin into the liver.
Collapse
Affiliation(s)
- Paola Pelizzo
- Department of Life Sciences, University of Trieste, Via L. Giorgieri 1, 34127 Trieste, Italy
| | - Marco Stebel
- Department of Life Sciences, University of Trieste, Via L. Giorgieri 1, 34127 Trieste, Italy
| | - Nevenka Medic
- Department of Life Sciences, University of Trieste, Via L. Giorgieri 1, 34127 Trieste, Italy
| | - Paola Sist
- Department of Life Sciences, University of Trieste, Via L. Giorgieri 1, 34127 Trieste, Italy
| | - Andreja Vanzo
- Department of Fruit Growing, Viticulture and Oenology, Agricultural Institute of Slovenia, Hacquetova ulica 17, SI-1000 Ljubljana, Slovenia
| | - Andrea Anesi
- Food Quality and Nutrition, Research and Innovation Centre, Edmund Mach Foundation, Via E. Mach 1, 38010 San Michele all'Adige, Italy
| | - Urska Vrhovsek
- Food Quality and Nutrition, Research and Innovation Centre, Edmund Mach Foundation, Via E. Mach 1, 38010 San Michele all'Adige, Italy
| | - Federica Tramer
- Department of Life Sciences, University of Trieste, Via L. Giorgieri 1, 34127 Trieste, Italy
| | - Sabina Passamonti
- Department of Life Sciences, University of Trieste, Via L. Giorgieri 1, 34127 Trieste, Italy.
| |
Collapse
|
4
|
Taylor RE, Bhattacharya A, Guo GL. Environmental Chemical Contribution to the Modulation of Bile Acid Homeostasis and Farnesoid X Receptor Signaling. Drug Metab Dispos 2022; 50:456-467. [PMID: 34759011 PMCID: PMC11022932 DOI: 10.1124/dmd.121.000388] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 11/05/2021] [Indexed: 11/22/2022] Open
Abstract
Maintaining bile acid (BA) homeostasis is important and regulated by BA activated receptors and signaling pathways. Farnesoid X receptor (FXR) and its regulated target networks in both the liver and the intestines are critical in suppressing BA synthesis and promoting BA transport and enterohepatic circulation. In addition, FXR is critical in regulating lipid metabolism and reducing inflammation, processes critical in the development of cholestasis and fatty liver diseases. BAs are modulated by, but also control, gut microflora. Environmental chemical exposure could affect liver disease development. However, the effects and the mechanisms by which environmental chemicals interact with FXR to affect BA homeostasis are only emerging. In this minireview, our focus is to provide evidence from reports that determine the effects of environmental or therapeutic exposure on altering homeostasis and functions of BAs and FXR. Understanding these effects will help to determine liver disease pathogenesis and provide better prevention and treatment in the future. SIGNIFICANCE STATEMENT: Environmental chemical exposure significantly contributes to the development of cholestasis and nonalcoholic steatohepatitis (NASH). The impact of exposures on bile acid (BA) signaling and Farnesoid X receptor-mediated gut-liver crosstalk is emerging. However, there is still a huge gap in understanding how these chemicals contribute to the dysregulation of BA homeostasis and how this dysregulation may promote NASH development.
Collapse
Affiliation(s)
- Rulaiha E Taylor
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey (R.E.T., A.B., G.L.G.); Environmental and Occupational Health Sciences Institute, Rutgers, The State University of New Jersey, Piscataway, New Jersey (G.L.G.); Rutgers Center for Lipid Research, Rutgers, The State University of New Jersey, New Brunswick, New Jersey (G.L.G.); and VA New Jersey Health Care System, Veterans Administration Medical Center, East Orange, New Jersey (G.L.G.)
| | - Anisha Bhattacharya
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey (R.E.T., A.B., G.L.G.); Environmental and Occupational Health Sciences Institute, Rutgers, The State University of New Jersey, Piscataway, New Jersey (G.L.G.); Rutgers Center for Lipid Research, Rutgers, The State University of New Jersey, New Brunswick, New Jersey (G.L.G.); and VA New Jersey Health Care System, Veterans Administration Medical Center, East Orange, New Jersey (G.L.G.)
| | - Grace L Guo
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey (R.E.T., A.B., G.L.G.); Environmental and Occupational Health Sciences Institute, Rutgers, The State University of New Jersey, Piscataway, New Jersey (G.L.G.); Rutgers Center for Lipid Research, Rutgers, The State University of New Jersey, New Brunswick, New Jersey (G.L.G.); and VA New Jersey Health Care System, Veterans Administration Medical Center, East Orange, New Jersey (G.L.G.)
| |
Collapse
|
5
|
Li Y, Talebi Z, Chen X, Sparreboom A, Hu S. Endogenous Biomarkers for SLC Transporter-Mediated Drug-Drug Interaction Evaluation. Molecules 2021; 26:5500. [PMID: 34576971 PMCID: PMC8466752 DOI: 10.3390/molecules26185500] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/06/2021] [Accepted: 09/07/2021] [Indexed: 12/31/2022] Open
Abstract
Membrane transporters play an important role in the absorption, distribution, metabolism, and excretion of xenobiotic substrates, as well as endogenous compounds. The evaluation of transporter-mediated drug-drug interactions (DDIs) is an important consideration during the drug development process and can guide the safe use of polypharmacy regimens in clinical practice. In recent years, several endogenous substrates of drug transporters have been identified as potential biomarkers for predicting changes in drug transport function and the potential for DDIs associated with drug candidates in early phases of drug development. These biomarker-driven investigations have been applied in both preclinical and clinical studies and proposed as a predictive strategy that can be supplanted in order to conduct prospective DDIs trials. Here we provide an overview of this rapidly emerging field, with particular emphasis on endogenous biomarkers recently proposed for clinically relevant uptake transporters.
Collapse
Affiliation(s)
| | | | | | | | - Shuiying Hu
- Division of Pharmaceutics and Pharmacology, College of Pharmacy & Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA; (Y.L.); (Z.T.); (X.C.); (A.S.)
| |
Collapse
|
6
|
Izat N, Kaplan O, Celebier M, Sahin S. Bioanalytical Method Validation of an RP-HPLC Method for Determination of Rifampicin in Liver Perfusion Studies. CURR PHARM ANAL 2021. [DOI: 10.2174/1573412916999200526115445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
The number of validated quantification methods for rifampicin, a prototypical Oatp inhibitor, in biological rat samples was limited.
Objective:
This study was conducted to validate a modified reversed-phase liquid chromatographic method for the determination of rifampicin in rat liver tissue according to the current ICH M10 Bioanalytical Method Validation Draft Guideline (2019) for application to samples of in situ rat liver perfusion studies.
Methods:
Liver tissue samples were obtained from recirculatory in situ rat liver perfusion studies. The
analysis was performed on a C18 column with a mobile phase composed of 0.05 M phosphate buffer
(pH 4.58): acetonitrile (55:45, v/v). The assay was validated for selectivity, calibration curve and
range, matrix effect, carry-over, accuracy and precision, reinjection reproducibility, and stability.
Results:
he method was considered selective and stable, without having carry-over and matrix effects.
The calibration curve was linear (R2: 0.9983) within the calibration range (0.5-60 ppm). Accuracy and
precision values fulfilled the required limits. Liver concentrations of rifampicin in liver tissue, obtained
after 60 min perfusion with 10 μM and 50 μM of rifampicin, were 45.1 ± 11.2 and 313.4 ± 84.4 μM,
respectively.
Conclusion:
The bioanalytical method validation was completed and the method was successfully applied for the determination of rifampicin in rat liver tissue.
Collapse
Affiliation(s)
- Nihan Izat
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, Ankara,Turkey
| | - Ozan Kaplan
- Department of Analytical Chemistry, Faculty of Pharmacy, Hacettepe University, Ankara,Turkey
| | - Mustafa Celebier
- Department of Analytical Chemistry, Faculty of Pharmacy, Hacettepe University, Ankara,Turkey
| | - Selma Sahin
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, Ankara,Turkey
| |
Collapse
|
7
|
Anticholestatic Effect of Bardoxolone Methyl on Hepatic Ischemia-reperfusion Injury in Rats. Transplant Direct 2020; 6:e584. [PMID: 32766432 PMCID: PMC7371100 DOI: 10.1097/txd.0000000000001017] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 05/04/2020] [Indexed: 11/25/2022] Open
Abstract
Supplemental Digital Content is available in the text. Background. Cholestasis is a sign of hepatic ischemia-reperfusion injury (IRI), which is caused by the dysfunction of hepatocyte membrane transporters (HMTs). As transcriptional regulation of HMTs during oxidative stress is mediated by nuclear factor erythroid 2-related factor 2, we hypothesized that bardoxolone methyl (BARD), a nuclear factor erythroid 2-related factor 2 activator, can mitigate cholestasis associated with hepatic IRI. Methods. BARD (2 mg/kg) or the vehicle was intravenously administered into rats immediately before sham surgery, 60 min of ischemia (IR60), or 90 min of ischemia (IR90); tissue and blood samples were collected after 24 h to determine the effect on key surrogate markers of bile metabolism and expression of HMT genes (Mrp (multidrug resistance-associated protein) 2, bile salt export pump, Mrp3, sodium-taurocholate cotransporter, and organic anion-transporting polypeptide 1). Results. Significantly decreased serum bile acids were detected upon BARD administration in the IR60 group but not in the IR90 group. Hepatic tissue analyses revealed that BARD administration increased mRNA levels of Mrp2 and Mrp3 in the IR60 group, and it decreased those of bile salt export pump in the IR90 group. Protein levels of multidrug resistance–associated protein 2, multidrug resistance–associated protein 3, and sodium-taurocholate cotransporter were higher in the IR90 group relative to those in the sham or IR60 groups, wherein the difference was notable only when BARD was administered. Immunohistochemical and morphometric analyses showed that the area of expression for multidrug resistance–associated protein 2 and for sodium-taurocholate cotransporter was larger in the viable tissues than in the necrotic area, and the area for multidrug resistance–associated protein 3 was smaller; these differences were notable upon BARD administration. Conclusions. BARD may have the potential to change HMT regulation to mitigate cholestasis in hepatic IRI.
Collapse
|
8
|
Hernández Lozano I, Langer O. Use of imaging to assess the activity of hepatic transporters. Expert Opin Drug Metab Toxicol 2020; 16:149-164. [PMID: 31951754 PMCID: PMC7055509 DOI: 10.1080/17425255.2020.1718107] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 01/15/2020] [Indexed: 12/13/2022]
Abstract
Introduction: Membrane transporters of the SLC and ABC families are abundantly expressed in the liver, where they control the transfer of drugs/drug metabolites across the sinusoidal and canalicular hepatocyte membranes and play a pivotal role in hepatic drug clearance. Noninvasive imaging methods, such as PET, SPECT or MRI, allow for measuring the activity of hepatic transporters in vivo, provided that suitable transporter imaging probes are available.Areas covered: We give an overview of the working principles of imaging-based assessment of hepatic transporter activity. We discuss different currently available PET/SPECT radiotracers and MRI contrast agents and their applications to measure hepatic transporter activity in health and disease. We cover mathematical modeling approaches to obtain quantitative parameters of transporter activity and provide a critical assessment of methodological limitations and challenges associated with this approach.Expert opinion: PET in combination with pharmacokinetic modeling can be potentially applied in drug development to study the distribution of new drug candidates to the liver and their clearance mechanisms. This approach bears potential to mechanistically assess transporter-mediated drug-drug interactions, to assess the influence of disease on hepatic drug disposition and to validate and refine currently available in vitro-in vivo extrapolation methods to predict hepatic clearance of drugs.
Collapse
Affiliation(s)
| | - Oliver Langer
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
- Preclinical Molecular Imaging, AIT Austrian Institute of Technology GmbH, Seibersdorf, Austria
| |
Collapse
|
9
|
Müller F, Sharma A, König J, Fromm MF. Biomarkers for In Vivo Assessment of Transporter Function. Pharmacol Rev 2018; 70:246-277. [PMID: 29487084 DOI: 10.1124/pr.116.013326] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Drug-drug interactions are a major concern not only during clinical practice, but also in drug development. Due to limitations of in vitro-in vivo predictions of transporter-mediated drug-drug interactions, multiple clinical Phase I drug-drug interaction studies may become necessary for a new molecular entity to assess potential drug interaction liabilities. This is a resource-intensive process and exposes study participants, who frequently are healthy volunteers without benefit from study treatment, to the potential risks of a new drug in development. Therefore, there is currently a major interest in new approaches for better prediction of transporter-mediated drug-drug interactions. In particular, researchers in the field attempt to identify endogenous compounds as biomarkers for transporter function, such as hexadecanedioate, tetradecanedioate, coproporphyrins I and III, or glycochenodeoxycholate sulfate for hepatic uptake via organic anion transporting polypeptide 1B or N1-methylnicotinamide for multidrug and toxin extrusion protein-mediated renal secretion. We summarize in this review the currently proposed biomarkers and potential limitations of the substances identified to date. Moreover, we suggest criteria based on current experiences, which may be used to assess the suitability of a biomarker for transporter function. Finally, further alternatives and supplemental approaches to classic drug-drug interaction studies are discussed.
Collapse
Affiliation(s)
- Fabian Müller
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany (F.M., J.K., M.F.F.); and Department of Translational Medicine and Clinical Pharmacology, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach a.d. Riß, Germany (F.M., A.S.)
| | - Ashish Sharma
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany (F.M., J.K., M.F.F.); and Department of Translational Medicine and Clinical Pharmacology, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach a.d. Riß, Germany (F.M., A.S.)
| | - Jörg König
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany (F.M., J.K., M.F.F.); and Department of Translational Medicine and Clinical Pharmacology, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach a.d. Riß, Germany (F.M., A.S.)
| | - Martin F Fromm
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany (F.M., J.K., M.F.F.); and Department of Translational Medicine and Clinical Pharmacology, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach a.d. Riß, Germany (F.M., A.S.)
| |
Collapse
|
10
|
Kim J, Martin A, Yee J, Fojut L, Geurts AM, Oshima K, Zimmerman MA, Hong JC. Effects of Hepatic Ischemia-Reperfusion Injuries and NRF2 on Transcriptional Activities of Bile Transporters in Rats. J Surg Res 2018; 235:73-82. [PMID: 30691853 DOI: 10.1016/j.jss.2018.09.057] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 09/07/2018] [Accepted: 09/19/2018] [Indexed: 12/15/2022]
Abstract
BACKGROUND The effect of hepatic ischemia-reperfusion injury (IRI) on bile transporter (BT) gene expression is unknown. We hypothesized that abnormal expression of BTs during hepatic IRI is dependent on nuclear factor erythroid 2-related factor 2 (NRF2), which contributes to the cholestasis after reperfusion. METHODS Sham surgery and short (60 min) or long (90 min) periods of warm ischemia time (WIT) with or without reperfusion for 24 h were applied to wild-type Sprague-Dawley rats and Nrf2 knockout rats (n = 5 per group). At each stage of IRI, the serum levels of aminotransferase, total bilirubin, and bile acids were measured. In addition, hepatic tissue was sampled to determine the histologic score of IRI (Suzuki score), measure adenosine triphosphate (ATP), and identify the quantitative real-time polymerase chain reactions of BTs (Oatp1, Ntcp, Mrp2, Bsep, and Mrp3). RESULTS In short periods of WIT, BT expression increased during the ischemia stage and returned to the baseline after reperfusion. However, in long periods of WIT, BT expression did not increase after ischemia and decreased further after reperfusion. Short WIT did not increase BT expression in Nrf2 knockout animals. The level of BT expression was correlated with the Suzuki score, the serum levels of aminotransferase, bilirubin, and bile acids, and tissue ATP level. Stepwise multiple regression analysis derived equations to predict the Suzuki score (R2 = 76.8, P < 0.001), serum total bilirubin (R2 = 61.2, P < 0.001), and tissue ATP (R2 = 61.1, P < 0.001). CONCLUSIONS Short WIT induces the transcriptional activities of BT, whereas long WIT depresses them, and the effect was blunted by Nrf2 knockout status. BT expression can be considered a surrogate marker for hepatic IRI.
Collapse
Affiliation(s)
- Joohyun Kim
- Division of Transplant Surgery, Department of Surgery, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Alicia Martin
- Division of Transplant Surgery, Department of Surgery, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Jennifer Yee
- Division of Transplant Surgery, Department of Surgery, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Lynn Fojut
- Division of Transplant Surgery, Department of Surgery, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Aron M Geurts
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Kiyoko Oshima
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Michael A Zimmerman
- Division of Transplant Surgery, Department of Surgery, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Johnny C Hong
- Division of Transplant Surgery, Department of Surgery, Medical College of Wisconsin, Milwaukee, Wisconsin.
| |
Collapse
|
11
|
Karageorgis A, Lenhard SC, Yerby B, Forsgren MF, Liachenko S, Johansson E, Pilling MA, Peterson RA, Yang X, Williams DP, Ungersma SE, Morgan RE, Brouwer KLR, Jucker BM, Hockings PD. A multi-center preclinical study of gadoxetate DCE-MRI in rats as a biomarker of drug induced inhibition of liver transporter function. PLoS One 2018; 13:e0197213. [PMID: 29771932 PMCID: PMC5957399 DOI: 10.1371/journal.pone.0197213] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 04/28/2018] [Indexed: 12/12/2022] Open
Abstract
Drug-induced liver injury (DILI) is a leading cause of acute liver failure and transplantation. DILI can be the result of impaired hepatobiliary transporters, with altered bile formation, flow, and subsequent cholestasis. We used gadoxetate dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI), combined with pharmacokinetic modelling, to measure hepatobiliary transporter function in vivo in rats. The sensitivity and robustness of the method was tested by evaluating the effect of a clinical dose of the antibiotic rifampicin in four different preclinical imaging centers. The mean gadoxetate uptake rate constant for the vehicle groups at all centers was 39.3 +/- 3.4 s-1 (n = 23) and 11.7 +/- 1.3 s-1 (n = 20) for the rifampicin groups. The mean gadoxetate efflux rate constant for the vehicle groups was 1.53 +/- 0.08 s-1 (n = 23) and for the rifampicin treated groups was 0.94 +/- 0.08 s-1 (n = 20). Both the uptake and excretion transporters of gadoxetate were statistically significantly inhibited by the clinical dose of rifampicin at all centers and the size of this treatment group effect was consistent across the centers. Gadoxetate is a clinically approved MRI contrast agent, so this method is readily transferable to the clinic. Conclusion: Rate constants of gadoxetate uptake and excretion are sensitive and robust biomarkers to detect early changes in hepatobiliary transporter function in vivo in rats prior to established biomarkers of liver toxicity.
Collapse
Affiliation(s)
- Anastassia Karageorgis
- Safety and ADME Translational Sciences, Drug Safety and Metabolism, AstraZeneca, Gothenburg, Sweden
- * E-mail:
| | - Stephen C. Lenhard
- Bioimaging, Platform Technology and Sciences, GlaxoSmithKline, King of Prussia, Pennsylvania, United States of America
| | - Brittany Yerby
- Research Imaging Sciences, Amgen, Thousand Oaks, California, United States of America
| | - Mikael F. Forsgren
- Center for Medical Image Science and Visualization (CMIV), Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
- Wolfram MathCore, Linköping, Sweden
| | - Serguei Liachenko
- National Center for Toxicological Research, Division of Neurotoxicology, United States Food and Drug Administration, Jefferson, Arkansas, United States of America
| | - Edvin Johansson
- Personalised Healthcare and Biomarkers, Imaging group, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Mark A. Pilling
- Biostatistics, Quantitative Biology, Discovery Sciences, Innovative Medicines and Early Development, AstraZeneca R&D, Cambridge, United Kingdom
| | - Richard A. Peterson
- Safety Assessment, GlaxoSmithKline, Research Triangle Park, Durham, North Carolina, United States of America
| | - Xi Yang
- National Center for Toxicological Research, Division of Systems Biology, United States Food and Drug Administration, Jefferson, Arkansas, United States of America
| | - Dominic P. Williams
- Safety and ADME Translational Sciences, Drug Safety and Metabolism, AstraZeneca, Cambridge, United Kingdom
| | - Sharon E. Ungersma
- Research Imaging Sciences, Amgen, Thousand Oaks, California, United States of America
| | - Ryan E. Morgan
- Department of Comparative Biology and Safety Sciences, Amgen Inc., Thousand Oaks, California, United States of America
| | - Kim L. R. Brouwer
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of N orth Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Beat M. Jucker
- Bioimaging, Platform Technology and Sciences, GlaxoSmithKline, King of Prussia, Pennsylvania, United States of America
| | - Paul D. Hockings
- Antaros Medical, BioVenture Hub, Mölndal, Sweden
- MedTech West, Chalmers University of Technology, Gothenburg, Sweden
| |
Collapse
|
12
|
Bavadi M, Niknam K. Synthesis of functionalized dihydro-2-oxopyrroles using graphene oxide as heterogeneous catalyst. Mol Divers 2018; 22:561-573. [PMID: 29318444 DOI: 10.1007/s11030-017-9809-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Accepted: 12/22/2017] [Indexed: 02/08/2023]
Abstract
A mild, efficient synthetic approach for the synthesis of highly functionalized dihydro-2-oxopyrroles is developed by using graphene oxide, a readily available and inexpensive material, as an eco-benign solid acid catalyst in ethanol at room temperature. The present methodology displays several advantages such as practical simplicity, high atom economy, easy workup procedure, and high yields of the products.
Collapse
Affiliation(s)
- Masoumeh Bavadi
- Department of Chemistry, Faculty of Sciences, Persian Gulf University, Bushehr, 75169, Iran
| | - Khodabakhsh Niknam
- Department of Chemistry, Faculty of Sciences, Persian Gulf University, Bushehr, 75169, Iran.
| |
Collapse
|
13
|
Čvorović J, Passamonti S. Membrane Transporters for Bilirubin and Its Conjugates: A Systematic Review. Front Pharmacol 2017; 8:887. [PMID: 29259555 PMCID: PMC5723324 DOI: 10.3389/fphar.2017.00887] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Accepted: 11/17/2017] [Indexed: 12/16/2022] Open
Abstract
Background: Bilirubin is a highly-hydrophobic tetrapyrrole which binds to plasma albumin. It is conjugated in the liver to glucuronic acid, and the water-soluble glucuronides are excreted in urine and bile. The membrane transporters of bilirubin diglucuronide are well-known. Still undefined are however the transporters performing the uptake of bilirubin from the blood into the liver, a process known to be fast and not rate-limited. The biological importance of this process may be appraised by considering that in normal adults 200–300 mg of bilirubin are produced daily, as a result of the physiologic turnover of hemoglobin and cellular cytochromes. Nevertheless, research in this field has yielded controversial and contradicting results. We have undertaken a systematic review of the literature, believing in its utility to improve the existing knowledge and promote further advancements. Methods: We have sourced the PubMed database until 30 June 2017 by applying 5 sequential searches. Screening and eligibility criteria were applied to retain research articles reporting results obtained by using bilirubin molecules in membrane transport assays in vitro or by assessing serum bilirubin levels in in vivo experiments. Results: We have identified 311 articles, retaining 44, reporting data on experimental models having 6 incremental increases of complexity (isolated proteins, membrane vesicles, cells, organ fragments, in vivo rodents, and human studies), demonstrating the function of 19 membrane transporters, encoded by either SLCO or ABC genes. Three other bilirubin transporters have no gene, though one, i.e., bilitranslocase, is annotated in the Transporter Classification Database. Conclusions: This is the first review that has systematically examined the membrane transporters for bilirubin and its conjugates. Paradoxically, the remarkable advancements in the field of membrane transport of bilirubin have pointed to the elusive mechanism(s) enabling bilirubin to diffuse into the liver as if no cellular boundary existed.
Collapse
Affiliation(s)
- Jovana Čvorović
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | | |
Collapse
|
14
|
Chu X, Chan GH, Evers R. Identification of Endogenous Biomarkers to Predict the Propensity of Drug Candidates to Cause Hepatic or Renal Transporter-Mediated Drug-Drug Interactions. J Pharm Sci 2017; 106:2357-2367. [DOI: 10.1016/j.xphs.2017.04.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 04/06/2017] [Accepted: 04/07/2017] [Indexed: 12/18/2022]
|
15
|
Lepist EI, Ray AS. Beyond drug-drug interactions: effects of transporter inhibition on endobiotics, nutrients and toxins. Expert Opin Drug Metab Toxicol 2017; 13:1075-1087. [PMID: 28847160 DOI: 10.1080/17425255.2017.1372425] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Membrane transport proteins play a central role in regulating the disposition of endobiotics, dietary nutrients and environmental toxins. The inhibition of transporters by drugs has potential physiologic consequences. The full extent of the effect of drugs on the function of transporters is poorly understood because only a small subset of the hundreds of transporters expressed in humans - primarily those mediating the rate-determining step in the elimination of specific drugs - are assessed during clinical development. Areas covered: We provide a comprehensive overview of literature reports implicating the inhibition of transporters as the mechanism for off-target effects of drugs. Expert opinion: Transporter inhibition, the mechanism of action of many marketed drugs, appears to play an underappreciated role in a number of side effects including vitamin deficiency, edema, dyslipidemia, cholestasis and gout. Cell systems more broadly expressing transporter networks and methods like unbiased metabolomics should be incorporated into the screening paradigm to expand our understanding of the impact of drugs on the physiologic function of transporters and to allow for these effects to be taken into account in drug discovery and clinical practice.
Collapse
Affiliation(s)
- Eve-Irene Lepist
- a Departments of Drug Metabolism , Gilead Sciences, Inc ., Foster City , CA , USA
| | - Adrian S Ray
- b Clinical Research , Gilead Sciences, Inc ., Foster City , CA , USA
| |
Collapse
|
16
|
Lee SC, Arya V, Yang X, Volpe DA, Zhang L. Evaluation of transporters in drug development: Current status and contemporary issues. Adv Drug Deliv Rev 2017; 116:100-118. [PMID: 28760687 DOI: 10.1016/j.addr.2017.07.020] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 07/19/2017] [Accepted: 07/26/2017] [Indexed: 01/22/2023]
Abstract
Transporters govern the access of molecules to cells or their exit from cells, thereby controlling the overall distribution of drugs to their intracellular site of action. Clinically relevant drug-drug interactions mediated by transporters are of increasing interest in drug development. Drug transporters, acting alone or in concert with drug metabolizing enzymes, can play an important role in modulating drug absorption, distribution, metabolism and excretion, thus affecting the pharmacokinetics and/or pharmacodynamics of a drug. The drug interaction guidance documents from regulatory agencies include various decision criteria that may be used to predict the need for in vivo assessment of transporter-mediated drug-drug interactions. Regulatory science research continues to assess the prediction performances of various criteria as well as to examine the strength and limitations of each prediction criterion to foster discussions related to harmonized decision criteria that may be used to facilitate global drug development. This review discusses the role of transporters in drug development with a focus on methodologies in assessing transporter-mediated drug-drug interactions, challenges in both in vitro and in vivo assessments of transporters, and emerging transporter research areas including biomarkers, assessment of tissue concentrations, and effect of diseases on transporters.
Collapse
Affiliation(s)
- Sue-Chih Lee
- Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - Vikram Arya
- Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - Xinning Yang
- Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - Donna A Volpe
- Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - Lei Zhang
- Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA.
| |
Collapse
|
17
|
Sistare FD, Mattes WB, LeCluyse EL. The Promise of New Technologies to Reduce, Refine, or Replace Animal Use while Reducing Risks of Drug Induced Liver Injury in Pharmaceutical Development. ILAR J 2017; 57:186-211. [DOI: 10.1093/ilar/ilw025] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 07/25/2016] [Accepted: 09/13/2016] [Indexed: 12/19/2022] Open
|
18
|
Nishizawa K, Nakanishi T, Tamai I. Comparative Evaluation of Dehydroepiandrosterone Sulfate Potential to Predict Hepatic Organic Anion Transporting Polypeptide Transporter-Based Drug-Drug Interactions. Drug Metab Dispos 2016; 45:224-227. [PMID: 27934638 DOI: 10.1124/dmd.116.072355] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 11/30/2016] [Indexed: 12/19/2022] Open
Abstract
Pharmacokinetic drug-drug interactions (DDIs) on hepatic organic anion transporting polypeptides (OATPs) are important clinical issues. Previously, we reported that plasma dehydroepiandrosterone sulfate (DHEAS) could serve as an endogenous probe to predict OATP-based DDIs in monkeys using rifampicin as an OATP inhibitor. Since the contribution of hepatic OATPs to the changes in plasma DHEAS by rifampicin remains unclear, however, we performed an in vivo pharmacokinetic study to explore this issue. Since plasma DHEAS concentrations were low in our rat model, the disposition of externally administered DHEAS was evaluated. Intravenously administered DHEAS was recovered mainly in bile (29.1%) and less in urine (2.95%). The liver tissue-to-plasma concentration ratio (Kpliver) decreased from 41.8 to 5.07 by rifampicin, and this decrement was consistent with the decrease in distribution volume from 247 to 59 ml/rat. Comparison of the in vitro IC50 of rifampicin for DHEAS uptake by isolated rat hepatocytes and in vivo plasma rifampicin concentration suggested that the effect of rifampicin on the plasma DHEAS concentration was explained mostly by the inhibition of hepatic OATPs, demonstrating that DHEAS could be a biomarker of hepatic OATP activity. Next, previously reported rifampicin-induced changes in plasma concentrations evaluated as an AUC ratio (AUCR) of possible probe compounds were compared on the basis of rifampicin dose/body surface area. The AUCR values of endogenous compounds and i.v. administered statins, for which possible DDIs in the intestinal absorption process can be excluded, increased proportionally to the rifampicin dose. Simultaneous measurement of these endogenous compounds could be effective biomarkers for the prediction of OATP-based DDIs.
Collapse
Affiliation(s)
- Kei Nishizawa
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences University, Kanazawa, Japan
| | - Takeo Nakanishi
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences University, Kanazawa, Japan
| | - Ikumi Tamai
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences University, Kanazawa, Japan
| |
Collapse
|
19
|
Yee SW, Giacomini MM, Hsueh CH, Weitz D, Liang X, Goswami S, Kinchen JM, Coelho A, Zur AA, Mertsch K, Brian W, Kroetz DL, Giacomini KM. Metabolomic and Genome-wide Association Studies Reveal Potential Endogenous Biomarkers for OATP1B1. Clin Pharmacol Ther 2016; 100:524-536. [PMID: 27447836 PMCID: PMC6365106 DOI: 10.1002/cpt.434] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 07/15/2016] [Indexed: 12/17/2022]
Abstract
Transporter-mediated drug-drug interactions (DDIs) are a major cause of drug toxicities. Using published genome-wide association studies (GWAS) of the human metabolome, we identified 20 metabolites associated with genetic variants in organic anion transporter, OATP1B1 (P < 5 × 10-8 ). Of these, 12 metabolites were significantly higher in plasma samples from volunteers dosed with the OATP1B1 inhibitor, cyclosporine (CSA) vs. placebo (q-value < 0.2). Conjugated bile acids and fatty acid dicarboxylates were among the metabolites discovered using both GWAS and CSA administration. In vitro studies confirmed tetradecanedioate (TDA) and hexadecanedioate (HDA) were novel substrates of OATP1B1 as well as OAT1 and OAT3. This study highlights the use of multiple datasets for the discovery of endogenous metabolites that represent potential in vivo biomarkers for transporter-mediated DDIs. Future studies are needed to determine whether these metabolites can serve as qualified biomarkers for organic anion transporters. Quantitative relationships between metabolite levels and modulation of transporters should be established.
Collapse
Affiliation(s)
- S W Yee
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California, USA
| | - M M Giacomini
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California, USA
| | - C-H Hsueh
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California, USA
| | - D Weitz
- Research and Development Drug Disposition, Sanofi-Aventis Deutschland, Frankfurt, Germany
| | - X Liang
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California, USA
| | - S Goswami
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California, USA
| | - J M Kinchen
- Metabolon, Inc., Durham, North Carolina, USA
| | - A Coelho
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California, USA
| | - A A Zur
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California, USA
| | - K Mertsch
- Research and Development Drug Disposition, Sanofi-Aventis Deutschland, Frankfurt, Germany
| | - W Brian
- Disposition Safety and Animal Research, Sanofi-Aventis, Great Valley, Pennsylvania, USA
| | - D L Kroetz
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California, USA
| | - K M Giacomini
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California, USA.
- Institute for Human Genetics, University of California, San Francisco, San Francisco, California, USA.
| |
Collapse
|
20
|
Kato K, Hasegawa Y, Iwata K, Ichikawa T, Yahara T, Tsuji S, Sugiura M, Yamaguchi JI. Recommendation to Exclude Bile-Duct-Cannulated Rats with Hyperbilirubinemia for Proper Conduct of Biliary Drug Excretion Studies. Drug Metab Dispos 2016; 44:1180-3. [DOI: 10.1124/dmd.116.070532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 05/18/2016] [Indexed: 11/22/2022] Open
|
21
|
Lai Y, Mandlekar S, Shen H, Holenarsipur VK, Langish R, Rajanna P, Murugesan S, Gaud N, Selvam S, Date O, Cheng Y, Shipkova P, Dai J, Humphreys WG, Marathe P. Coproporphyrins in Plasma and Urine Can Be Appropriate Clinical Biomarkers to Recapitulate Drug-Drug Interactions Mediated by Organic Anion Transporting Polypeptide Inhibition. ACTA ACUST UNITED AC 2016; 358:397-404. [DOI: 10.1124/jpet.116.234914] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 06/16/2016] [Indexed: 12/12/2022]
|
22
|
Bile acids in drug induced liver injury: Key players and surrogate markers. Clin Res Hepatol Gastroenterol 2016; 40:257-266. [PMID: 26874804 DOI: 10.1016/j.clinre.2015.12.017] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 12/21/2015] [Accepted: 12/27/2015] [Indexed: 02/04/2023]
Abstract
Bile acid research has gained great momentum since the role of bile acids as key signaling molecules in the enterohepatic circulation was discovered. Their physiological function in regulating their own homeostasis, as well as energy and lipid metabolism make them interesting targets for the pharmaceutical industry in the context of diseases such as bile acid induced diarrhea, bile acid induced cholestasis or nonalcoholic steatohepatitis. Changes in bile acid homeostasis are also linked to various types of drug-induced liver injury (DILI). However, the key question whether bile acids are surrogate markers for monitoring DILI or key pathogenic players in the onset and progression of DILI is under intense investigation. The purpose of this review is to summarize the different facets of bile acids in the context of normal physiology, hereditary defects of bile acid transport and DILI.
Collapse
|
23
|
Ma LL, Wu ZT, Wang L, Zhang XF, Wang J, Chen C, Ni X, Lin YF, Cao YY, Luan Y, Pan GY. Inhibition of hepatic cytochrome P450 enzymes and sodium/bile acid cotransporter exacerbates leflunomide-induced hepatotoxicity. Acta Pharmacol Sin 2016; 37:415-24. [PMID: 26806301 DOI: 10.1038/aps.2015.157] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 11/03/2015] [Indexed: 11/09/2022] Open
Abstract
AIM Leflunomide is an immunosuppressive agent marketed as a disease-modifying antirheumatic drug. But it causes severe side effects, including fatal hepatitis and liver failure. In this study we investigated the contributions of hepatic metabolism and transport of leflunomide and its major metabolite teriflunomide to leflunomide induced hepatotoxicity in vitro and in vivo. METHODS The metabolism and toxicity of leflunomide and teriflunomide were evaluated in primary rat hepatocytes in vitro. Hepatic cytochrome P450 reductase null (HRN) mice were used to examine the PK profiling and hepatotoxicity of leflunomide in vivo. The expression and function of sodium/bile acid cotransporter (NTCP) were assessed in rat and human hepatocytes and NTCP-transfected HEK293 cells. After Male Sprague-Dawley (SD) rats were administered teriflunomide (1,6, 12 mg · kg(-1) · d(-1), ig) for 4 weeks, their blood samples were analyzed. RESULTS A nonspecific CYPs inhibitor aminobenzotriazole (ABT, 1 mmol/L) decreased the IC50 value of leflunomide in rat hepatocytes from 409 to 216 μmol/L, whereas another nonspecific CYPs inhibitor proadifen (SKF, 30 μmol/L) increased the cellular accumulation of leflunomide to 3.68-fold at 4 h. After oral dosing (15 mg/kg), the plasma exposure (AUC0-t) of leflunomide increased to 3-fold in HRN mice compared with wild type mice. Administration of leflunomide (25 mg·kg(-1) · d(-1)) for 7 d significantly increased serum ALT and AST levels in HRN mice; when the dose was increased to 50 mg·kg(-1) · d(-1), all HRN mice died on d 6. Teriflunomide significantly decreased the expression of NTCP in human hepatocytes, as well as the function of NTCP in rat hepatocytes and NTCP-transfected HEK293 cells. Four-week administration of teriflunomide significantly increased serum total bilirubin and direct bilirubin levels in female rats, but not in male rats. CONCLUSION Hepatic CYPs play a critical role in detoxification process of leflunomide, whereas the major metabolite teriflunomide suppresses the expression and function of NTCP, leading to potential cholestasis.
Collapse
|
24
|
Shen H, Dai J, Liu T, Cheng Y, Chen W, Freeden C, Zhang Y, Humphreys WG, Marathe P, Lai Y. Coproporphyrins I and III as Functional Markers of OATP1B Activity: In Vitro and In Vivo Evaluation in Preclinical Species. ACTA ACUST UNITED AC 2016; 357:382-93. [DOI: 10.1124/jpet.116.232066] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 02/12/2016] [Indexed: 01/01/2023]
|
25
|
Estudante M, Soveral G, Morais JG, Benet LZ. Insights into solute carriers: physiological functions and implications in disease and pharmacokinetics. MEDCHEMCOMM 2016. [DOI: 10.1039/c6md00188b] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
SLCs transport many endogenous and exogenous compounds including drugs; SLCs dysfunction has implications in pharmacokinetics, drug toxicity or lack of efficacy.
Collapse
Affiliation(s)
- Margarida Estudante
- Department of Pharmacological Sciences
- Faculty of Pharmacy
- Universidade de Lisboa
- Portugal
- Research Institute for Medicines (iMed.ULisboa)
| | - Graça Soveral
- Research Institute for Medicines (iMed.ULisboa)
- Faculty of Pharmacy
- Universidade de Lisboa
- Portugal
| | - José G. Morais
- Department of Pharmacological Sciences
- Faculty of Pharmacy
- Universidade de Lisboa
- Portugal
- Research Institute for Medicines (iMed.ULisboa)
| | - Leslie Z. Benet
- Department of Bioengineering and Therapeutic Sciences
- University of California
- San Francisco
- USA
| |
Collapse
|
26
|
Schadt S, Simon S, Kustermann S, Boess F, McGinnis C, Brink A, Lieven R, Fowler S, Youdim K, Ullah M, Marschmann M, Zihlmann C, Siegrist Y, Cascais A, Di Lenarda E, Durr E, Schaub N, Ang X, Starke V, Singer T, Alvarez-Sanchez R, Roth A, Schuler F, Funk C. Minimizing DILI risk in drug discovery — A screening tool for drug candidates. Toxicol In Vitro 2015; 30:429-37. [DOI: 10.1016/j.tiv.2015.09.019] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 08/28/2015] [Accepted: 09/20/2015] [Indexed: 12/14/2022]
|