1
|
Kang W, Podtelezhnikov AA, Tanis KQ, Pacchione S, Su M, Bleicher KB, Wang Z, Laws GM, Griffiths TG, Kuhls MC, Chen Q, Knemeyer I, Marsh DJ, Mitra K, Lebron J, Sistare FD. Development and Application of a Transcriptomic Signature of Bioactivation in an Advanced In Vitro Liver Model to Reduce Drug-induced Liver Injury Risk Early in the Pharmaceutical Pipeline. Toxicol Sci 2021; 177:121-139. [PMID: 32559289 DOI: 10.1093/toxsci/kfaa094] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Early risk assessment of drug-induced liver injury (DILI) potential for drug candidates remains a major challenge for pharmaceutical development. We have previously developed a set of rat liver transcriptional biomarkers in short-term toxicity studies to inform the potential of drug candidates to generate a high burden of chemically reactive metabolites that presents higher risk for human DILI. Here, we describe translation of those NRF1-/NRF2-mediated liver tissue biomarkers to an in vitro assay using an advanced micropatterned coculture system (HEPATOPAC) with primary hepatocytes from male Wistar Han rats. A 9-day, resource-sparing and higher throughput approach designed to identify new chemical entities with lower reactive metabolite-forming potential was qualified for internal decision making using 93 DILI-positive and -negative drugs. This assay provides 81% sensitivity and 90% specificity in detecting hepatotoxicants when a positive test outcome is defined as the bioactivation signature score of a test drug exceeding the threshold value at an in vitro test concentration that falls within 3-fold of the estimated maximum drug concentration at the human liver inlet following highest recommended clinical dose administrations. Using paired examples of compounds from distinct chemical series and close structural analogs, we demonstrate that this assay can differentiate drugs with lower DILI risk. The utility of this in vitro transcriptomic approach was also examined using human HEPATOPAC from a single donor, yielding 68% sensitivity and 86% specificity when the aforementioned criteria are applied to the same 93-drug test set. Routine use of the rat model has been adopted with deployment of the human model as warranted on a case-by-case basis. This in vitro transcriptomic signature-based strategy can be used early in drug discovery to derisk DILI potential from chemically reactive metabolites by guiding structure-activity relationship hypotheses and candidate selection.
Collapse
Affiliation(s)
- Wen Kang
- Safety Assessment & Laboratory Animal Resources
| | | | | | | | - Ming Su
- Safety Assessment & Laboratory Animal Resources
| | | | - Zhibin Wang
- Safety Assessment & Laboratory Animal Resources
| | | | | | | | - Qing Chen
- Pharmacokinetics, Pharmacodynamics & Drug Metabolism, Merck & Co., Inc., West Point, Pennsylvania 19486
| | - Ian Knemeyer
- Pharmacokinetics, Pharmacodynamics & Drug Metabolism, Merck & Co., Inc., West Point, Pennsylvania 19486
| | | | | | - Jose Lebron
- Safety Assessment & Laboratory Animal Resources
| | | |
Collapse
|
2
|
Donato MT, Tolosa L. High-Content Screening for the Detection of Drug-Induced Oxidative Stress in Liver Cells. Antioxidants (Basel) 2021; 10:antiox10010106. [PMID: 33451093 PMCID: PMC7828515 DOI: 10.3390/antiox10010106] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/08/2021] [Accepted: 01/10/2021] [Indexed: 12/16/2022] Open
Abstract
Drug-induced liver injury (DILI) remains a major cause of drug development failure, post-marketing warnings and restriction of use. An improved understanding of the mechanisms underlying DILI is required for better drug design and development. Enhanced reactive oxygen species (ROS) levels may cause a wide spectrum of oxidative damage, which has been described as a major mechanism implicated in DILI. Several cell-based assays have been developed as in vitro tools for early safety risk assessments. Among them, high-content screening technology has been used for the identification of modes of action, the determination of the level of injury and the discovery of predictive biomarkers for the safety assessment of compounds. In this paper, we review the value of in vitro high-content screening studies and evaluate how to assess oxidative stress induced by drugs in hepatic cells, demonstrating the detection of pre-lethal mechanisms of DILI as a powerful tool in human toxicology.
Collapse
Affiliation(s)
- María Teresa Donato
- Unidad de Hepatología Experimental, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad de Valencia, 46010 Valencia, Spain
- Correspondence: (M.T.D.); (L.T.); Tel.: +34-961-246-649 (M.D.); +34-961-246-619 (L.T.)
| | - Laia Tolosa
- Unidad de Hepatología Experimental, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain
- Correspondence: (M.T.D.); (L.T.); Tel.: +34-961-246-649 (M.D.); +34-961-246-619 (L.T.)
| |
Collapse
|
3
|
Rossner P, Libalova H, Cervena T, Vrbova K, Elzeinova F, Milcova A, Rossnerova A, Novakova Z, Ciganek M, Pokorna M, Ambroz A, Topinka J. The processes associated with lipid peroxidation in human embryonic lung fibroblasts, treated with polycyclic aromatic hydrocarbons and organic extract from particulate matter. Mutagenesis 2020; 34:153-164. [PMID: 30852615 DOI: 10.1093/mutage/gez004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 01/29/2019] [Accepted: 02/01/2019] [Indexed: 12/13/2022] Open
Abstract
Polycyclic aromatic hydrocarbons (PAHs) may cause lipid peroxidation via reactive oxygen species generation. 15-F2t-isoprostane (IsoP), an oxidative stress marker, is formed from arachidonic acid (AA) by a free-radical induced oxidation. AA may also be converted to prostaglandins (PG) by prostaglandin-endoperoxide synthase (PTGS) induced by NF-κB. We treated human embryonic lung fibroblasts (HEL12469) with benzo[a]pyrene (B[a]P), 3-nitrobenzanthrone (3-NBA) and extractable organic matter (EOM) from ambient air particulate matter <2.5 µm for 4 and 24 h. B[a]P and 3-NBA induced expression of PAH metabolising, but not antioxidant enzymes. The concentrations of IsoP decreased, whereas the levels of AA tended to increase. Although the activity of NF-κB was not detected, the tested compounds affected the expression of prostaglandin-endoperoxide synthase 2 (PTGS2). The levels of prostaglandin E2 (PGE2) decreased following exposure to B[a]P, whereas 3-NBA exposure tended to increase PGE2 concentration. A distinct response was observed after EOM exposure: expression of PAH-metabolising enzymes was induced, IsoP levels increased after 24-h treatment but AA concentration was not affected. The activity of NF-κB increased after both exposure periods, and a significant induction of PTGS2 expression was found following 4-h treatment. Similarly to PAHs, the EOM exposure was associated with a decrease of PGE2 levels. In summary, exposure to PAHs with low pro-oxidant potential results in a decrease of IsoP levels implying 'antioxidant' properties. For such compounds, IsoP may not be a suitable marker of lipid peroxidation.
Collapse
Affiliation(s)
- Pavel Rossner
- Department of Genetic Toxicology and Nanotoxicology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
| | - Helena Libalova
- Department of Genetic Toxicology and Nanotoxicology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
| | - Tereza Cervena
- Department of Genetic Toxicology and Nanotoxicology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic.,Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Kristyna Vrbova
- Department of Genetic Toxicology and Nanotoxicology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
| | - Fatima Elzeinova
- Department of Genetic Toxicology and Nanotoxicology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
| | - Alena Milcova
- Department of Genetic Toxicology and Nanotoxicology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
| | - Andrea Rossnerova
- Department of Genetic Toxicology and Nanotoxicology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
| | - Zuzana Novakova
- Department of Genetic Toxicology and Nanotoxicology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
| | - Miroslav Ciganek
- Department of Chemistry and Toxicology, Veterinary Research Institute, Brno, Czech Republic
| | - Michaela Pokorna
- Department of Genetic Toxicology and Nanotoxicology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
| | - Antonin Ambroz
- Department of Genetic Toxicology and Nanotoxicology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jan Topinka
- Department of Genetic Toxicology and Nanotoxicology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
5
|
Flutamide Induces Hepatic Cell Death and Mitochondrial Dysfunction via Inhibition of Nrf2-Mediated Heme Oxygenase-1. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:8017073. [PMID: 30057686 PMCID: PMC6051009 DOI: 10.1155/2018/8017073] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 04/22/2018] [Accepted: 05/10/2018] [Indexed: 01/08/2023]
Abstract
Flutamide is a widely used nonsteroidal antiandrogen for prostate cancer therapy, but its clinical application is restricted by the concurrent liver injury. Increasing evidence suggests that flutamide-induced liver injury is associated with oxidative stress, though the precise mechanism is poorly understood. Nuclear factor erythroid 2-related factor 2 (Nrf2) is a master transcription factor regulating endogenous antioxidants including heme oxygenase-1 (HO-1). This study was designed to delineate the role of Nrf2/HO-1 in flutamide-induced hepatic cell injury. Our results showed that flutamide concentration dependently induced cytotoxicity, hydrogen peroxide accumulation, and mitochondrial dysfunction as indicated by mitochondrial membrane potential loss and ATP depletion. The protein expression of Nrf2 and HO-1 was induced by flutamide at 12.5 μM but was downregulated by higher concentrations of flutamide. Silencing either Nrf2 or HO-1 was found to aggravate flutamide-induced hydrogen peroxide accumulation and mitochondrial dysfunction as well as inhibition of the Nrf2 pathway. Moreover, preinduction of HO-1 by Copp significantly attenuated flutamide-induced oxidative stress and mitochondrial dysfunction, while inhibition of HO-1 by Snpp aggravated these deleterious effects. These findings suggest that flutamide-induced hepatic cell death and mitochondrial dysfunction is assoicated with inhibition of Nrf2-mediated HO-1. Pharmacologic intervention of Nrf2/HO-1 may provide a promising therapeutic approach in flutamide-induced liver injury.
Collapse
|
6
|
Li PC, Tu MJ, Ho PY, Jilek JL, Duan Z, Zhang QY, Yu AX, Yu AM. Bioengineered NRF2-siRNA Is Effective to Interfere with NRF2 Pathways and Improve Chemosensitivity of Human Cancer Cells. Drug Metab Dispos 2017; 46:2-10. [PMID: 29061583 DOI: 10.1124/dmd.117.078741] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 10/18/2017] [Indexed: 12/28/2022] Open
Abstract
The nuclear factor (erythroid-derived 2)-like 2 (NRF2) is a transcription factor in the regulation of many oxidative enzymes and efflux transporters critical for oxidative stress and cellular defense against xenobiotics. NRF2 is dysregulated in patient osteosarcoma (OS) tissues and correlates with therapeutic outcomes. Nevertheless, research on the NRF2 regulatory pathways and its potential as a therapeutic target is limited to the use of synthetic small interfering RNA (siRNA) carrying extensive artificial modifications. Herein, we report successful high-level expression of recombinant siRNA against NRF2 in Escherichia coli using our newly established noncoding RNA bioengineering technology, which was purified to >99% homogeneity using an anion-exchange fast protein liquid chromatography method. Bioengineered NRF2-siRNA was able to significantly knock down NRF2 mRNA and protein levels in human OS 143B and MG63 cells, and subsequently suppressed the expression of NRF2-regulated oxidative enzymes [heme oxygenase-1 and NAD(P)H:quinone oxidoreductase 1] and elevated intracellular levels of reactive oxygen species. In addition, recombinant NRF2-siRNA was effective to sensitize both 143B and MG63 cells to doxorubicin, cisplatin, and sorafenib, which was associated with significant downregulation of NRF2-targeted ATP-binding cassette (ABC) efflux transporters (ABCC3, ABCC4, and ABCG2). These findings support that targeting NRF2 signaling pathways may improve the sensitivity of cancer cells to chemotherapy, and bioengineered siRNA molecules should be added to current tools for related research.
Collapse
Affiliation(s)
- Peng-Cheng Li
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China (P.-C.L., A.-X.Y.) and Department of Biochemistry and Molecular Medicine, Comprehensive Cancer Center, UC Davis School of Medicine, Sacramento, California (P.-C.L., M.-J.T., P.Y.H., J.L.J., Z.D., Q.-Y.Z., A.-M.Y.)
| | - Mei-Juan Tu
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China (P.-C.L., A.-X.Y.) and Department of Biochemistry and Molecular Medicine, Comprehensive Cancer Center, UC Davis School of Medicine, Sacramento, California (P.-C.L., M.-J.T., P.Y.H., J.L.J., Z.D., Q.-Y.Z., A.-M.Y.)
| | - Pui Yan Ho
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China (P.-C.L., A.-X.Y.) and Department of Biochemistry and Molecular Medicine, Comprehensive Cancer Center, UC Davis School of Medicine, Sacramento, California (P.-C.L., M.-J.T., P.Y.H., J.L.J., Z.D., Q.-Y.Z., A.-M.Y.)
| | - Joseph L Jilek
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China (P.-C.L., A.-X.Y.) and Department of Biochemistry and Molecular Medicine, Comprehensive Cancer Center, UC Davis School of Medicine, Sacramento, California (P.-C.L., M.-J.T., P.Y.H., J.L.J., Z.D., Q.-Y.Z., A.-M.Y.)
| | - Zhijian Duan
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China (P.-C.L., A.-X.Y.) and Department of Biochemistry and Molecular Medicine, Comprehensive Cancer Center, UC Davis School of Medicine, Sacramento, California (P.-C.L., M.-J.T., P.Y.H., J.L.J., Z.D., Q.-Y.Z., A.-M.Y.)
| | - Qian-Yu Zhang
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China (P.-C.L., A.-X.Y.) and Department of Biochemistry and Molecular Medicine, Comprehensive Cancer Center, UC Davis School of Medicine, Sacramento, California (P.-C.L., M.-J.T., P.Y.H., J.L.J., Z.D., Q.-Y.Z., A.-M.Y.)
| | - Ai-Xi Yu
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China (P.-C.L., A.-X.Y.) and Department of Biochemistry and Molecular Medicine, Comprehensive Cancer Center, UC Davis School of Medicine, Sacramento, California (P.-C.L., M.-J.T., P.Y.H., J.L.J., Z.D., Q.-Y.Z., A.-M.Y.)
| | - Ai-Ming Yu
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China (P.-C.L., A.-X.Y.) and Department of Biochemistry and Molecular Medicine, Comprehensive Cancer Center, UC Davis School of Medicine, Sacramento, California (P.-C.L., M.-J.T., P.Y.H., J.L.J., Z.D., Q.-Y.Z., A.-M.Y.)
| |
Collapse
|