1
|
Qiu S, Mao Y, Yang Z, Liu J, Tang D, Huang Z, Luo M, Fan Z, Tang Z, Zhao Y, Liu X, Li X, Zhou H. Synergistic Cu(II)/Amine-Catalyzed Cyclization of Enynone: Assembly of Tetralone and Tetrahydronaphthylimine. Org Lett 2025. [PMID: 39817403 DOI: 10.1021/acs.orglett.4c04536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
An unprecedented synergistic copper- and amine-catalyzed cyclization of enynone is reported. This reaction features an efficient and straightforward construction of multisubstituted tetralone through an amine-assisted regioselective oxygen atom transfer process and stereoselective intramolecular Michael addition cyclization. Under dehydrative reaction conditions, the synthesis of tetrahydronaphthylimine derivatives with ketone group tolerance is achieved, which could be challenging via traditional methods. The utility of this reaction is demonstrated by further transformations of obtained molecules toward a variety of valuable multisubstituted naphthyl skeletons.
Collapse
Affiliation(s)
- Shaotong Qiu
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, China
| | - Yangxin Mao
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, China
| | - Zhicheng Yang
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, China
| | - Jiangan Liu
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, China
| | - Dan Tang
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, China
| | - Zhe Huang
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, China
| | - Mahong Luo
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, China
| | - Zhenming Fan
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, China
| | - Zhenqiang Tang
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, China
| | - Yunhui Zhao
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, China
| | - Xiong Liu
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, China
| | - Xiaofang Li
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, China
| | - Hu Zhou
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, China
| |
Collapse
|
2
|
Liu X, Huang K, Zhang F, Huang G, Wang L, Wu G, Ren H, Yang G, Lin Z. Multifunctional nano-in-micro delivery systems for targeted therapy in fundus neovascularization diseases. J Nanobiotechnology 2024; 22:354. [PMID: 38902775 PMCID: PMC11191225 DOI: 10.1186/s12951-024-02614-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 06/03/2024] [Indexed: 06/22/2024] Open
Abstract
Fundus neovascularization diseases are a series of blinding eye diseases that seriously impair vision worldwide. Currently, the means of treating these diseases in clinical practice are continuously evolving and have rapidly revolutionized treatment opinions. However, key issues such as inadequate treatment effectiveness, high rates of recurrence, and poor patient compliance still need to be urgently addressed. Multifunctional nanomedicine can specifically respond to both endogenous and exogenous microenvironments, effectively deliver drugs to specific targets and participate in activities such as biological imaging and the detection of small molecules. Nano-in-micro (NIM) delivery systems such as metal, metal oxide and up-conversion nanoparticles (NPs), quantum dots, and carbon materials, have shown certain advantages in overcoming the presence of physiological barriers within the eyeball and are widely used in the treatment of ophthalmic diseases. Few studies, however, have evaluated the efficacy of NIM delivery systems in treating fundus neovascular diseases (FNDs). The present study describes the main clinical treatment strategies and the adverse events associated with the treatment of FNDs with NIM delivery systems and summarizes the anatomical obstacles that must be overcome. In this review, we wish to highlight the principle of intraocular microenvironment normalization, aiming to provide a more rational approach for designing new NIM delivery systems to treat specific FNDs.
Collapse
Affiliation(s)
- Xin Liu
- Department of Ophthalmology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, 401120, China
| | - Keke Huang
- Department of Ophthalmology, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, 610031, China
| | - Fuxiao Zhang
- Department of Ophthalmology, The Second People's Hospital of Chengdu, The Affiliated Hospital of Chengdu Medical College, Chengdu, 610031, China
| | - Ge Huang
- Department of Ophthalmology, The Second People's Hospital of Chengdu, The Affiliated Hospital of Chengdu Medical College, Chengdu, 610031, China
| | - Lu Wang
- Department of Ophthalmology, The Second People's Hospital of Chengdu, The Affiliated Hospital of Chengdu Medical College, Chengdu, 610031, China
| | - Guiyu Wu
- Department of Ophthalmology, The Second People's Hospital of Chengdu, The Affiliated Hospital of Chengdu Medical College, Chengdu, 610031, China
| | - Hui Ren
- Department of Ophthalmology, The Second People's Hospital of Chengdu, The Affiliated Hospital of Chengdu Medical College, Chengdu, 610031, China.
| | - Guang Yang
- Department of Ophthalmology, The Second People's Hospital of Chengdu, The Affiliated Hospital of Chengdu Medical College, Chengdu, 610031, China.
| | - Zhiqing Lin
- Department of Ophthalmology, The Second People's Hospital of Chengdu, The Affiliated Hospital of Chengdu Medical College, Chengdu, 610031, China.
| |
Collapse
|
3
|
Hammid A, Fallon JK, Lassila T, Vieiro P, Balla A, Gonzalez F, Urtti A, Smith PC, Tolonen A, Honkakoski P. Activity and Expression of Carboxylesterases and Arylacetamide Deacetylase in Human Ocular Tissues. Drug Metab Dispos 2022; 50:1483-1492. [PMID: 36195336 DOI: 10.1124/dmd.122.000993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 09/23/2022] [Indexed: 11/22/2022] Open
Abstract
As a multitissue organ, the eye possesses unique anatomy and physiology, including differential expression of drug-metabolizing enzymes. Several hydrolytic enzymes that play a major role in drug metabolism and bioactivation of prodrugs have been detected in ocular tissues, but data on their quantitative expression is scarce. Also, many ophthalmic drugs are prone to hydrolysis. Metabolic characterization of individual ocular tissues is useful for the drug development process, and therefore, seven individual ocular tissues from human eyes were analyzed for the activity and expression of carboxylesterases (CESs) and arylacetamide deacetylase (AADAC). Generic and selective human esterase substrates 4-nitrophenyl acetate (most esterases), D-luciferin methyl ester (CES1), fluorescein diacetate and procaine (CES2), and phenacetin (AADAC) were applied to determine the enzymes' specific activities. Enzyme kinetics and inhibition studies were performed with isoform-selective inhibitors digitonin (CES1) and verapamil and diltiazem (CES2). Enzyme contents were determined using quantitative targeted proteomics, and CES2 expression was confirmed by western blotting. The expression and activity of human CES1 among ocular tissues varied by >10-fold, with the highest levels found in the retina and iris-ciliary body. In contrast, human CES2 expression appeared lower and more similar between tissues, whereas AADAC could not be detected. Inhibition studies showed that hydrolysis of fluorescein diacetate is also catalyzed by enzymes other than CES2. This study provides, for the first time, quantitative information on the tissue-dependent expression of human ocular esterases, which can be useful for the development of ocular drugs, prodrugs, and in pharmacokinetic modeling of the eye. SIGNIFICANCE STATEMENT: Novel and comprehensive data on the protein expression and activities of carboxylesterases from individual human eye tissues are generated. In combination with previous reports on preclinical species, this study will improve the understanding of interspecies differences in ocular drug metabolism and aid the development of ocular pharmacokinetics models.
Collapse
Affiliation(s)
- Anam Hammid
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland (A.H., A.B., A.U., P.H.); Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (J.K.F., P.C.S.); Admescope Ltd, Oulu, Finland (T.L., A.T.); Biobank at the University Hospital at Santiago de Compostela, Santiago de Compostela, Spain (P.V.); Center for Research in Molecular Medicine and Chronic Diseases, University of Santiago de Compostela, Santiago de Compostela, Spain (F.G.); Service of Ophthalmology, University Hospital of Santiago de Compostela and Fundacion Instituto de Investigacion Sanitaria de Santiago de Compostela, Santiago de Compostela (F.G.); and Faculty of Pharmacy, University of Helsinki, Helsinki, Finland (A.U.)
| | - John K Fallon
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland (A.H., A.B., A.U., P.H.); Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (J.K.F., P.C.S.); Admescope Ltd, Oulu, Finland (T.L., A.T.); Biobank at the University Hospital at Santiago de Compostela, Santiago de Compostela, Spain (P.V.); Center for Research in Molecular Medicine and Chronic Diseases, University of Santiago de Compostela, Santiago de Compostela, Spain (F.G.); Service of Ophthalmology, University Hospital of Santiago de Compostela and Fundacion Instituto de Investigacion Sanitaria de Santiago de Compostela, Santiago de Compostela (F.G.); and Faculty of Pharmacy, University of Helsinki, Helsinki, Finland (A.U.)
| | - Toni Lassila
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland (A.H., A.B., A.U., P.H.); Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (J.K.F., P.C.S.); Admescope Ltd, Oulu, Finland (T.L., A.T.); Biobank at the University Hospital at Santiago de Compostela, Santiago de Compostela, Spain (P.V.); Center for Research in Molecular Medicine and Chronic Diseases, University of Santiago de Compostela, Santiago de Compostela, Spain (F.G.); Service of Ophthalmology, University Hospital of Santiago de Compostela and Fundacion Instituto de Investigacion Sanitaria de Santiago de Compostela, Santiago de Compostela (F.G.); and Faculty of Pharmacy, University of Helsinki, Helsinki, Finland (A.U.)
| | - Paula Vieiro
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland (A.H., A.B., A.U., P.H.); Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (J.K.F., P.C.S.); Admescope Ltd, Oulu, Finland (T.L., A.T.); Biobank at the University Hospital at Santiago de Compostela, Santiago de Compostela, Spain (P.V.); Center for Research in Molecular Medicine and Chronic Diseases, University of Santiago de Compostela, Santiago de Compostela, Spain (F.G.); Service of Ophthalmology, University Hospital of Santiago de Compostela and Fundacion Instituto de Investigacion Sanitaria de Santiago de Compostela, Santiago de Compostela (F.G.); and Faculty of Pharmacy, University of Helsinki, Helsinki, Finland (A.U.)
| | - Anusha Balla
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland (A.H., A.B., A.U., P.H.); Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (J.K.F., P.C.S.); Admescope Ltd, Oulu, Finland (T.L., A.T.); Biobank at the University Hospital at Santiago de Compostela, Santiago de Compostela, Spain (P.V.); Center for Research in Molecular Medicine and Chronic Diseases, University of Santiago de Compostela, Santiago de Compostela, Spain (F.G.); Service of Ophthalmology, University Hospital of Santiago de Compostela and Fundacion Instituto de Investigacion Sanitaria de Santiago de Compostela, Santiago de Compostela (F.G.); and Faculty of Pharmacy, University of Helsinki, Helsinki, Finland (A.U.)
| | - Francisco Gonzalez
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland (A.H., A.B., A.U., P.H.); Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (J.K.F., P.C.S.); Admescope Ltd, Oulu, Finland (T.L., A.T.); Biobank at the University Hospital at Santiago de Compostela, Santiago de Compostela, Spain (P.V.); Center for Research in Molecular Medicine and Chronic Diseases, University of Santiago de Compostela, Santiago de Compostela, Spain (F.G.); Service of Ophthalmology, University Hospital of Santiago de Compostela and Fundacion Instituto de Investigacion Sanitaria de Santiago de Compostela, Santiago de Compostela (F.G.); and Faculty of Pharmacy, University of Helsinki, Helsinki, Finland (A.U.)
| | - Arto Urtti
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland (A.H., A.B., A.U., P.H.); Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (J.K.F., P.C.S.); Admescope Ltd, Oulu, Finland (T.L., A.T.); Biobank at the University Hospital at Santiago de Compostela, Santiago de Compostela, Spain (P.V.); Center for Research in Molecular Medicine and Chronic Diseases, University of Santiago de Compostela, Santiago de Compostela, Spain (F.G.); Service of Ophthalmology, University Hospital of Santiago de Compostela and Fundacion Instituto de Investigacion Sanitaria de Santiago de Compostela, Santiago de Compostela (F.G.); and Faculty of Pharmacy, University of Helsinki, Helsinki, Finland (A.U.)
| | - Philip C Smith
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland (A.H., A.B., A.U., P.H.); Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (J.K.F., P.C.S.); Admescope Ltd, Oulu, Finland (T.L., A.T.); Biobank at the University Hospital at Santiago de Compostela, Santiago de Compostela, Spain (P.V.); Center for Research in Molecular Medicine and Chronic Diseases, University of Santiago de Compostela, Santiago de Compostela, Spain (F.G.); Service of Ophthalmology, University Hospital of Santiago de Compostela and Fundacion Instituto de Investigacion Sanitaria de Santiago de Compostela, Santiago de Compostela (F.G.); and Faculty of Pharmacy, University of Helsinki, Helsinki, Finland (A.U.)
| | - Ari Tolonen
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland (A.H., A.B., A.U., P.H.); Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (J.K.F., P.C.S.); Admescope Ltd, Oulu, Finland (T.L., A.T.); Biobank at the University Hospital at Santiago de Compostela, Santiago de Compostela, Spain (P.V.); Center for Research in Molecular Medicine and Chronic Diseases, University of Santiago de Compostela, Santiago de Compostela, Spain (F.G.); Service of Ophthalmology, University Hospital of Santiago de Compostela and Fundacion Instituto de Investigacion Sanitaria de Santiago de Compostela, Santiago de Compostela (F.G.); and Faculty of Pharmacy, University of Helsinki, Helsinki, Finland (A.U.)
| | - Paavo Honkakoski
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland (A.H., A.B., A.U., P.H.); Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (J.K.F., P.C.S.); Admescope Ltd, Oulu, Finland (T.L., A.T.); Biobank at the University Hospital at Santiago de Compostela, Santiago de Compostela, Spain (P.V.); Center for Research in Molecular Medicine and Chronic Diseases, University of Santiago de Compostela, Santiago de Compostela, Spain (F.G.); Service of Ophthalmology, University Hospital of Santiago de Compostela and Fundacion Instituto de Investigacion Sanitaria de Santiago de Compostela, Santiago de Compostela (F.G.); and Faculty of Pharmacy, University of Helsinki, Helsinki, Finland (A.U.)
| |
Collapse
|
4
|
Balhara A, Basit A, Argikar UA, Dumouchel JL, Singh S, Prasad B. Comparative Proteomics Analysis of the Postmitochondrial Supernatant Fraction of Human Lens-Free Whole Eye and Liver. Drug Metab Dispos 2021; 49:592-600. [PMID: 33952609 DOI: 10.1124/dmd.120.000297] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 04/08/2021] [Indexed: 11/22/2022] Open
Abstract
The increasing incidence of ocular diseases has accelerated research into therapeutic interventions needed for the eye. Ocular enzymes play important roles in the metabolism of drugs and endobiotics. Various ocular drugs are designed as prodrugs that are activated by ocular enzymes. Moreover, ocular enzymes have been implicated in the bioactivation of drugs to their toxic metabolites. The key purpose of this study was to compare global proteomes of the pooled samples of the eye (n = 11) and the liver (n = 50) with a detailed analysis of the abundance of enzymes involved in the metabolism of xenobiotics and endobiotics. We used the postmitochondrial supernatant fraction (S9 fraction) of the lens-free whole eye homogenate as a model to allow accurate comparison with the liver S9 fraction. A total of 269 proteins (including 23 metabolic enzymes) were detected exclusively in the pooled eye S9 against 648 proteins in the liver S9 (including 174 metabolic enzymes), whereas 424 proteins (including 94 metabolic enzymes) were detected in both the organs. The major hepatic cytochrome P450 and UDP-glucuronosyltransferases enzymes were not detected, but aldehyde dehydrogenases and glutathione transferases were the predominant proteins in the eye. The comparative qualitative and quantitative proteomics data in the eye versus liver is expected to help in explaining differential metabolic and physiologic activities in the eye. SIGNIFICANCE STATEMENT: Information on the enzymes involved in xenobiotic and endobiotic metabolism in the human eye in relation to the liver is scarcely available. The study employed global proteomic analysis to compare the proteomes of the lens-free whole eye and the liver with a detailed analysis of the enzymes involved in xenobiotic and endobiotic metabolism. These data will help in better understanding of the ocular metabolism and activation of drugs and endobiotics.
Collapse
Affiliation(s)
- Ankit Balhara
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Punjab, India (An.B., S.S.); Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (Ab.B., B.P.); Biotransformation Group, Novartis Institutes for BioMedical Research, Cambridge, Massachusetts (U.A.A.); and Department of Molecular Pharmacology and Physiology, Brown University, Providence, Rhode Island (J.L.D.)
| | - Abdul Basit
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Punjab, India (An.B., S.S.); Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (Ab.B., B.P.); Biotransformation Group, Novartis Institutes for BioMedical Research, Cambridge, Massachusetts (U.A.A.); and Department of Molecular Pharmacology and Physiology, Brown University, Providence, Rhode Island (J.L.D.)
| | - Upendra A Argikar
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Punjab, India (An.B., S.S.); Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (Ab.B., B.P.); Biotransformation Group, Novartis Institutes for BioMedical Research, Cambridge, Massachusetts (U.A.A.); and Department of Molecular Pharmacology and Physiology, Brown University, Providence, Rhode Island (J.L.D.)
| | - Jennifer L Dumouchel
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Punjab, India (An.B., S.S.); Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (Ab.B., B.P.); Biotransformation Group, Novartis Institutes for BioMedical Research, Cambridge, Massachusetts (U.A.A.); and Department of Molecular Pharmacology and Physiology, Brown University, Providence, Rhode Island (J.L.D.)
| | - Saranjit Singh
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Punjab, India (An.B., S.S.); Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (Ab.B., B.P.); Biotransformation Group, Novartis Institutes for BioMedical Research, Cambridge, Massachusetts (U.A.A.); and Department of Molecular Pharmacology and Physiology, Brown University, Providence, Rhode Island (J.L.D.)
| | - Bhagwat Prasad
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Punjab, India (An.B., S.S.); Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (Ab.B., B.P.); Biotransformation Group, Novartis Institutes for BioMedical Research, Cambridge, Massachusetts (U.A.A.); and Department of Molecular Pharmacology and Physiology, Brown University, Providence, Rhode Island (J.L.D.)
| |
Collapse
|
5
|
Dumouchel JL, Argikar UA, Adams CM, Prasanna G, Ehara T, Kim S, Breen C, Mogi M. Understanding metabolism related differences in ocular efficacy of MGV354. Xenobiotica 2020; 51:5-14. [PMID: 32662714 DOI: 10.1080/00498254.2020.1794658] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
MGV354 was being developed as a novel ocular therapy for lowering of intraocular pressure, a key modifiable risk factor for glaucoma. MGV354 is an activator of soluble guanylate cyclase, an enzyme known to be involved in the regulation of IOP. MGV354 has been shown to robustly lower IOP over 24 h after a single topical ocular drop in rabbit and monkey pharmacology models. However, MGV354 failed to produce similar results in patients with ocular hypertension or open-angle glaucoma. With an objective of explaining the lack of efficacy in the clinic, we attempted to study whether human metabolism was significantly different from animal metabolism. The present study documents the investigation of metabolism of MGV354 in an effort to understand potential differences in biotransformation pathways of MGV354 in rabbits, monkeys, and humans. Overall twenty-six metabolites, formed via oxidative and conjugative pathways, were identified in vitro and in vivo. In vitro hepatic metabolism was qualitatively similar across species, with minor but distinct differences. There were no observable interspecies differences in the hepatic and ocular metabolism of MGV354. Although ocular metabolism was not as extensive as hepatic, the results do not explain the lack of efficacy of MGV354 in clinical studies.
Collapse
Affiliation(s)
- Jennifer L Dumouchel
- Pharmacokinetic Sciences, Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | - Upendra A Argikar
- Pharmacokinetic Sciences, Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | - Christopher M Adams
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | - Ganesh Prasanna
- Ophthalmology, Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | - Takeru Ehara
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | - Sean Kim
- Pharmacokinetic Sciences, Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | - Chris Breen
- Pharmacokinetic Sciences, Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | - Muneto Mogi
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| |
Collapse
|
6
|
Šícho M, Stork C, Mazzolari A, de Bruyn Kops C, Pedretti A, Testa B, Vistoli G, Svozil D, Kirchmair J. FAME 3: Predicting the Sites of Metabolism in Synthetic Compounds and Natural Products for Phase 1 and Phase 2 Metabolic Enzymes. J Chem Inf Model 2019; 59:3400-3412. [PMID: 31361490 DOI: 10.1021/acs.jcim.9b00376] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In this work we present the third generation of FAst MEtabolizer (FAME 3), a collection of extra trees classifiers for the prediction of sites of metabolism (SoMs) in small molecules such as drugs, druglike compounds, natural products, agrochemicals, and cosmetics. FAME 3 was derived from the MetaQSAR database ( Pedretti et al. J. Med. Chem. 2018 , 61 , 1019 ), a recently published data resource on xenobiotic metabolism that contains more than 2100 substrates annotated with more than 6300 experimentally confirmed SoMs related to redox reactions, hydrolysis and other nonredox reactions, and conjugation reactions. In tests with holdout data, FAME 3 models reached competitive performance, with Matthews correlation coefficients (MCCs) ranging from 0.50 for a global model covering phase 1 and phase 2 metabolism, to 0.75 for a focused model for phase 2 metabolism. A model focused on cytochrome P450 metabolism yielded an MCC of 0.57. Results from case studies with several synthetic compounds, natural products, and natural product derivatives demonstrate the agreement between model predictions and literature data even for molecules with structural patterns clearly distinct from those present in the training data. The applicability domains of the individual models were estimated by a new, atom-based distance measure (FAMEscore) that is based on a nearest-neighbor search in the space of atom environments. FAME 3 is available via a public web service at https://nerdd.zbh.uni-hamburg.de/ and as a self-contained Java software package, free for academic and noncommercial research.
Collapse
Affiliation(s)
- Martin Šícho
- Faculty of Mathematics, Informatics and Natural Sciences, Department of Informatics, Center for Bioinformatics , Universität Hamburg , 20146 Hamburg , Germany.,Faculty of Chemical Technology, Department of Informatics and Chemistry, CZ-OPENSCREEN: National Infrastructure for Chemical Biology , University of Chemistry and Technology Prague , 166 28 Prague 6 , Czech Republic
| | - Conrad Stork
- Faculty of Mathematics, Informatics and Natural Sciences, Department of Informatics, Center for Bioinformatics , Universität Hamburg , 20146 Hamburg , Germany
| | - Angelica Mazzolari
- Facoltà di Scienze del Farmaco, Dipartimento di Scienze Farmaceutiche "Pietro Pratesi" , Università degli Studi di Milano , I-20133 Milan , Italy
| | - Christina de Bruyn Kops
- Faculty of Mathematics, Informatics and Natural Sciences, Department of Informatics, Center for Bioinformatics , Universität Hamburg , 20146 Hamburg , Germany
| | - Alessandro Pedretti
- Facoltà di Scienze del Farmaco, Dipartimento di Scienze Farmaceutiche "Pietro Pratesi" , Università degli Studi di Milano , I-20133 Milan , Italy
| | - Bernard Testa
- University of Lausanne , 1015 Lausanne , Switzerland
| | - Giulio Vistoli
- Facoltà di Scienze del Farmaco, Dipartimento di Scienze Farmaceutiche "Pietro Pratesi" , Università degli Studi di Milano , I-20133 Milan , Italy
| | - Daniel Svozil
- Faculty of Chemical Technology, Department of Informatics and Chemistry, CZ-OPENSCREEN: National Infrastructure for Chemical Biology , University of Chemistry and Technology Prague , 166 28 Prague 6 , Czech Republic
| | - Johannes Kirchmair
- Faculty of Mathematics, Informatics and Natural Sciences, Department of Informatics, Center for Bioinformatics , Universität Hamburg , 20146 Hamburg , Germany
| |
Collapse
|
7
|
Finkelmann AR, Goldmann D, Schneider G, Göller AH. MetScore: Site of Metabolism Prediction Beyond Cytochrome P450 Enzymes. ChemMedChem 2018; 13:2281-2289. [PMID: 30184341 DOI: 10.1002/cmdc.201800309] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 08/31/2018] [Indexed: 12/20/2022]
Abstract
The metabolism of xenobiotics by humans and other organisms is a complex process involving numerous enzymes that catalyze phase I (functionalization) and phase II (conjugation) reactions. Herein we introduce MetScore, a machine learning model that can predict both phase I and phase II reaction sites of drugs in a single prediction run. We developed cheminformatics workflows to filter and process reactions to obtain suitable phase I and phase II data sets for model training. Employing a recently developed molecular representation based on quantum chemical partial charges, we constructed random forest machine learning models for phase I and phase II reactions. After combining these models with our previous cytochrome P450 model and calibrating the combination against Bayer in-house data, we obtained the MetScore model that shows good performance, with Matthews correlation coefficients of 0.61 and 0.76 for diverse phase I and phase II reaction types, respectively. We validated its potential applicability to lead optimization campaigns for a new and independent data set compiled from recent publications. The results of this study demonstrate the usefulness of quantum-chemistry-derived molecular representations for reactivity prediction.
Collapse
Affiliation(s)
- Arndt R Finkelmann
- ETH Zurich, Department of Chemistry and Applied Biosciences, Zurich, Switzerland
| | - Daria Goldmann
- KNIME GmbH, Reichenaustrasse 11, 78467, Konstanz, Germany
| | - Gisbert Schneider
- ETH Zurich, Department of Chemistry and Applied Biosciences, Zurich, Switzerland
| | - Andreas H Göller
- Bayer AG, Pharmaceuticals, Research & Development, 42096, Wuppertal, Germany
| |
Collapse
|
8
|
Dumouchel JL, Chemuturi N, Milton MN, Camenisch G, Chastain J, Walles M, Sasseville V, Gunduz M, Iyer GR, Argikar UA. Models and Approaches Describing the Metabolism, Transport, and Toxicity of Drugs Administered by the Ocular Route. Drug Metab Dispos 2018; 46:1670-1683. [DOI: 10.1124/dmd.118.082974] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 08/10/2018] [Indexed: 11/22/2022] Open
|
9
|
de Sousa IP, Sousa Teixeira MV, Jacometti Cardoso Furtado NA. An Overview of Biotransformation and Toxicity of Diterpenes. Molecules 2018; 23:E1387. [PMID: 29890639 PMCID: PMC6100218 DOI: 10.3390/molecules23061387] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 06/01/2018] [Accepted: 06/05/2018] [Indexed: 12/20/2022] Open
Abstract
Diterpenes have been identified as active compounds in several medicinal plants showing remarkable biological activities, and some isolated diterpenes are produced at commercial scale to be used as medicines, food additives, in the synthesis of fragrances, or in agriculture. There is great interest in developing methods to obtain derivatives of these compounds, and biotransformation processes are interesting tools for the structural modification of natural products with complex chemical structures. Biotransformation processes also have a crucial role in drug development and/or optimization. The understanding of the metabolic pathways for both phase I and II biotransformation of new drug candidates is mandatory for toxicity and efficacy evaluation and part of preclinical studies. This review presents an overview of biotransformation processes of diterpenes carried out by microorganisms, plant cell cultures, animal and human liver microsomes, and rats, chickens, and swine in vivo and highlights the main enzymatic reactions involved in these processes and the role of diterpenes that may be effectively exploited by other fields.
Collapse
Affiliation(s)
- Ingrid P de Sousa
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café, s/n, Ribeirão Preto, São Paulo 14040903, Brazil.
| | - Maria V Sousa Teixeira
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café, s/n, Ribeirão Preto, São Paulo 14040903, Brazil.
| | - Niege A Jacometti Cardoso Furtado
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café, s/n, Ribeirão Preto, São Paulo 14040903, Brazil.
| |
Collapse
|
10
|
Argikar UA, Dumouchel JL, Kramlinger VM, Cirello AL, Gunduz M, Dunne CE, Sohal B. Do We Need to Study Metabolism and Distribution in the Eye: Why, When, and Are We There Yet? J Pharm Sci 2017; 106:2276-2281. [DOI: 10.1016/j.xphs.2017.03.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 02/25/2017] [Accepted: 03/13/2017] [Indexed: 12/19/2022]
|
11
|
Argikar UA, Dumouchel JL, Dunne CE, Bushee AJ. Ocular non-P450 oxidative, reductive, hydrolytic, and conjugative drug metabolizing enzymes. Drug Metab Rev 2017; 49:372-394. [PMID: 28438049 DOI: 10.1080/03602532.2017.1322609] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Metabolism in the eye for any species, laboratory animals or human, is gaining rapid interest as pharmaceutical scientists aim to treat a wide range of so-called incurable ocular diseases. Over a period of decades, reports of metabolic activity toward various drugs and biochemical markers have emerged in select ocular tissues of animals and humans. Ocular cytochrome P450 (P450) enzymes and transporters have been recently reviewed. However, there is a dearth of collated information on non-P450 drug metabolizing enzymes in eyes of various preclinical species and humans in health and disease. In an effort to complement ocular P450s and transporters, which have been well reviewed in the literature, this review is aimed at presenting collective information on non-P450 oxidative, hydrolytic, and conjugative ocular drug metabolizing enzymes. Herein, we also present a list of xenobiotics or drugs that have been reported to be metabolized in the eye.
Collapse
Affiliation(s)
- Upendra A Argikar
- a Analytical Sciences and Imaging , Novartis Institutes for Biomedical Research, Inc , Cambridge , MA , USA
| | - Jennifer L Dumouchel
- a Analytical Sciences and Imaging , Novartis Institutes for Biomedical Research, Inc , Cambridge , MA , USA
| | - Christine E Dunne
- b Department of Chemistry , Colorado State University , Fort Collins , CO , USA
| | | |
Collapse
|
12
|
Cirello AL, Dumouchel JL, Gunduz M, Dunne CE, Argikar UA. In vitro ocular metabolism and bioactivation of ketoconazole in rat, rabbit and human. Drug Metab Pharmacokinet 2017; 32:121-126. [DOI: 10.1016/j.dmpk.2016.11.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 09/09/2016] [Accepted: 11/08/2016] [Indexed: 01/24/2023]
|