1
|
Rodrigues D, Wezalis S. Clinical Assessment of Drug Transporter Inhibition Using Biomarkers: Review of the Literature (2015-2024). J Clin Pharmacol 2025. [PMID: 39828904 DOI: 10.1002/jcph.6183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 12/20/2024] [Indexed: 01/22/2025]
Abstract
As part of a narrative review of various publications describing the clinical use of urine- and plasma-based drug transporter biomarkers, it was determined that the utilization of coproporphyrin I, a hepatic organic anion transporting polypeptide (OATP) 1B1 and OATP1B3 biomarker, has been reported for 28 different drug-drug interaction (DDI) perpetrator drugs. Similarly, biomarkers for liver organic cation transporter 1 (isobutyryl-l-carnitine, N = 7 inhibitors), renal organic cation transporter 2 and multidrug and toxin extrusion proteins (N1-methylnicotinamide, N = 13 inhibitors), renal organic anion transporter (OAT) 1 and 3 (pyridoxic acid, N = 7 inhibitors), and breast cancer resistance protein (riboflavin, N = 3 inhibitors) have also been described. Increased use of biomarkers has also been accompanied by modeling efforts to enable DDI predictions and development of multiplexed methods to facilitate their bioanalysis. Overall, there is consensus that exploratory biomarkers such as coproporphyrin I can be integrated into decision trees encompassing in vitro transporter inhibition data, DDI risk assessments, and follow-up Phase 1 studies. Therefore, sponsors can leverage biomarkers to evaluate dose-dependent inhibition of selected transporters, use them jointly with drug probes to deconvolute DDI mechanisms, and integrate in vitro data packages to establish calibrated (biomarker informed) DDI risk assessment cutoffs. Although transporter biomarker science has progressed, reflected by its inclusion in the recently issued International Council for Harmonisation DDI guidance document (M12), some biomarkers still require further validation. There is also a need for biomarkers that can differentiate specific transporters (e.g., OATP1B3 vs OATP1B1 and OAT1 vs OAT3).
Collapse
Affiliation(s)
- David Rodrigues
- Drug Metabolism and Nonclinical Pharmacokinetics, Translational Medicine, Incyte, Wilmington, DE, USA
| | - Stephanie Wezalis
- Drug Metabolism and Nonclinical Pharmacokinetics, Translational Medicine, Incyte, Wilmington, DE, USA
| |
Collapse
|
2
|
Gessner A, König J, Wenisch P, Heinrich MR, Stopfer P, Fromm MF, Müller F. New Biomarkers for Renal Transporter-Mediated Drug-Drug Interactions: Metabolomic Effects of Cimetidine, Probenecid, Verapamil, and Rifampin in Humans. Clin Pharmacol Ther 2025; 117:130-142. [PMID: 39148267 PMCID: PMC11652812 DOI: 10.1002/cpt.3414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 07/19/2024] [Indexed: 08/17/2024]
Abstract
The inhibition of renal transport proteins organic cation transporter 2 (OCT2), multidrug and toxin extrusion proteins (MATE1, MATE2-K), and organic anion transporters (OAT1, OAT3) causes clinically relevant drug-drug interactions (DDI). Endogenous biomarkers could be used to improve risk prediction of such renal DDIs. While a number of biomarkers for renal DDIs have been described so far, multiple criteria for valid biomarkers have frequently not been investigated, for example, specificity, metabolism, or food effects. Therefore, there is a need for novel biomarkers of renal DDIs. Here, we investigated the global metabolomic effects following the administration of two classical inhibitors of renal transport proteins [cimetidine (OCT2/MATEs), probenecid (OATs)] in human plasma and urine of healthy volunteers. Additionally, we investigated metabolomic effects of two inhibitors of other transporters [verapamil (P-glycoprotein), rifampin (organic anion transporting polypeptides)] as controls. This analysis shows that both cimetidine and probenecid affect compounds involved in caffeine metabolism, carnitines, and sulfates. Hierarchical cluster analysis of the effects of all four inhibitors on endogenous compounds identified multiple promising new sensitive and specific biomarker candidates for OCT2/MATE- or OAT-mediated DDIs. For OCT2/MATEs, 5-amino valeric acid betaine (median log2-fold change of estimated renal elimination: -3.62) presented itself as a promising candidate. For OATs, estimated renal elimination of 7-methyluric acid and cinnamoylglycine (median log2-fold changes -3.10 and -1.92, respectively) was both sensitive and specific. This study provides comprehensive information on metabolomic effects of transport protein inhibition in humans and identifies putative new sensitive and specific biomarkers for renal transporter-mediated DDIs.
Collapse
Affiliation(s)
- Arne Gessner
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich‐Alexander‐Universität Erlangen‐NürnbergErlangenGermany
- FAU NeW – Research Center New Bioactive CompoundsFriedrich‐Alexander‐Universität Erlangen‐NürnbergErlangenGermany
| | - Jörg König
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich‐Alexander‐Universität Erlangen‐NürnbergErlangenGermany
- FAU NeW – Research Center New Bioactive CompoundsFriedrich‐Alexander‐Universität Erlangen‐NürnbergErlangenGermany
| | - Pia Wenisch
- Department of Chemistry and Pharmacy, Pharmaceutical ChemistryFriedrich‐Alexander‐Universität Erlangen‐NürnbergErlangenGermany
| | - Markus R. Heinrich
- FAU NeW – Research Center New Bioactive CompoundsFriedrich‐Alexander‐Universität Erlangen‐NürnbergErlangenGermany
- Department of Chemistry and Pharmacy, Pharmaceutical ChemistryFriedrich‐Alexander‐Universität Erlangen‐NürnbergErlangenGermany
| | - Peter Stopfer
- Boehringer Ingelheim Pharma GmbH & Co. KGBiberach an der RissGermany
| | - Martin F. Fromm
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich‐Alexander‐Universität Erlangen‐NürnbergErlangenGermany
- FAU NeW – Research Center New Bioactive CompoundsFriedrich‐Alexander‐Universität Erlangen‐NürnbergErlangenGermany
| | - Fabian Müller
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich‐Alexander‐Universität Erlangen‐NürnbergErlangenGermany
- Boehringer Ingelheim Pharma GmbH & Co. KGBiberach an der RissGermany
| |
Collapse
|
3
|
Arya V, Ma JD, Kvitne KE. Expanding Role of Endogenous Biomarkers for Assessment of Transporter Activity in Drug Development: Current Applications and Future Horizon. Pharmaceutics 2024; 16:855. [PMID: 39065552 PMCID: PMC11280074 DOI: 10.3390/pharmaceutics16070855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/12/2024] [Accepted: 06/20/2024] [Indexed: 07/28/2024] Open
Abstract
The evaluation of transporter-mediated drug-drug interactions (DDIs) during drug development and post-approval contributes to benefit-risk assessment and helps formulate clinical management strategies. The use of endogenous biomarkers, which are substrates of clinically relevant uptake and efflux transporters, to assess the transporter inhibitory potential of a drug has received widespread attention. Endogenous biomarkers, such as coproporphyrin (CP) I and III, have increased mechanistic understanding of complex DDIs. Other endogenous biomarkers are under evaluation, including, but not limited to, sulfated bile acids and 4-pyridoxic acid (PDA). The role of endogenous biomarkers has expanded beyond facilitating assessment of transporter-mediated DDIs and they have also been used to understand alterations in transporter activity in the setting of organ dysfunction and various disease states. We envision that endogenous biomarker-informed approaches will not only help to formulate a prudent and informed DDI assessment strategy but also facilitate quantitative predictions of changes in drug exposures in specific populations.
Collapse
Affiliation(s)
- Vikram Arya
- Division of Infectious Disease Pharmacology, Office of Clinical Pharmacology, Center for Drug Evaluation and Research, US Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD 20993, USA
| | - Joseph D. Ma
- Skaggs School of Pharmacy & Pharmaceutical Sciences, University of California, San Diego, CA 92093, USA
| | | |
Collapse
|
4
|
Choi HJ, Madari S, Huang F. Utilising Endogenous Biomarkers in Drug Development to Streamline the Assessment of Drug-Drug Interactions Mediated by Renal Transporters: A Pharmaceutical Industry Perspective. Clin Pharmacokinet 2024; 63:735-749. [PMID: 38867094 PMCID: PMC11222257 DOI: 10.1007/s40262-024-01385-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/09/2024] [Indexed: 06/14/2024]
Abstract
The renal secretion of many drugs is facilitated by membrane transporters, including organic cation transporter 2, multidrug and toxin extrusion protein 1/2-K and organic anion transporters 1 and 3. Inhibition of these transporters can reduce renal excretion of drugs and thereby pose a safety risk. Assessing the risk of inhibition of these membrane transporters by investigational drugs remains a key focus in the evaluation of drug-drug interactions (DDIs). Current methods to predict DDI risk are based on generating in vitro data followed by a clinical assessment using a recommended exogenous probe substrate for the individual drug transporter. More recently, monitoring plasma-based and urine-based endogenous biomarkers to predict transporter-mediated DDIs in early phase I studies represents a promising approach to facilitate, improve and potentially avoid conventional clinical DDI studies. This perspective reviews the evidence for use of these endogenous biomarkers in the assessment of renal transporter-mediated DDI, evaluates how endogenous biomarkers may help to expand the DDI assessment toolkit and offers some potential knowledge gaps. A conceptual framework for assessment that may complement the current paradigm of predicting the potential for renal transporter-mediated DDIs is outlined.
Collapse
Affiliation(s)
- Hee Jae Choi
- Translational Medicine and Clinical Pharmacology, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, Ridgefield, CT, 06877, USA
| | - Shilpa Madari
- Translational Medicine and Clinical Pharmacology, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, Ridgefield, CT, 06877, USA
| | - Fenglei Huang
- Translational Medicine and Clinical Pharmacology, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, Ridgefield, CT, 06877, USA.
| |
Collapse
|
5
|
Kadar EP, Holliman CL, Vourvahis M, Rodrigues AD. Inception and development of a LC-MS/MS assay for the multiplexed quantitation of nine human drug transporter biomarkers. Bioanalysis 2024; 16:347-362. [PMID: 38376139 DOI: 10.4155/bio-2023-0197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024] Open
Abstract
Background: It has become common practice to assess solute carrier transporter (SLC)-mediated drug-drug interactions (DDIs) by quantitating various individual endogenous compounds as biomarkers in human plasma and urine. The goal of this work was to develop biomarker multiplex assays that could be utilized during first in human studies to support the simultaneous assessment of clinical DDI risk across various SLCs. Methodology: Hydrophilic interaction chromatography-MS/MS methods were developed, and validations were performed. Results: The multiplex assays were applied to a first in human study. Placebo/reference subject biomarker data were consistent with single assay in-house and published data. Conclusion: This work demonstrates the utility of these multiplex methods to support the concurrent evaluation of clinical DDI risk across various SLCs.
Collapse
Affiliation(s)
- Eugene P Kadar
- Bioanalytical Group, Medicine Design, Pfizer Worldwide Research & Development, Pfizer, Inc., 445 Eastern Point Road, Groton, CT 06340, USA
| | - Christopher L Holliman
- Bioanalytical Group, Medicine Design, Pfizer Worldwide Research & Development, Pfizer, Inc., 445 Eastern Point Road, Groton, CT 06340, USA
| | - Manoli Vourvahis
- Clinical Pharmacology, Pfizer Worldwide Research & Development, Pfizer, Inc., 66 Hudson Blvd. E, New York, NY 10001, USA
| | - A David Rodrigues
- Transporter Sciences Group, Medicine Design, Pfizer Worldwide Research & Development, Pfizer, Inc., 445 Eastern Point Road, Groton, CT 06340, USA
| |
Collapse
|
6
|
Ma Y, Wang X, Gou X, Wu X. Identification and characterization of an endogenous biomarker of the renal vectorial transport (OCT2-MATE1). Biopharm Drug Dispos 2024; 45:43-57. [PMID: 38305087 DOI: 10.1002/bdd.2382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/29/2023] [Accepted: 01/08/2024] [Indexed: 02/03/2024]
Abstract
The renal tubular organic cation transporter 2 (OCT2) and multidrug and toxin extrusion protein 1 (MATE1) mediate the vectorial elimination of many drugs and toxins from the kidney, and endogenous biomarkers for vectorial transport (OCT2-MATE1) would allow more accurate drug dosing and help to characterize drug-drug interactions and toxicity. Human serum uptake in OCT2-overexpressing cells and metabolomics analysis were carried out. Potential biomarkers were verified in vitro and in vivo. The specificity of biomarkers was validated in renal transporter overexpressing cells and the sensitivity was investigated by Km . The results showed that the uptake of thiamine, histamine, and 5-hydroxytryptamine was significantly increased in OCT2-overexpressing cells. In vitro assays confirmed that thiamine, histamine, and 5-hydroxytryptamine were substrates of both OCT2 and MATE1. In vivo measurements indicated that the serum thiamine level was increased significantly in the presence of the rOCT2 inhibitor cimetidine, and the level in renal tissue was increased significantly by the rMATE1 inhibitor pyrimethamine. There were no significant changes in the uptake or efflux of thiamine in cell lines overexpressed OAT1, OAT2, OAT3, MRP4, organic anion transporting polypeptide 4C1, P-gp, peptide transporter 2, urate transporter 1, and OAT4. The Km for thiamine with OCT2 and MATE1 were 71.2 and 10.8 μM, respectively. In addition, the cumulative excretion of thiamine at 2 and 4 h was strongly correlated with metformin excretion (R2 > 0.6). Thus, thiamine is preferentially secreted by the OCT2 and MATE1 in renal tubules and can provide a reference value for evaluating the function of the renal tubular OCT2-MATE1.
Collapse
Affiliation(s)
- Yanrong Ma
- The First Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Xinyi Wang
- The First Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Xueyan Gou
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Xinan Wu
- The First Clinical Medical School, Lanzhou University, Lanzhou, China
- School of Pharmacy, Lanzhou University, Lanzhou, China
| |
Collapse
|
7
|
Ailabouni AS, Mettu VS, Thakur A, Singh DK, Prasad B. Effect of Cimetidine on Metformin Pharmacokinetics and Endogenous Metabolite Levels in Rats. Drug Metab Dispos 2024; 52:86-94. [PMID: 38049999 PMCID: PMC10801632 DOI: 10.1124/dmd.123.001470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/03/2023] [Accepted: 11/27/2023] [Indexed: 12/06/2023] Open
Abstract
Tubular secretion is a primary mechanism along with glomerular filtration for renal elimination of drugs and toxicants into urine. Organic cation transporters (OCTs) and multidrug and toxic extrusion (MATE) transporters facilitate the active secretion of cationic substrates, including drugs such as metformin and endogenous cations. We hypothesized that administration of cimetidine, an Oct/Mate inhibitor, will result in increased plasma levels and decreased renal clearance of metformin and endogenous Oct/Mate substrates in rats. A paired rat pharmacokinetic study was carried out in which metformin (5 mg/kg, intravenous) was administered as an exogenous substrate of Oct/Mate transporters to six Sprague-Dawley rats with and without cimetidine (100 mg/kg, intraperitoneal). When co-administered with cimetidine, metformin area under the curve increased significantly by 3.2-fold, and its renal clearance reduced significantly by 73%. Untargeted metabolomics was performed to investigate the effect of cimetidine on endogenous metabolome in the blood and urine samples. Over 8,000 features (metabolites) were detected in the blood, which were shortlisted using optimized criteria, i.e., a significant increase (P value < 0.05) in metabolite peak intensity in the cimetidine-treated group, reproducible retention time, and quality of chromatogram peak. The metabolite hits were classified into three groups that can potentially distinguish inhibition of i) extra-renal uptake transport or catabolism, ii) renal Octs, and iii) renal efflux transporters or metabolite formation. The metabolomics approach identified novel putative endogenous substrates of cationic transporters that could be tested as potential biomarkers to predict Oct/Mate transporter mediated drug-drug interactions in the preclinical stages. SIGNIFICANCE STATEMENT: Endogenous substrates of renal transporters in animal models could be used as potential biomarkers to predict renal drug-drug interactions in early drug development. Here we demonstrated that cimetidine, an inhibitor of organic cation transporters (Oct/Mate), could alter the pharmacokinetics of metformin and endogenous cationic substrates in rats. Several putative endogenous metabolites of Oct/Mate transporters were identified using metabolomics approach, which could be tested as potential transporter biomarkers to predict renal drug-drug interaction of Oct/Mate substrates.
Collapse
Affiliation(s)
| | - Vijaya Saradhi Mettu
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington
| | - Aarzoo Thakur
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington
| | - Dilip Kumar Singh
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington
| | - Bhagwat Prasad
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington
| |
Collapse
|
8
|
Thakur A, Saradhi Mettu V, Singh DK, Prasad B. Effect of probenecid on blood levels and renal elimination of furosemide and endogenous compounds in rats: Discovery of putative organic anion transporter biomarkers. Biochem Pharmacol 2023; 218:115867. [PMID: 37866801 PMCID: PMC10900896 DOI: 10.1016/j.bcp.2023.115867] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/10/2023] [Accepted: 10/17/2023] [Indexed: 10/24/2023]
Abstract
Transporter-mediated drug-drug interactions (DDIs) are assessed using probe drugs and in vitro and in vivo models during drug development. The utility of endogenous metabolites as transporter biomarkers is emerging for prediction of DDIs during early phases of clinical trials. Endogenous metabolites such as pyridoxic acid and kynurenic acid have shown potential to predict DDIs mediated by organic anion transporters (OAT1 and OAT3). However, these metabolites have not been assessed in rats as potential transporter biomarkers. We carried out a rat pharmacokinetic DDI study using probenecid and furosemide as OAT inhibitor and substrate, respectively. Probenecid administration led to a 3.8-fold increase in the blood concentrations and a 3-fold decrease in renal clearance of furosemide. High inter-individual and intra-day variability in pyridoxic acid and kynurenic acid, and no or moderate effect of probenecid administration on these metabolites suggest their limited utility for prediction of Oat-mediated DDI in rats. Therefore, rat blood and urine samples were further analysed using untargeted metabolomics. Twenty-one m/z features (out of >8000 detected features) were identified as putative biomarkers of rat Oat1 and Oat3 using a robust biomarker qualification approach. These m/z features belong to metabolic pathways such as fatty acid analogues, peptides, prostaglandin analogues, bile acid derivatives, flavonoids, phytoconstituents, and steroids, and can be used as a panel to decrease variability caused by processes other than Oats. When validated, these putative biomarkers will be useful in predicting DDIs caused by Oats in rats.
Collapse
Affiliation(s)
- Aarzoo Thakur
- College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA 99202, USA
| | - Vijaya Saradhi Mettu
- College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA 99202, USA
| | - Dilip K Singh
- College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA 99202, USA
| | - Bhagwat Prasad
- College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA 99202, USA.
| |
Collapse
|
9
|
Gessner A, Müller F, Wenisch P, Heinrich MR, König J, Stopfer P, Fromm MF. A Metabolomic Analysis of Sensitivity and Specificity of 23 Previously Proposed Biomarkers for Renal Transporter-Mediated Drug-Drug Interactions. Clin Pharmacol Ther 2023; 114:1058-1072. [PMID: 37540045 DOI: 10.1002/cpt.3017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 07/31/2023] [Indexed: 08/05/2023]
Abstract
Endogenous biomarkers are discussed as tools for detection of drug-drug interactions (DDIs) mediated by renal transport proteins, such as organic cation transporter 2 (OCT2), multidrug and toxin extrusion proteins (MATE1 and MATE2-K) and organic anion transporters (OAT1 and OAT3). Whereas sensitivity of some endogenous biomarkers against at least one clinical transporter inhibitor has frequently been shown, intra-study comparisons of the extent of effects of inhibitors on different biomarkers are frequently lacking. Moreover, in vivo specificity of such discussed biomarkers has frequently not been studied. We therefore investigated changes of 10 previously described putative biomarkers for inhibition of OCT2/MATEs, as well as 15 previously described putative biomarkers for OATs in human plasma and urine samples of healthy volunteers in response to treatment with 4 inhibitors of transport proteins [verapamil (P-glycoprotein), rifampin (organic anion transporting polypeptides), cimetidine (OCT2/MATEs), and probenecid (OATs)]. Two of the putative biomarkers had been suggested for both OCT2/MATEs and OATs. All substances were unequivocally identified in an untargeted metabolomics assay. The OCT2/MATE biomarkers choline and trimethylamine N-oxide were both sensitive and specific (median log2-fold changes -1.18 in estimated renal elimination and -0.85 in urinary excretion, respectively). For renal OATs, indoleacetyl glutamine and indoleacetic acid (median log2-fold changes -3.77 and -2.85 in estimated renal elimination, respectively) were the candidates for sensitive and specific biomarkers with the most extensive change, followed by taurine, indolelactic acid, and hypoxanthine. This comprehensive study adds further knowledge on sensitivity and specificity of 23 previously described biomarkers of renal OCT2/MATE- and OAT-mediated DDIs.
Collapse
Affiliation(s)
- Arne Gessner
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Fabian Müller
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Pia Wenisch
- Department of Chemistry and Pharmacy, Pharmaceutical Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Markus R Heinrich
- Department of Chemistry and Pharmacy, Pharmaceutical Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Jörg König
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Peter Stopfer
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Martin F Fromm
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
10
|
Ma Y, Ran F, Xin M, Gou X, Wang X, Wu X. Albumin-bound kynurenic acid is an appropriate endogenous biomarker for assessment of the renal tubular OATs-MRP4 channel. J Pharm Anal 2023; 13:1205-1220. [PMID: 38024860 PMCID: PMC10657973 DOI: 10.1016/j.jpha.2023.05.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 05/08/2023] [Accepted: 05/12/2023] [Indexed: 12/01/2023] Open
Abstract
Renal tubular secretion mediated by organic anion transporters (OATs) and the multidrug resistance-associated protein 4 (MRP4) is an important means of drug and toxin excretion. Unfortunately, there are no biomarkers to evaluate their function. The aim of this study was to identify and characterize an endogenous biomarker of the renal tubular OATs-MRP4 channel. Twenty-six uremic toxins were selected as candidate compounds, of which kynurenic acid was identified as a potential biomarker by assessing the protein-binding ratio and the uptake in OAT1-, OAT3-, and MRP4-overexpressing cell lines. OAT1/3 and MRP4 mediated the transcellular vectorial transport of kynurenic acid in vitro. Serum kynurenic acid concentration was dramatically increased in rats treated with a rat OAT1/3 (rOAT1/3) inhibitor and in rOAT1/3 double knockout (rOAT1/3-/-) rats, and the renal concentrations were markedly elevated by the rat MRP4 (rMRP4) inhibitor. Kynurenic acid was not filtered at the glomerulus (99% of albumin binding), and was specifically secreted in renal tubules through the OAT1/3-MRP4 channel with an appropriate affinity (Km) (496.7 μM and 382.2 μM for OAT1 and OAT3, respectively) and renal clearance half-life (t1/2) in vivo (3.7 ± 0.7 h). There is a strong correlation in area under the plasma drug concentration-time curve (AUC0-t) between cefmetazole and kynurenic acid, but not with creatinine, after inhibition of rOATs. In addition, the phase of increased kynurenic acid level is earlier than that of creatinine in acute kidney injury process. These results suggest that albumin-bound kynurenic acid is an appropriate endogenous biomarker for adjusting the dosage of drugs secreted by this channel or predicting kidney injury.
Collapse
Affiliation(s)
- Yanrong Ma
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, China
| | - Fenglin Ran
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Mingyan Xin
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Xueyan Gou
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Xinyi Wang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, China
| | - Xinan Wu
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, China
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| |
Collapse
|
11
|
Mochizuki T, Kusuhara H. Progress in the Quantitative Assessment of Transporter-Mediated Drug-Drug Interactions Using Endogenous Substrates in Clinical Studies. Drug Metab Dispos 2023; 51:1105-1113. [PMID: 37169512 DOI: 10.1124/dmd.123.001285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/13/2023] [Accepted: 04/17/2023] [Indexed: 05/13/2023] Open
Abstract
Variations in drug transporter activities, caused by genetic polymorphism and drug-drug interactions (DDIs), alter the systemic exposure of substrate drugs, leading to differences in drug responses. Recently, some endogenous substrates of drug transporters, particularly the solute carrier family transporters such as OATP1B1, OATP1B3, OAT1, OAT3, OCT1, OCT2, MATE1, and MATE2-K, have been identified to investigate variations in drug transporters in humans. Clinical data obtained support their performance as surrogate probes in terms of specificity and reproducibility. Pharmacokinetic parameters of the endogenous biomarkers depend on the genotypes of drug transporters and the systemic exposure to perpetrator drugs. Furthermore, the development of physiologically based pharmacokinetic models for the endogenous biomarkers has enabled a top-down approach to obtain insights into the effect of perpetrators on drug transporters and to more precisely simulate the DDI with victim drugs, including probe drugs. The endogenous biomarkers can address the uncertainty in the DDI prediction in the preclinical and early phases of clinical development and have the potential to fulfill regulatory requirements. Therefore, the endogenous biomarkers should be able to predict disease effects on the variations in drug transporter activities observed in patients. This mini-review focuses on recent progress in the identification and use of the endogenous drug transporter substrate biomarkers and their application in drug development. SIGNIFICANCE STATEMENT: Advances in analytical methods have enabled the identification of endogenous substrates of drug transporters. Changes in the pharmacokinetic parameters (Cmax, AUC, or CLR) of these endogenous biomarkers relative to baseline values can serve as a quantitative index to assess variations in drug transporter activities during clinical studies and thereby provide more precise DDI predictions.
Collapse
Affiliation(s)
- Tatsuki Mochizuki
- Pharmaceutical Science Department, Translational Research Division, Chugai Pharmaceutical Co., Ltd., Yokohama, Japan (T.M.); and Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo, Japan (H.K.)
| | - Hiroyuki Kusuhara
- Pharmaceutical Science Department, Translational Research Division, Chugai Pharmaceutical Co., Ltd., Yokohama, Japan (T.M.); and Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo, Japan (H.K.)
| |
Collapse
|
12
|
Chan GH, Houle R, Zhang J, Katwaru R, Li Y, Chu X. Evaluation of the Selectivity of Several Organic Anion Transporting Polypeptide 1B Biomarkers Using Relative Activity Factor Method. Drug Metab Dispos 2023; 51:1089-1104. [PMID: 37137718 DOI: 10.1124/dmd.122.000972] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 04/13/2023] [Accepted: 05/01/2023] [Indexed: 05/05/2023] Open
Abstract
In recent years, some endogenous substrates of organic anion transporting polypeptide 1B (OATP1B) have been identified and characterized as potential biomarkers to assess OATP1B-mediated clinical drug-drug interactions (DDIs). However, quantitative determination of their selectivity to OATP1B is still limited. In this study, we developed a relative activity factor (RAF) method to determine the relative contribution of hepatic uptake transporters OATP1B1, OATP1B3, OATP2B1, and sodium-taurocholate co-transporting polypeptide (NTCP) on hepatic uptake of several OATP1B biomarkers, including coproporphyrin I (CPI), coproporphyrin I CPIII, and sulfate conjugates of bile acids: glycochenodeoxycholic acid sulfate (GCDCA-S), glycodeoxycholic acid sulfate (GDCA-S), and taurochenodeoxycholic acid sulfate (TCDCA-S). RAF values for OATP1B1, OATP1B3, OATP2B1, and NTCP were determined in cryopreserved human hepatocytes and transporter transfected cells using pitavastatin, cholecystokinin, resveratrol-3-O-β-D-glucuronide, and taurocholic acid (TCA) as reference compounds, respectively. OATP1B1-specific pitavastatin uptake in hepatocytes was measured in the absence and presence of 1 µM estropipate, whereas NTCP-specific TCA uptake was measured in the presence of 10 µM rifampin. Our studies suggested that CPI was a more selective biomarker for OATP1B1 than CPIII, whereas GCDCA-S and TCDCA-S were more selective to OATP1B3. OATP1B1 and OATP1B3 equally contributed to hepatic uptake of GDCA-S. The mechanistic static model, incorporating the fraction transported of CPI/III estimated by RAF and in vivo elimination data, predicted several perpetrator interactions with CPI/III. Overall, RAF method combined with pharmacogenomic and DDI studies is a useful tool to determine the selectivity of transporter biomarkers and facilitate the selection of appropriate biomarkers for DDI evaluation. SIGNIFICANCE STATEMENT: The authors developed a new relative activity factor (RAF) method to quantify the contribution of hepatic uptake transporters organic anion transporting polypeptide (OATP)1B1, OATP1B3, OATP2B1, and sodium taurocholate co-transporting polypeptide (NTCP) on several OATP1B biomarkers and evaluated their predictive value on drug-drug interactions (DDI). These studies suggest that the RAF method is a useful tool to determine the selectivity of transporter biomarkers. This method combined with pharmacogenomic and DDI studies will mechanistically facilitate the selection of appropriate biomarkers for DDI prediction.
Collapse
Affiliation(s)
- Grace Hoyee Chan
- ADME and Discovery Toxicity, Merck & Co., Inc., Rahway, New Jersey
| | - Robert Houle
- ADME and Discovery Toxicity, Merck & Co., Inc., Rahway, New Jersey
| | - Jinghui Zhang
- ADME and Discovery Toxicity, Merck & Co., Inc., Rahway, New Jersey
| | - Ravi Katwaru
- ADME and Discovery Toxicity, Merck & Co., Inc., Rahway, New Jersey
| | - Yang Li
- ADME and Discovery Toxicity, Merck & Co., Inc., Rahway, New Jersey
| | - Xiaoyan Chu
- ADME and Discovery Toxicity, Merck & Co., Inc., Rahway, New Jersey
| |
Collapse
|
13
|
Lin K, Kong X, Tao X, Zhai X, Lv L, Dong D, Yang S, Zhu Y. Research Methods and New Advances in Drug-Drug Interactions Mediated by Renal Transporters. Molecules 2023; 28:5252. [PMID: 37446913 DOI: 10.3390/molecules28135252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/22/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
The kidney is critical in the human body's excretion of drugs and their metabolites. Renal transporters participate in actively secreting substances from the proximal tubular cells and reabsorbing them in the distal renal tubules. They can affect the clearance rates (CLr) of drugs and their metabolites, eventually influence the clinical efficiency and side effects of drugs, and may produce drug-drug interactions (DDIs) of clinical significance. Renal transporters and renal transporter-mediated DDIs have also been studied by many researchers. In this article, the main types of in vitro research models used for the study of renal transporter-mediated DDIs are membrane-based assays, cell-based assays, and the renal slice uptake model. In vivo research models include animal experiments, gene knockout animal models, positron emission tomography (PET) technology, and studies on human beings. In addition, in vitro-in vivo extrapolation (IVIVE), ex vivo kidney perfusion (EVKP) models, and, more recently, biomarker methods and in silico models are included. This article reviews the traditional research methods of renal transporter-mediated DDIs, updates the recent progress in the development of the methods, and then classifies and summarizes the advantages and disadvantages of each method. Through the sorting work conducted in this paper, it will be convenient for researchers at different learning stages to choose the best method for their own research based on their own subject's situation when they are going to study DDIs mediated by renal transporters.
Collapse
Affiliation(s)
- Kexin Lin
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Xiaorui Kong
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Xufeng Tao
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Xiaohan Zhai
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Linlin Lv
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Deshi Dong
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Shilei Yang
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Yanna Zhu
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| |
Collapse
|
14
|
Kamath A, Srinivasamurthy SK, Chowta MN, Ullal SD, Daali Y, Chakradhara Rao US. Role of Drug Transporters in Elucidating Inter-Individual Variability in Pediatric Chemotherapy-Related Toxicities and Response. Pharmaceuticals (Basel) 2022; 15:990. [PMID: 36015138 PMCID: PMC9415926 DOI: 10.3390/ph15080990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/01/2022] [Accepted: 08/04/2022] [Indexed: 11/16/2022] Open
Abstract
Pediatric cancer treatment has evolved significantly in recent decades. The implementation of risk stratification strategies and the selection of evidence-based chemotherapy combinations have improved survival outcomes. However, there is large interindividual variability in terms of chemotherapy-related toxicities and, sometimes, the response among this population. This variability is partly attributed to the functional variability of drug-metabolizing enzymes (DME) and drug transporters (DTS) involved in the process of absorption, distribution, metabolism and excretion (ADME). The DTS, being ubiquitous, affects drug disposition across membranes and has relevance in determining chemotherapy response in pediatric cancer patients. Among the factors affecting DTS function, ontogeny or maturation is important in the pediatric population. In this narrative review, we describe the role of drug uptake/efflux transporters in defining pediatric chemotherapy-treatment-related toxicities and responses. Developmental differences in DTS and the consequent implications are also briefly discussed for the most commonly used chemotherapeutic drugs in the pediatric population.
Collapse
Affiliation(s)
- Ashwin Kamath
- Department of Pharmacology, Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, Manipal 575001, India
| | - Suresh Kumar Srinivasamurthy
- Department of Pharmacology, Ras Al Khaimah College of Medical Sciences, Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah P.O. Box 11172, United Arab Emirates
| | - Mukta N Chowta
- Department of Pharmacology, Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, Manipal 575001, India
| | - Sheetal D Ullal
- Department of Pharmacology, Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, Manipal 575001, India
| | - Youssef Daali
- Department of Anaesthesiology, Pharmacology, Intensive Care and Emergency Medicine, Division of Clinical Pharmacology and Toxicology, Geneva University Hospitals, 1205 Geneva, Switzerland
| | - Uppugunduri S Chakradhara Rao
- Department of Pharmacology, Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, Manipal 575001, India
- CANSEARCH Research Platform in Pediatric Oncology and Hematology, Department of Pediatrics, Gynecology and Obstetrics, University of Geneva, 1205 Geneva, Switzerland
| |
Collapse
|
15
|
Rodrigues AD. Reimagining the Framework Supporting the Static Analysis of Transporter Drug Interaction Risk; Integrated Use of Biomarkers to Generate
Pan‐Transporter
Inhibition Signatures. Clin Pharmacol Ther 2022; 113:986-1002. [PMID: 35869864 DOI: 10.1002/cpt.2713] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 07/14/2022] [Indexed: 11/11/2022]
Abstract
Solute carrier (SLC) transporters present as the loci of important drug-drug interactions (DDIs). Therefore, sponsors generate in vitro half-maximal inhibitory concentration (IC50 ) data and apply regulatory agency-guided "static" methods to assess DDI risk and the need for a formal clinical DDI study. Because such methods are conservative and high false-positive rates are likely (e.g., DDI study triggered when liver SLC R value ≥ 1.04 and renal SLC maximal unbound plasma (Cmax,u )/IC50 ratio ≥ 0.02), investigators have attempted to deploy plasma- and urine-based SLC biomarkers in phase I studies to de-risk DDI and obviate the need for drug probe-based studies. In this regard, it was possible to generate in-house in vitro SLC IC50 data for various clinically (biomarker)-qualified perpetrator drugs, under standard assay conditions, and then estimate "% inhibition" for each SLC and relate it empirically to published clinical biomarker data (area under the plasma concentration vs. time curve (AUC) ratio (AUCR, AUCinhibitor /AUCreference ) and % decrease in renal clearance (ΔCLrenal )). After such a "calibration" exercise, it was determined that only compounds with high R values (> 1.5) and Cmax,u /IC50 ratios (> 0.5) are likely to significantly modulate liver (AUCR > 1.25) and renal (ΔCLrenal > 25%) biomarkers and evoke DDI risk. The % inhibition approach supports integration of liver and renal SLC data and allows one to generate pan-SLC inhibition signatures for different test perpetrators (e.g., SLC % inhibition ranking). In turn, such signatures can guide the selection of the most appropriate individual (or combinations of) biomarkers for testing in phase I studies.
Collapse
Affiliation(s)
- A. David Rodrigues
- Pharmacokinetics & Drug Metabolism, Medicine Design, Worldwide Research & Development, Pfizer Inc Groton CT USA
| |
Collapse
|
16
|
Lai Y, Chu X, Di L, Gao W, Guo Y, Liu X, Lu C, Mao J, Shen H, Tang H, Xia CQ, Zhang L, Ding X. Recent advances in the translation of drug metabolism and pharmacokinetics science for drug discovery and development. Acta Pharm Sin B 2022; 12:2751-2777. [PMID: 35755285 PMCID: PMC9214059 DOI: 10.1016/j.apsb.2022.03.009] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/07/2021] [Accepted: 11/10/2021] [Indexed: 02/08/2023] Open
Abstract
Drug metabolism and pharmacokinetics (DMPK) is an important branch of pharmaceutical sciences. The nature of ADME (absorption, distribution, metabolism, excretion) and PK (pharmacokinetics) inquiries during drug discovery and development has evolved in recent years from being largely descriptive to seeking a more quantitative and mechanistic understanding of the fate of drug candidates in biological systems. Tremendous progress has been made in the past decade, not only in the characterization of physiochemical properties of drugs that influence their ADME, target organ exposure, and toxicity, but also in the identification of design principles that can minimize drug-drug interaction (DDI) potentials and reduce the attritions. The importance of membrane transporters in drug disposition, efficacy, and safety, as well as the interplay with metabolic processes, has been increasingly recognized. Dramatic increases in investments on new modalities beyond traditional small and large molecule drugs, such as peptides, oligonucleotides, and antibody-drug conjugates, necessitated further innovations in bioanalytical and experimental tools for the characterization of their ADME properties. In this review, we highlight some of the most notable advances in the last decade, and provide future perspectives on potential major breakthroughs and innovations in the translation of DMPK science in various stages of drug discovery and development.
Collapse
Affiliation(s)
- Yurong Lai
- Drug Metabolism, Gilead Sciences Inc., Foster City, CA 94404, USA
| | - Xiaoyan Chu
- Department of Pharmacokinetics, Pharmacodynamics and Drug Metabolism, Merck & Co., Inc., Kenilworth, NJ 07033, USA
| | - Li Di
- Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research and Development, Groton, CT 06340, USA
| | - Wei Gao
- Department of Pharmacokinetics, Pharmacodynamics and Drug Metabolism, Merck & Co., Inc., Kenilworth, NJ 07033, USA
| | - Yingying Guo
- Eli Lilly and Company, Indianapolis, IN 46221, USA
| | - Xingrong Liu
- Drug Metabolism and Pharmacokinetics, Biogen, Cambridge, MA 02142, USA
| | - Chuang Lu
- Drug Metabolism and Pharmacokinetics, Accent Therapeutics, Inc. Lexington, MA 02421, USA
| | - Jialin Mao
- Department of Drug Metabolism and Pharmacokinetics, Genentech, A Member of the Roche Group, South San Francisco, CA 94080, USA
| | - Hong Shen
- Drug Metabolism and Pharmacokinetics Department, Bristol-Myers Squibb Company, Princeton, NJ 08540, USA
| | - Huaping Tang
- Bioanalysis and Biomarkers, Glaxo Smith Kline, King of the Prussia, PA 19406, USA
| | - Cindy Q. Xia
- Department of Drug Metabolism and Pharmacokinetics, Takeda Pharmaceuticals International Co., Cambridge, MA 02139, USA
| | - Lei Zhang
- Office of Research and Standards, Office of Generic Drugs, CDER, FDA, Silver Spring, MD 20993, USA
| | - Xinxin Ding
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
17
|
Järvinen E, Deng F, Kiander W, Sinokki A, Kidron H, Sjöstedt N. The Role of Uptake and Efflux Transporters in the Disposition of Glucuronide and Sulfate Conjugates. Front Pharmacol 2022; 12:802539. [PMID: 35095509 PMCID: PMC8793843 DOI: 10.3389/fphar.2021.802539] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 12/06/2021] [Indexed: 12/11/2022] Open
Abstract
Glucuronidation and sulfation are the most typical phase II metabolic reactions of drugs. The resulting glucuronide and sulfate conjugates are generally considered inactive and safe. They may, however, be the most prominent drug-related material in the circulation and excreta of humans. The glucuronide and sulfate metabolites of drugs typically have limited cell membrane permeability and subsequently, their distribution and excretion from the human body requires transport proteins. Uptake transporters, such as organic anion transporters (OATs and OATPs), mediate the uptake of conjugates into the liver and kidney, while efflux transporters, such as multidrug resistance proteins (MRPs) and breast cancer resistance protein (BCRP), mediate expulsion of conjugates into bile, urine and the intestinal lumen. Understanding the active transport of conjugated drug metabolites is important for predicting the fate of a drug in the body and its safety and efficacy. The aim of this review is to compile the understanding of transporter-mediated disposition of phase II conjugates. We review the literature on hepatic, intestinal and renal uptake transporters participating in the transport of glucuronide and sulfate metabolites of drugs, other xenobiotics and endobiotics. In addition, we provide an update on the involvement of efflux transporters in the disposition of glucuronide and sulfate metabolites. Finally, we discuss the interplay between uptake and efflux transport in the intestine, liver and kidneys as well as the role of transporters in glucuronide and sulfate conjugate toxicity, drug interactions, pharmacogenetics and species differences.
Collapse
Affiliation(s)
- Erkka Järvinen
- Clinical Pharmacology, Pharmacy, and Environmental Medicine, Department of Public Health, University of Southern Denmark, Odense, Denmark
| | - Feng Deng
- Department of Clinical Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Wilma Kiander
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Alli Sinokki
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Heidi Kidron
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Noora Sjöstedt
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| |
Collapse
|
18
|
Hanke N, Gómez-Mantilla JD, Ishiguro N, Stopfer P, Nock V. Physiologically Based Pharmacokinetic Modeling of Rosuvastatin to Predict Transporter-Mediated Drug-Drug Interactions. Pharm Res 2021; 38:1645-1661. [PMID: 34664206 PMCID: PMC8602162 DOI: 10.1007/s11095-021-03109-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 09/10/2021] [Indexed: 12/29/2022]
Abstract
Purpose To build a physiologically based pharmacokinetic (PBPK) model of the clinical OATP1B1/OATP1B3/BCRP victim drug rosuvastatin for the investigation and prediction of its transporter-mediated drug-drug interactions (DDIs). Methods The Rosuvastatin model was developed using the open-source PBPK software PK-Sim®, following a middle-out approach. 42 clinical studies (dosing range 0.002–80.0 mg), providing rosuvastatin plasma, urine and feces data, positron emission tomography (PET) measurements of tissue concentrations and 7 different rosuvastatin DDI studies with rifampicin, gemfibrozil and probenecid as the perpetrator drugs, were included to build and qualify the model. Results The carefully developed and thoroughly evaluated model adequately describes the analyzed clinical data, including blood, liver, feces and urine measurements. The processes implemented to describe the rosuvastatin pharmacokinetics and DDIs are active uptake by OATP2B1, OATP1B1/OATP1B3 and OAT3, active efflux by BCRP and Pgp, metabolism by CYP2C9 and passive glomerular filtration. The available clinical rifampicin, gemfibrozil and probenecid DDI studies were modeled using in vitro inhibition constants without adjustments. The good prediction of DDIs was demonstrated by simulated rosuvastatin plasma profiles, DDI AUClast ratios (AUClast during DDI/AUClast without co-administration) and DDI Cmax ratios (Cmax during DDI/Cmax without co-administration), with all simulated DDI ratios within 1.6-fold of the observed values. Conclusions A whole-body PBPK model of rosuvastatin was built and qualified for the prediction of rosuvastatin pharmacokinetics and transporter-mediated DDIs. The model is freely available in the Open Systems Pharmacology model repository, to support future investigations of rosuvastatin pharmacokinetics, rosuvastatin therapy and DDI studies during model-informed drug discovery and development (MID3). Supplementary Information The online version contains supplementary material available at 10.1007/s11095-021-03109-6.
Collapse
Affiliation(s)
- Nina Hanke
- Translational Medicine & Clinical Pharmacology, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Str. 65, 88397, Biberach, Germany.
| | - José David Gómez-Mantilla
- Translational Medicine & Clinical Pharmacology, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Str. 65, 88397, Biberach, Germany
| | - Naoki Ishiguro
- Kobe Pharma Research Institute, Nippon Boehringer Ingelheim Co. Ltd, Kobe, Japan
| | - Peter Stopfer
- Translational Medicine & Clinical Pharmacology, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Str. 65, 88397, Biberach, Germany
| | - Valerie Nock
- Translational Medicine & Clinical Pharmacology, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Str. 65, 88397, Biberach, Germany
| |
Collapse
|
19
|
Tang J, Shen H, Zhao X, Holenarsipur VK, Mariappan TT, Zhang Y, Panfen E, Zheng J, Humphreys WG, Lai Y. Endogenous Plasma Kynurenic Acid in Human: A Newly Discovered Biomarker for Drug-Drug Interactions Involving Organic Anion Transporter 1 and 3 Inhibition. Drug Metab Dispos 2021; 49:1063-1069. [PMID: 34599018 DOI: 10.1124/dmd.121.000486] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 09/28/2021] [Indexed: 12/13/2022] Open
Abstract
As an expansion investigation of drug-drug interaction (DDI) from previous clinical trials, additional plasma endogenous metabolites were quantitated in the same subjects to further identify the potential biomarkers of organic anion transporter (OAT) 1/3 inhibition. In the single dose, open label, three-phase with fixed order of treatments study, 14 healthy human volunteers orally received 1000 mg probenecid alone, or 40 mg furosemide alone, or 40 mg furosemide at 1 hour after receiving 1000 mg probenecid on days 1, 8, and 15, respectively. Endogenous metabolites including kynurenic acid, xanthurenic acid, indo-3-acetic acid, pantothenic acid, p-cresol sulfate, and bile acids in the plasma were measured by liquid chromatography-tandem mass spectrometry. The Cmax of kynurenic acids was significantly increased about 3.3- and 3.7-fold over the baseline values at predose followed by the treatment of probenecid alone or in combination with furosemide respectively. In comparison with the furosemide-alone group, the Cmax and area under the plasma concentration-time curve (AUC) up to 12 hours of kynurenic acid were significantly increased about 2.4- and 2.5-fold by probenecid alone, and 2.7- and 2.9-fold by probenecid plus furosemide, respectively. The increases in Cmax and AUC of plasma kynurenic acid by probenecid are comparable to the increases of furosemide Cmax and AUC reported previously. Additionally, the plasma concentrations of xanthurenic acid, indo-3-acetic acid, pantothenic acid, and p-cresol sulfate, but not bile acids, were also significantly elevated by probenecid treatments. The magnitude of effect size analysis for known potential endogenous biomarkers demonstrated that kynurenic acid in the plasma offers promise as a superior addition for early DDI assessment involving OAT1/3 inhibition. SIGNIFICANCE STATEMENT: This article reports that probenecid, an organic anion transporter (OAT) 1 and OAT3 inhibitor, significantly increased the plasma concentrations of kynurenic acid and several uremic acids in human subjects. Of those, the increases of plasma kynurenic acid exposure are comparable to the increases of furosemide by OAT1/3 inhibition. Effect size analysis for known potential endogenous biomarkers revealed that plasma kynurenic acid is a superior addition for early drug-drug interaction assessment involving OAT1/3 inhibition.
Collapse
Affiliation(s)
- Jennifer Tang
- Drug Metabolism, Gilead Science Inc., Foster City, California (J.T., X.Z., J.Z., Y.L.); Drug Metabolism and Pharmacokinetics Department, Bristol-Myers Squibb Company, Princeton, New Jersey (H.S., Y.Z., E.P., W.G.H.); and Pharmaceutical Candidate Optimization, Biocon Bristol-Myers Squibb R&D Centre (BBRC), Syngene International Ltd., Bangalore, India (V.K.H., T.T.M.)
| | - Hong Shen
- Drug Metabolism, Gilead Science Inc., Foster City, California (J.T., X.Z., J.Z., Y.L.); Drug Metabolism and Pharmacokinetics Department, Bristol-Myers Squibb Company, Princeton, New Jersey (H.S., Y.Z., E.P., W.G.H.); and Pharmaceutical Candidate Optimization, Biocon Bristol-Myers Squibb R&D Centre (BBRC), Syngene International Ltd., Bangalore, India (V.K.H., T.T.M.)
| | - Xiaofeng Zhao
- Drug Metabolism, Gilead Science Inc., Foster City, California (J.T., X.Z., J.Z., Y.L.); Drug Metabolism and Pharmacokinetics Department, Bristol-Myers Squibb Company, Princeton, New Jersey (H.S., Y.Z., E.P., W.G.H.); and Pharmaceutical Candidate Optimization, Biocon Bristol-Myers Squibb R&D Centre (BBRC), Syngene International Ltd., Bangalore, India (V.K.H., T.T.M.)
| | - Vinay K Holenarsipur
- Drug Metabolism, Gilead Science Inc., Foster City, California (J.T., X.Z., J.Z., Y.L.); Drug Metabolism and Pharmacokinetics Department, Bristol-Myers Squibb Company, Princeton, New Jersey (H.S., Y.Z., E.P., W.G.H.); and Pharmaceutical Candidate Optimization, Biocon Bristol-Myers Squibb R&D Centre (BBRC), Syngene International Ltd., Bangalore, India (V.K.H., T.T.M.)
| | - T Thanga Mariappan
- Drug Metabolism, Gilead Science Inc., Foster City, California (J.T., X.Z., J.Z., Y.L.); Drug Metabolism and Pharmacokinetics Department, Bristol-Myers Squibb Company, Princeton, New Jersey (H.S., Y.Z., E.P., W.G.H.); and Pharmaceutical Candidate Optimization, Biocon Bristol-Myers Squibb R&D Centre (BBRC), Syngene International Ltd., Bangalore, India (V.K.H., T.T.M.)
| | - Yueping Zhang
- Drug Metabolism, Gilead Science Inc., Foster City, California (J.T., X.Z., J.Z., Y.L.); Drug Metabolism and Pharmacokinetics Department, Bristol-Myers Squibb Company, Princeton, New Jersey (H.S., Y.Z., E.P., W.G.H.); and Pharmaceutical Candidate Optimization, Biocon Bristol-Myers Squibb R&D Centre (BBRC), Syngene International Ltd., Bangalore, India (V.K.H., T.T.M.)
| | - Erika Panfen
- Drug Metabolism, Gilead Science Inc., Foster City, California (J.T., X.Z., J.Z., Y.L.); Drug Metabolism and Pharmacokinetics Department, Bristol-Myers Squibb Company, Princeton, New Jersey (H.S., Y.Z., E.P., W.G.H.); and Pharmaceutical Candidate Optimization, Biocon Bristol-Myers Squibb R&D Centre (BBRC), Syngene International Ltd., Bangalore, India (V.K.H., T.T.M.)
| | - Jim Zheng
- Drug Metabolism, Gilead Science Inc., Foster City, California (J.T., X.Z., J.Z., Y.L.); Drug Metabolism and Pharmacokinetics Department, Bristol-Myers Squibb Company, Princeton, New Jersey (H.S., Y.Z., E.P., W.G.H.); and Pharmaceutical Candidate Optimization, Biocon Bristol-Myers Squibb R&D Centre (BBRC), Syngene International Ltd., Bangalore, India (V.K.H., T.T.M.)
| | - W Griffith Humphreys
- Drug Metabolism, Gilead Science Inc., Foster City, California (J.T., X.Z., J.Z., Y.L.); Drug Metabolism and Pharmacokinetics Department, Bristol-Myers Squibb Company, Princeton, New Jersey (H.S., Y.Z., E.P., W.G.H.); and Pharmaceutical Candidate Optimization, Biocon Bristol-Myers Squibb R&D Centre (BBRC), Syngene International Ltd., Bangalore, India (V.K.H., T.T.M.)
| | - Yurong Lai
- Drug Metabolism, Gilead Science Inc., Foster City, California (J.T., X.Z., J.Z., Y.L.); Drug Metabolism and Pharmacokinetics Department, Bristol-Myers Squibb Company, Princeton, New Jersey (H.S., Y.Z., E.P., W.G.H.); and Pharmaceutical Candidate Optimization, Biocon Bristol-Myers Squibb R&D Centre (BBRC), Syngene International Ltd., Bangalore, India (V.K.H., T.T.M.)
| |
Collapse
|
20
|
Li Y, Talebi Z, Chen X, Sparreboom A, Hu S. Endogenous Biomarkers for SLC Transporter-Mediated Drug-Drug Interaction Evaluation. Molecules 2021; 26:5500. [PMID: 34576971 PMCID: PMC8466752 DOI: 10.3390/molecules26185500] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/06/2021] [Accepted: 09/07/2021] [Indexed: 12/31/2022] Open
Abstract
Membrane transporters play an important role in the absorption, distribution, metabolism, and excretion of xenobiotic substrates, as well as endogenous compounds. The evaluation of transporter-mediated drug-drug interactions (DDIs) is an important consideration during the drug development process and can guide the safe use of polypharmacy regimens in clinical practice. In recent years, several endogenous substrates of drug transporters have been identified as potential biomarkers for predicting changes in drug transport function and the potential for DDIs associated with drug candidates in early phases of drug development. These biomarker-driven investigations have been applied in both preclinical and clinical studies and proposed as a predictive strategy that can be supplanted in order to conduct prospective DDIs trials. Here we provide an overview of this rapidly emerging field, with particular emphasis on endogenous biomarkers recently proposed for clinically relevant uptake transporters.
Collapse
Affiliation(s)
| | | | | | | | - Shuiying Hu
- Division of Pharmaceutics and Pharmacology, College of Pharmacy & Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA; (Y.L.); (Z.T.); (X.C.); (A.S.)
| |
Collapse
|
21
|
Agustina R, Masuo Y, Kido Y, Shinoda K, Ishimoto T, Kato Y. Identification of Food-Derived Isoflavone Sulfates as Inhibition Markers for Intestinal Breast Cancer Resistance Proteins. Drug Metab Dispos 2021; 49:972-984. [PMID: 34413161 DOI: 10.1124/dmd.121.000534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 08/16/2021] [Indexed: 11/22/2022] Open
Abstract
Potential inhibition of the breast cancer resistance protein (BCRP), a drug efflux transporter, is a key issue during drug development, and the use of its physiologic substrates as biomarkers can be advantageous to assess inhibition. In this study, we aimed to identify BCRP substrates by an untargeted metabolomic approach. Mice were orally administered lapatinib to inhibit BCRP in vivo, and plasma samples were assessed by liquid chromatography/time of flight/mass spectrometry with all-ion fragmentation acquisition and quantified by liquid chromatography with tandem mass spectrometry. A differential metabolomic analysis was also performed for plasma from Bcrp -/- and wild-type mice. Plasma peaks of food-derived isoflavone metabolites, daidzein sulfate (DS), and genistein sulfate (GS) increased after lapatinib administration and in Bcrp -/- mice. Administration of lapatinib and another BCRP inhibitor febuxostat increased the area under the plasma concentration-time curve (AUC) of DS, GS, and equol sulfate (ES) by 3.6- and 1.8-, 5.6- and 4.1-, and 1.6- and 4.8-fold, respectively. BCRP inhibitors also increased the AUC and maximum plasma concentration of DS and ES after coadministration with each parent compound. After adding parent compounds to the apical side of induced pluripotent stem cell-derived small intestinal epithelial-like cells, DS, GS, and ES in the basal compartment significantly increased in the presence of lapatinib and febuxostat, suggesting the inhibition of intestinal BCRP. ATP-dependent uptake of DS and ES in BCRP-expressing membrane vesicles was reduced by both inhibitors, indicating inhibition of BCRP-mediated DS and ES transport. Thus, we propose the first evidence of surrogate markers for BCRP inhibition. SIGNIFICANCE STATEMENT: This study performed untargeted metabolomics to identify substrates of BCRP/ABCG2 to assess changes in its transport activity in vivo by BCRP/ABCG2 inhibitors. Food-derived isoflavone sulfates were identified as useful markers for evaluating changes in BCRP-mediated transport in the small intestine by its inhibitors.
Collapse
Affiliation(s)
- Rina Agustina
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan (R.A., Y.M., K.S., T.I., Y.Ka.); Faculty of Pharmacy, Hasanuddin University, Makassar, Indonesia (R.A.); and Laboratory for Drug Discovery and Development, Shionogi & Co., Ltd., Toyonaka, Osaka, Japan (Y.Ki.)
| | - Yusuke Masuo
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan (R.A., Y.M., K.S., T.I., Y.Ka.); Faculty of Pharmacy, Hasanuddin University, Makassar, Indonesia (R.A.); and Laboratory for Drug Discovery and Development, Shionogi & Co., Ltd., Toyonaka, Osaka, Japan (Y.Ki.)
| | - Yasuto Kido
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan (R.A., Y.M., K.S., T.I., Y.Ka.); Faculty of Pharmacy, Hasanuddin University, Makassar, Indonesia (R.A.); and Laboratory for Drug Discovery and Development, Shionogi & Co., Ltd., Toyonaka, Osaka, Japan (Y.Ki.)
| | - Kyosuke Shinoda
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan (R.A., Y.M., K.S., T.I., Y.Ka.); Faculty of Pharmacy, Hasanuddin University, Makassar, Indonesia (R.A.); and Laboratory for Drug Discovery and Development, Shionogi & Co., Ltd., Toyonaka, Osaka, Japan (Y.Ki.)
| | - Takahiro Ishimoto
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan (R.A., Y.M., K.S., T.I., Y.Ka.); Faculty of Pharmacy, Hasanuddin University, Makassar, Indonesia (R.A.); and Laboratory for Drug Discovery and Development, Shionogi & Co., Ltd., Toyonaka, Osaka, Japan (Y.Ki.)
| | - Yukio Kato
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan (R.A., Y.M., K.S., T.I., Y.Ka.); Faculty of Pharmacy, Hasanuddin University, Makassar, Indonesia (R.A.); and Laboratory for Drug Discovery and Development, Shionogi & Co., Ltd., Toyonaka, Osaka, Japan (Y.Ki.)
| |
Collapse
|
22
|
Jala A, Ponneganti S, Vishnubhatla DS, Bhuvanam G, Mekala PR, Varghese B, Radhakrishnanand P, Adela R, Murty US, Borkar RM. Transporter-mediated drug-drug interactions: advancement in models, analytical tools, and regulatory perspective. Drug Metab Rev 2021; 53:285-320. [PMID: 33980079 DOI: 10.1080/03602532.2021.1928687] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 05/05/2021] [Indexed: 02/08/2023]
Abstract
Drug-drug interactions mediated by transporters are a serious clinical concern hence a tremendous amount of work has been done on the characterization of the transporter-mediated proteins in humans and animals. The underlying mechanism for the transporter-mediated drug-drug interaction is the induction or inhibition of the transporter which is involved in the cellular uptake and efflux of drugs. Transporter of the brain, liver, kidney, and intestine are major determinants that alter the absorption, distribution, metabolism, excretion profile of drugs, and considerably influence the pharmacokinetic profile of drugs. As a consequence, transporter proteins may affect the therapeutic activity and safety of drugs. However, mounting evidence suggests that many drugs change the activity and/or expression of the transporter protein. Accordingly, evaluation of drug interaction during the drug development process is an integral part of risk assessment and regulatory requirements. Therefore, this review will highlight the clinical significance of the transporter, their role in disease, possible cause underlying the drug-drug interactions using analytical tools, and update on the regulatory requirement. The recent in-silico approaches which emphasize the advancement in the discovery of drug-drug interactions are also highlighted in this review. Besides, we discuss several endogenous biomarkers that have shown to act as substrates for many transporters, which could be potent determinants to find the drug-drug interactions mediated by transporters. Transporter-mediated drug-drug interactions are taken into consideration in the drug approval process therefore we also provided the extrapolated decision trees from in-vitro to in-vivo, which may trigger the follow-up to clinical studies.
Collapse
Affiliation(s)
- Aishwarya Jala
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, India
| | - Srikanth Ponneganti
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, India
| | - Devi Swetha Vishnubhatla
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, India
| | - Gayathri Bhuvanam
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, India
| | - Prithvi Raju Mekala
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, India
| | - Bincy Varghese
- Department of Pharmacy Practice, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, India
| | - Pullapanthula Radhakrishnanand
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, India
| | - Ramu Adela
- Department of Pharmacy Practice, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, India
| | | | - Roshan M Borkar
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, India
| |
Collapse
|
23
|
Ahmad A, Ogungbenro K, Kunze A, Jacobs F, Snoeys J, Rostami-Hodjegan A, Galetin A. Population pharmacokinetic modeling and simulation to support qualification of pyridoxic acid as endogenous biomarker of OAT1/3 renal transporters. CPT-PHARMACOMETRICS & SYSTEMS PHARMACOLOGY 2021; 10:467-477. [PMID: 33704919 PMCID: PMC8129719 DOI: 10.1002/psp4.12610] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 02/08/2021] [Accepted: 02/10/2021] [Indexed: 12/24/2022]
Abstract
Renal clearance of many drugs is mediated by renal organic anion transporters OAT1/3 and inhibition of these transporters may lead to drug‐drug interactions (DDIs). Pyridoxic acid (PDA) and homovanillic acid (HVA) were indicated as potential biomarkers of OAT1/3. The objective of this study was to develop a population pharmacokinetic model for PDA and HVA to support biomarker qualification. Simultaneous fitting of biomarker plasma and urine data in the presence and absence of potent OAT1/3 inhibitor (probenecid, 500 mg every 6 h) was performed. The impact of study design (multiple vs. single dose of OAT1/3 inhibitor) and ability to detect interactions in the presence of weak/moderate OAT1/3 inhibitors was investigated, together with corresponding power calculations. The population models developed successfully described biomarker baseline and PDA/HVA OAT1/3‐mediated interaction data. No prominent effect of circadian rhythm on PDA and HVA individual baseline levels was evident. Renal elimination contributed greater than 80% to total clearance of both endogenous biomarkers investigated. Estimated probenecid unbound in vivo OAT inhibitory constant was up to 6.4‐fold lower than in vitro values obtained with PDA as a probe. The PDA model was successfully verified against independent literature reported datasets. No significant difference in power of DDI detection was found between multiple and single dose study design when using the same total daily dose of 2000 mg probenecid. Model‐based simulations and power calculations confirmed sensitivity and robustness of plasma PDA data to identify weak, moderate, and strong OAT1/3 inhibitors in an adequately powered clinical study to support optimal design of prospective clinical OAT1/3 interaction studies.
Collapse
Affiliation(s)
- Amais Ahmad
- Centre for Applied Pharmacokinetic Research, School of Health Sciences, The University of Manchester, Manchester, UK
| | - Kayode Ogungbenro
- Centre for Applied Pharmacokinetic Research, School of Health Sciences, The University of Manchester, Manchester, UK
| | - Annett Kunze
- DMPK, Janssen Pharmaceutical Companies, Beerse, Belgium
| | - Frank Jacobs
- DMPK, Janssen Pharmaceutical Companies, Beerse, Belgium
| | - Jan Snoeys
- DMPK, Janssen Pharmaceutical Companies, Beerse, Belgium
| | - Amin Rostami-Hodjegan
- Centre for Applied Pharmacokinetic Research, School of Health Sciences, The University of Manchester, Manchester, UK.,Simcyp Limited (A Certara Company), Sheffield, UK
| | - Aleksandra Galetin
- Centre for Applied Pharmacokinetic Research, School of Health Sciences, The University of Manchester, Manchester, UK
| |
Collapse
|
24
|
Willemin ME, Van Der Made TK, Pijpers I, Dillen L, Kunze A, Jonkers S, Steemans K, Tuytelaars A, Jacobs F, Monshouwer M, Scotcher D, Rostami-Hodjegan A, Galetin A, Snoeys J. Clinical Investigation on Endogenous Biomarkers to Predict Strong OAT-Mediated Drug-Drug Interactions. Clin Pharmacokinet 2021; 60:1187-1199. [PMID: 33840062 DOI: 10.1007/s40262-021-01004-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/10/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND Endogenous biomarkers are promising tools to assess transporter-mediated drug-drug interactions early in humans. METHODS We evaluated on a common and validated in vitro system the selectivity of 4-pyridoxic acid (PDA), homovanillic acid (HVA), glycochenodeoxycholate-3-sulphate (GCDCA-S) and taurine towards different renal transporters, including multidrug resistance-associated protein, and assessed the in vivo biomarker sensitivity towards the strong organic anion transporter (OAT) inhibitor probenecid at 500 mg every 6 h to reach close to complete OAT inhibition. RESULTS PDA and HVA were substrates of the OAT1/2/3, OAT4 (PDA only) and multidrug resistance-associated protein 4; GCDCA-S was more selective, having affinity only towards OAT3 and multidrug resistance-associated protein 2. Taurine was not a substrate of any of the investigated transporters under the in vitro conditions tested. Plasma exposure of PDA and HVA significantly increased and the renal clearance of GCDCA-S, PDA and HVA decreased; the magnitude of these changes was comparable to those of known clinical OAT probe substrates. PDA and GCDCA-S were the most promising endogenous biomarkers of the OAT pathway activity: PDA plasma exposure was the most sensitive to probenecid inhibition, and, in contrast, GCDCA-S was the most sensitive OAT biomarker based on renal clearance, with higher selectivity towards the OAT3 transporter. CONCLUSIONS The current findings illustrate a clear benefit of measuring PDA plasma exposure during phase I studies when a clinical drug candidate is suspected to be an OAT inhibitor based on in vitro data. Subsequently, combined monitoring of PDA and GCDCA-S in both urine and plasma is recommended to tease out the involvement of OAT1/3 in the inhibition interaction. CLINICAL TRIAL REGISTRATION EudraCT number: 2016-003923-49.
Collapse
Affiliation(s)
- Marie-Emilie Willemin
- Drug Metabolism and Pharmacokinetics, Janssen Pharmaceutical Companies of Johnson & Johnson, Turnhoutseweg 30, 2340, Beerse, Belgium.
| | - Thomas K Van Der Made
- Centre for Applied Pharmacokinetic Research, School of Health Sciences, Division of Pharmacy and Optometry, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Ils Pijpers
- Drug Metabolism and Pharmacokinetics, Janssen Pharmaceutical Companies of Johnson & Johnson, Turnhoutseweg 30, 2340, Beerse, Belgium
| | - Lieve Dillen
- Drug Metabolism and Pharmacokinetics, Janssen Pharmaceutical Companies of Johnson & Johnson, Turnhoutseweg 30, 2340, Beerse, Belgium
| | - Annett Kunze
- Drug Metabolism and Pharmacokinetics, Janssen Pharmaceutical Companies of Johnson & Johnson, Turnhoutseweg 30, 2340, Beerse, Belgium
| | - Sophie Jonkers
- Drug Metabolism and Pharmacokinetics, Janssen Pharmaceutical Companies of Johnson & Johnson, Turnhoutseweg 30, 2340, Beerse, Belgium
| | - Kathleen Steemans
- Drug Metabolism and Pharmacokinetics, Janssen Pharmaceutical Companies of Johnson & Johnson, Turnhoutseweg 30, 2340, Beerse, Belgium
| | - An Tuytelaars
- Drug Metabolism and Pharmacokinetics, Janssen Pharmaceutical Companies of Johnson & Johnson, Turnhoutseweg 30, 2340, Beerse, Belgium
| | - Frank Jacobs
- Drug Metabolism and Pharmacokinetics, Janssen Pharmaceutical Companies of Johnson & Johnson, Turnhoutseweg 30, 2340, Beerse, Belgium
| | - Mario Monshouwer
- Drug Metabolism and Pharmacokinetics, Janssen Pharmaceutical Companies of Johnson & Johnson, Turnhoutseweg 30, 2340, Beerse, Belgium
| | - Daniel Scotcher
- Centre for Applied Pharmacokinetic Research, School of Health Sciences, Division of Pharmacy and Optometry, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Amin Rostami-Hodjegan
- Centre for Applied Pharmacokinetic Research, School of Health Sciences, Division of Pharmacy and Optometry, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Aleksandra Galetin
- Centre for Applied Pharmacokinetic Research, School of Health Sciences, Division of Pharmacy and Optometry, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Jan Snoeys
- Drug Metabolism and Pharmacokinetics, Janssen Pharmaceutical Companies of Johnson & Johnson, Turnhoutseweg 30, 2340, Beerse, Belgium
| |
Collapse
|
25
|
Loisios-Konstantinidis I, Dressman J. Physiologically Based Pharmacokinetic/Pharmacodynamic Modeling to Support Waivers of In Vivo Clinical Studies: Current Status, Challenges, and Opportunities. Mol Pharm 2020; 18:1-17. [PMID: 33320002 DOI: 10.1021/acs.molpharmaceut.0c00903] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Physiologically based pharmacokinetic/pharmacodynamic (PBPK/PD) modeling has been extensively applied to quantitatively translate in vitro data, predict the in vivo performance, and ultimately support waivers of in vivo clinical studies. In the area of biopharmaceutics and within the context of model-informed drug discovery and development (MID3), there is a rapidly growing interest in applying verified and validated mechanistic PBPK models to waive in vivo clinical studies. However, the regulatory acceptance of PBPK analyses for biopharmaceutics and oral drug absorption applications, which is also referred to variously as "PBPK absorption modeling" [Zhang et al. CPT: Pharmacometrics Syst. Pharmacol. 2017, 6, 492], "physiologically based absorption modeling", or "physiologically based biopharmaceutics modeling" (PBBM), remains rather low [Kesisoglou et al. J. Pharm. Sci. 2016, 105, 2723] [Heimbach et al. AAPS J. 2019, 21, 29]. Despite considerable progress in the understanding of gastrointestinal (GI) physiology, in vitro biopharmaceutic and in silico tools, PBPK models for oral absorption often suffer from an incomplete understanding of the physiology, overparameterization, and insufficient model validation and/or platform verification, all of which can represent limitations to their translatability and predictive performance. The complex interactions of drug substances and (bioenabling) formulations with the highly dynamic and heterogeneous environment of the GI tract in different age, ethnic, and genetic groups as well as disease states have not been yet fully elucidated, and they deserve further research. Along with advancements in the understanding of GI physiology and refinement of current or development of fully mechanistic in silico tools, we strongly believe that harmonization, interdisciplinary interaction, and enhancement of the translational link between in vitro, in silico, and in vivo will determine the future of PBBM. This Perspective provides an overview of the current status of PBBM, reflects on challenges and knowledge gaps, and discusses future opportunities around PBPK/PD models for oral absorption of small and large molecules to waive in vivo clinical studies.
Collapse
Affiliation(s)
| | - Jennifer Dressman
- Institute of Pharmaceutical Technology, Goethe University, Frankfurt am Main 60438, Germany.,Fraunhofer Institute of Translational Pharmacology and Medicine (ITMP), Carl-von-Noorden Platz 9, Frankfurt am Main 60438, Germany
| |
Collapse
|
26
|
Britz H, Hanke N, Taub ME, Wang T, Prasad B, Fernandez É, Stopfer P, Nock V, Lehr T. Physiologically Based Pharmacokinetic Models of Probenecid and Furosemide to Predict Transporter Mediated Drug-Drug Interactions. Pharm Res 2020; 37:250. [PMID: 33237382 PMCID: PMC7688195 DOI: 10.1007/s11095-020-02964-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 10/26/2020] [Indexed: 12/14/2022]
Abstract
Purpose To provide whole-body physiologically based pharmacokinetic (PBPK) models of the potent clinical organic anion transporter (OAT) inhibitor probenecid and the clinical OAT victim drug furosemide for their application in transporter-based drug-drug interaction (DDI) modeling. Methods PBPK models of probenecid and furosemide were developed in PK-Sim®. Drug-dependent parameters and plasma concentration-time profiles following intravenous and oral probenecid and furosemide administration were gathered from literature and used for model development. For model evaluation, plasma concentration-time profiles, areas under the plasma concentration–time curve (AUC) and peak plasma concentrations (Cmax) were predicted and compared to observed data. In addition, the models were applied to predict the outcome of clinical DDI studies. Results The developed models accurately describe the reported plasma concentrations of 27 clinical probenecid studies and of 42 studies using furosemide. Furthermore, application of these models to predict the probenecid-furosemide and probenecid-rifampicin DDIs demonstrates their good performance, with 6/7 of the predicted DDI AUC ratios and 4/5 of the predicted DDI Cmax ratios within 1.25-fold of the observed values, and all predicted DDI AUC and Cmax ratios within 2.0-fold. Conclusions Whole-body PBPK models of probenecid and furosemide were built and evaluated, providing useful tools to support the investigation of transporter mediated DDIs. Supplementary Information The online version contains supplementary material available at 10.1007/s11095-020-02964-z.
Collapse
Affiliation(s)
- Hannah Britz
- Clinical Pharmacy, Saarland University, Campus C2 2, 66123, Saarbrücken, Germany
| | - Nina Hanke
- Clinical Pharmacy, Saarland University, Campus C2 2, 66123, Saarbrücken, Germany
| | - Mitchell E Taub
- Drug Metabolism and Pharmacokinetics, Boehringer Ingelheim Pharmaceuticals Inc., Ridgefield, Connecticut, USA
| | - Ting Wang
- Drug Metabolism and Pharmacokinetics, Boehringer Ingelheim Pharmaceuticals Inc., Ridgefield, Connecticut, USA
| | - Bhagwat Prasad
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington, USA
| | - Éric Fernandez
- Translational Medicine and Clinical Pharmacology, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Peter Stopfer
- Translational Medicine and Clinical Pharmacology, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Valerie Nock
- Translational Medicine and Clinical Pharmacology, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Thorsten Lehr
- Clinical Pharmacy, Saarland University, Campus C2 2, 66123, Saarbrücken, Germany.
| |
Collapse
|
27
|
Mochizuki T, Mizuno T, Kurosawa T, Yamaguchi T, Higuchi K, Tega Y, Nozaki Y, Kawabata K, Deguchi Y, Kusuhara H. Functional Investigation of Solute Carrier Family 35, Member F2, in Three Cellular Models of the Primate Blood-Brain Barrier. Drug Metab Dispos 2020; 49:3-11. [PMID: 33144341 DOI: 10.1124/dmd.120.000115] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 10/08/2020] [Indexed: 12/15/2022] Open
Abstract
Understanding the mechanisms of drug transport across the blood-brain barrier (BBB) is an important issue for regulating the pharmacokinetics of drugs in the central nervous system. In this study, we focused on solute carrier family 35, member F2 (SLC35F2), whose mRNA is highly expressed in the BBB. SLC35F2 protein was enriched in isolated mouse and monkey brain capillaries relative to brain homogenates and was localized exclusively on the apical membrane of MDCKII cells and brain microvascular endothelial cells (BMECs) differentiated from human induced pluripotent stem cells (hiPS-BMECs). SLC35F2 activity was assessed using its substrate, YM155, and pharmacological experiments revealed SLC35F2 inhibitors, such as famotidine (half-maximal inhibitory concentration, 160 μM). Uptake of YM155 was decreased by famotidine or SLC35F2 knockdown in immortalized human BMECs (human cerebral microvascular endothelial cell/D3 cells). Furthermore, famotidine significantly inhibited the apical (A)-to-basal (B) transport of YM155 in primary cultured monkey BMECs and hiPS-BMECs. Crucially, SLC35F2 knockout diminished the A-to-B transport and intracellular accumulation of YM155 in hiPS-BMECs. By contrast, in studies using an in situ brain perfusion technique, neither deletion of Slc35f2 nor famotidine reduced brain uptake of YM155, even though YM155 is a substrate of mouse SLC35F2. YM155 uptake was decreased significantly by losartan and naringin, inhibitors for the organic anion transporting polypeptide (OATP) 1A4. These findings suggest SLC35F2 is a functional transporter in various cellular models of the primate BBB that delivers its substrates to the brain and that its relative importance in the BBB is modified by differences in the expression of OATPs between primates and rodents. SIGNIFICANCE STATEMENT: This study demonstrated that SLC35F2 is a functional drug influx transporter in three different cellular models of the primate blood-brain barrier (i.e., human cerebral microvascular endothelial cell/D3 cells, primary cultured monkey BMECs, and human induced pluripotent stem-BMECs) but has limited roles in mouse brain. SLC35F2 facilitates apical-to-basal transport across the tight cell monolayer. These findings will contribute to the development of improved strategies for targeting drugs to the central nervous system.
Collapse
Affiliation(s)
- Tatsuki Mochizuki
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan (T.Mo., T.Mi., H.K.); Laboratory of Drug Disposition and Pharmacokinetics, Faculty of Pharma-Sciences, Teikyo University, Tokyo, Japan (T.K., K.H., Y.T., Y.D.); Laboratory of Stem Cell Regulation, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan (T.Y., K.K.); and Drug Metabolism and Pharmacokinetics Tsukuba, Tsukuba Research Laboratories, Eisai Co., Ltd., Tsukuba, Ibaraki, Japan (Y.N.)
| | - Tadahaya Mizuno
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan (T.Mo., T.Mi., H.K.); Laboratory of Drug Disposition and Pharmacokinetics, Faculty of Pharma-Sciences, Teikyo University, Tokyo, Japan (T.K., K.H., Y.T., Y.D.); Laboratory of Stem Cell Regulation, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan (T.Y., K.K.); and Drug Metabolism and Pharmacokinetics Tsukuba, Tsukuba Research Laboratories, Eisai Co., Ltd., Tsukuba, Ibaraki, Japan (Y.N.)
| | - Toshiki Kurosawa
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan (T.Mo., T.Mi., H.K.); Laboratory of Drug Disposition and Pharmacokinetics, Faculty of Pharma-Sciences, Teikyo University, Tokyo, Japan (T.K., K.H., Y.T., Y.D.); Laboratory of Stem Cell Regulation, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan (T.Y., K.K.); and Drug Metabolism and Pharmacokinetics Tsukuba, Tsukuba Research Laboratories, Eisai Co., Ltd., Tsukuba, Ibaraki, Japan (Y.N.)
| | - Tomoko Yamaguchi
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan (T.Mo., T.Mi., H.K.); Laboratory of Drug Disposition and Pharmacokinetics, Faculty of Pharma-Sciences, Teikyo University, Tokyo, Japan (T.K., K.H., Y.T., Y.D.); Laboratory of Stem Cell Regulation, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan (T.Y., K.K.); and Drug Metabolism and Pharmacokinetics Tsukuba, Tsukuba Research Laboratories, Eisai Co., Ltd., Tsukuba, Ibaraki, Japan (Y.N.)
| | - Kei Higuchi
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan (T.Mo., T.Mi., H.K.); Laboratory of Drug Disposition and Pharmacokinetics, Faculty of Pharma-Sciences, Teikyo University, Tokyo, Japan (T.K., K.H., Y.T., Y.D.); Laboratory of Stem Cell Regulation, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan (T.Y., K.K.); and Drug Metabolism and Pharmacokinetics Tsukuba, Tsukuba Research Laboratories, Eisai Co., Ltd., Tsukuba, Ibaraki, Japan (Y.N.)
| | - Yuma Tega
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan (T.Mo., T.Mi., H.K.); Laboratory of Drug Disposition and Pharmacokinetics, Faculty of Pharma-Sciences, Teikyo University, Tokyo, Japan (T.K., K.H., Y.T., Y.D.); Laboratory of Stem Cell Regulation, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan (T.Y., K.K.); and Drug Metabolism and Pharmacokinetics Tsukuba, Tsukuba Research Laboratories, Eisai Co., Ltd., Tsukuba, Ibaraki, Japan (Y.N.)
| | - Yoshitane Nozaki
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan (T.Mo., T.Mi., H.K.); Laboratory of Drug Disposition and Pharmacokinetics, Faculty of Pharma-Sciences, Teikyo University, Tokyo, Japan (T.K., K.H., Y.T., Y.D.); Laboratory of Stem Cell Regulation, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan (T.Y., K.K.); and Drug Metabolism and Pharmacokinetics Tsukuba, Tsukuba Research Laboratories, Eisai Co., Ltd., Tsukuba, Ibaraki, Japan (Y.N.)
| | - Kenji Kawabata
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan (T.Mo., T.Mi., H.K.); Laboratory of Drug Disposition and Pharmacokinetics, Faculty of Pharma-Sciences, Teikyo University, Tokyo, Japan (T.K., K.H., Y.T., Y.D.); Laboratory of Stem Cell Regulation, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan (T.Y., K.K.); and Drug Metabolism and Pharmacokinetics Tsukuba, Tsukuba Research Laboratories, Eisai Co., Ltd., Tsukuba, Ibaraki, Japan (Y.N.)
| | - Yoshiharu Deguchi
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan (T.Mo., T.Mi., H.K.); Laboratory of Drug Disposition and Pharmacokinetics, Faculty of Pharma-Sciences, Teikyo University, Tokyo, Japan (T.K., K.H., Y.T., Y.D.); Laboratory of Stem Cell Regulation, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan (T.Y., K.K.); and Drug Metabolism and Pharmacokinetics Tsukuba, Tsukuba Research Laboratories, Eisai Co., Ltd., Tsukuba, Ibaraki, Japan (Y.N.)
| | - Hiroyuki Kusuhara
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan (T.Mo., T.Mi., H.K.); Laboratory of Drug Disposition and Pharmacokinetics, Faculty of Pharma-Sciences, Teikyo University, Tokyo, Japan (T.K., K.H., Y.T., Y.D.); Laboratory of Stem Cell Regulation, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan (T.Y., K.K.); and Drug Metabolism and Pharmacokinetics Tsukuba, Tsukuba Research Laboratories, Eisai Co., Ltd., Tsukuba, Ibaraki, Japan (Y.N.)
| |
Collapse
|
28
|
Miyake T, Kimoto E, Luo L, Mathialagan S, Horlbogen LM, Ramanathan R, Wood LS, Johnson JG, Le VH, Vourvahis M, Rodrigues AD, Muto C, Furihata K, Sugiyama Y, Kusuhara H. Identification of Appropriate Endogenous Biomarker for Risk Assessment of Multidrug and Toxin Extrusion Protein-Mediated Drug-Drug Interactions in Healthy Volunteers. Clin Pharmacol Ther 2020; 109:507-516. [PMID: 32866300 PMCID: PMC7891601 DOI: 10.1002/cpt.2022] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 07/26/2020] [Indexed: 12/27/2022]
Abstract
Endogenous biomarkers are emerging to advance clinical drug‐drug interaction (DDI) risk assessment in drug development. Twelve healthy subjects received a multidrug and toxin exclusion protein (MATE) inhibitor (pyrimethamine, 10, 25, and 75 mg) in a crossover fashion to identify an appropriate endogenous biomarker to assess MATE1/2‐K‐mediated DDI in the kidneys. Metformin (500 mg) was also given as reference probe drug for MATE1/2‐K. In addition to the previously reported endogenous biomarker candidates (creatinine and N1‐methylnicotinamide (1‐NMN)), N1‐methyladenosine (m1A) was included as novel biomarkers. 1‐NMN and m1A presented as superior MATE1/2‐K biomarkers since changes in their renal clearance (CLr) along with pyrimethamine dose were well‐correlated with metformin CLr changes. The CLr of creatinine was reduced by pyrimethamine, however, its changes poorly correlated with metformin CLr changes. Nonlinear regression analysis (CLr vs. mean total concentration of pyrimethamine in plasma) yielded an estimate of the inhibition constant (Ki) of pyrimethamine and the fraction of the clearance pathway sensitive to pyrimethamine. The in vivoKi value thus obtained was further converted to unbound Ki using plasma unbound fraction of pyrimethamine, which was comparable to the in vitroKi for MATE1 (1‐NMN) and MATE2‐K (1‐NMN and m1A). It is concluded that 1‐NMN and m1A CLr can be leveraged as quantitative MATE1/2‐K biomarkers for DDI risk assessment in healthy volunteers.
Collapse
Affiliation(s)
- Takeshi Miyake
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Emi Kimoto
- ADME Sciences, Medicine Design, Pfizer Inc., Groton, Connecticut, USA
| | - Lina Luo
- ADME Sciences, Medicine Design, Pfizer Inc., Groton, Connecticut, USA
| | | | | | - Ragu Ramanathan
- ADME Sciences, Medicine Design, Pfizer Inc., Groton, Connecticut, USA
| | - Linda S Wood
- Clinical Pharmacogenomics Laboratory, Early Clinical Development, Pfizer Inc, Groton, Connecticut, USA
| | - Jillian G Johnson
- Clinical Pharmacogenomics Laboratory, Early Clinical Development, Pfizer Inc, Groton, Connecticut, USA
| | - Vu H Le
- Biostatics, Pfizer Inc., Collegeville, Pennsylvania, USA
| | | | - A David Rodrigues
- ADME Sciences, Medicine Design, Pfizer Inc., Groton, Connecticut, USA
| | - Chieko Muto
- Clinical Pharmacology, Pfizer R&D Japan, Tokyo, Japan
| | | | - Yuichi Sugiyama
- Sugiyama Laboratory, RIKEN Baton Zone Program, RIKEN Cluster for Science, Technology and Innovation Hub, RIKEN, Yokohama, Kanagawa, Japan
| | - Hiroyuki Kusuhara
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
29
|
Mochizuki T, Mizuno T, Maeda K, Kusuhara H. Current progress in identifying endogenous biomarker candidates for drug transporter phenotyping and their potential application to drug development. Drug Metab Pharmacokinet 2020; 37:100358. [PMID: 33461054 DOI: 10.1016/j.dmpk.2020.09.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 09/09/2020] [Accepted: 09/17/2020] [Indexed: 01/23/2023]
Abstract
Drug transporters play important roles in the elimination of various compounds from the blood. Genetic variation and drug-drug interactions underlie the pharmacokinetic differences for the substrates of drug transporters. Some endogenous substrates of drug transporters have emerged as biomarkers to assess differences in drug transporter activity-not only in animals, but also in humans. Metabolomic analysis is a promising approach for identifying such endogenous substrates through their metabolites. The appropriateness of metabolites is supported by studies in vitro and in vivo, both in animals and through pharmacogenomic or drug-drug interaction studies in humans. This review summarizes current progress in identifying such endogenous biomarkers and applying them to drug transporter phenotyping.
Collapse
Affiliation(s)
- Tatsuki Mochizuki
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, the University of Tokyo, Japan
| | - Tadahaya Mizuno
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, the University of Tokyo, Japan.
| | - Kazuya Maeda
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, the University of Tokyo, Japan.
| | - Hiroyuki Kusuhara
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, the University of Tokyo, Japan.
| |
Collapse
|
30
|
Zhou D, Xu Y, Wang Y, Li J, Gui C, Zhang H. Interaction of Organic Anion Transporter 3-Mediated Uptake of Steviol Acyl Glucuronide, a Major Metabolite of Rebaudioside A, with Selected Drugs. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:1579-1587. [PMID: 31760750 DOI: 10.1021/acs.jafc.9b05808] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Organic anion transporter 3 (OAT3) plays a critical role in the renal excretion of many xenobiotics. Because steviol acyl glucuronide (SVAG), an OAT3 substrate, is the major circulating metabolite after oral ingestion of steviol glycosides and is excreted into the urine, inhibition of OAT3 activity may alter pharmacokinetic profiles of SVAG. The present study showed that drugs such as probenecid and glimepiride displayed potent inhibition toward the OAT3-mediated SVAG transport, with IC50 values of 4.9 and 0.8 μM, respectively. No species differences were observed. Probenecid and glimepiride could significantly elevate plasma concentrations of SVAG after oral administration of rebaudioside A, with significant increases in plasma maximum (Cmax) and area under the plasma time-concentration curve values. The inhibitory effect on the OAT3-mediated SVAG transport exemplified a unique case between drugs and the metabolite of a food additive. Our data suggest that caution should be exercised when giving steviol glycoside products to human subjects with compromised renal function.
Collapse
Affiliation(s)
- Dandan Zhou
- College of Pharmaceutical Sciences , Soochow University , Suzhou 215006 , China
| | - Yunting Xu
- College of Pharmaceutical Sciences , Soochow University , Suzhou 215006 , China
| | - Yedong Wang
- College of Pharmaceutical Sciences , Soochow University , Suzhou 215006 , China
| | - Jiajun Li
- College of Pharmaceutical Sciences , Soochow University , Suzhou 215006 , China
| | - Chunshan Gui
- College of Pharmaceutical Sciences , Soochow University , Suzhou 215006 , China
| | - Hongjian Zhang
- College of Pharmaceutical Sciences , Soochow University , Suzhou 215006 , China
| |
Collapse
|
31
|
Recent progress in in vivo phenotyping technologies for better prediction of transporter-mediated drug-drug interactions. Drug Metab Pharmacokinet 2020; 35:76-88. [PMID: 31948854 DOI: 10.1016/j.dmpk.2019.12.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 12/27/2019] [Accepted: 12/28/2019] [Indexed: 12/20/2022]
Abstract
Clinical reports on transporter-mediated drug-drug interactions (TP-DDIs) have rapidly accumulated and regulatory guidance/guidelines recommend that sponsors consider performing quantitative prediction of TP-DDI risks in the process of drug development. In vitro experiments for characterizing the function of drug transporters have been established and various parameters such as the inhibition constant (Ki) of drugs and the intrinsic uptake/efflux clearance for a certain transporter can be obtained. However, many reports have indicated large discrepancies between the parameters estimated from in vitro experiments and those rationally explaining drug pharmacokinetics. Thus, it is essential to evaluate directly the function of each transporter isoform in vivo in humans. At present, several transporter substrate drugs and endogenous compounds have been recognized as probe substrates for a specific transporter and transporter function was evaluated by monitoring the plasma and urine concentration of those probes; however, few compounds specifically transported via a single transporter isoform have been found. For monitoring the intraorgan concentration of drugs, positron emission tomography can be a powerful tool and clinical examples for quantification of in vivo transporter function have been published. In this review, novel methodologies for in vivo phenotyping of transporter function are summarized.
Collapse
|
32
|
Cheung KWK, Yoshida K, Cheeti S, Chen B, Morley R, Chan IT, Sahasranaman S, Liu L. GDC-0810 Pharmacokinetics and Transporter-Mediated Drug Interaction Evaluation with an Endogenous Biomarker in the First-in-Human, Dose Escalation Study. Drug Metab Dispos 2019; 47:966-973. [DOI: 10.1124/dmd.119.087924] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 06/26/2019] [Indexed: 12/22/2022] Open
|
33
|
Wang Y, Ren J, Sun Q, Zhang Z, Lin Y, Deng S, Wang C, Huo X, Sun C, Tian X, Zhang B, Feng L, Ma X. Organic anion transporter 3 (OAT3)-mediated transport of dicaffeoylquinic acids and prediction of potential drug-drug interaction. Eur J Pharm Sci 2019; 133:95-103. [DOI: 10.1016/j.ejps.2019.03.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 03/03/2019] [Accepted: 03/26/2019] [Indexed: 01/10/2023]
|
34
|
Shen H, Scialis RJ, Lehman-McKeeman L. Xenobiotic Transporters in the Kidney: Function and Role in Toxicity. Semin Nephrol 2019; 39:159-175. [DOI: 10.1016/j.semnephrol.2018.12.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
35
|
Mori D, Maeda K, Kusuhara H. [Quantitative assessment of the risk of OATP1B1/1B3-mediated drug-drug interactions]. Nihon Yakurigaku Zasshi 2019; 154:210-216. [PMID: 31597901 DOI: 10.1254/fpj.154.210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Drug transporters play important roles in determining drug pharmacokinetics. Organic anion transporting polypeptides 1B1/1B3 (OATP1B1/1B3) are transporters mediating hepatic uptake of various anionic drugs. OATP1B1/1B3 activities are changed by genetic mutation and drug-drug interaction (DDI) that could lead to severe adverse reactions. Methods to address the precise DDI risk assessment have been developed in addition to the translational assessment from the results of in vitro studies. Using endogenous substrates as probes is an emerging approach that allows clinical assessment of the DDI risk in the early phase of drug development. Then, the clinical data will be subjected to the pharmacokinetic analysis using physiologically-based pharmacokinetic models to perform the more realistic DDI risk assessment with OATP1B1/1B3 substrate drugs. When drug targets are located inside the hepatocytes, DDI impact on the intrahepatic concentration is critical for their pharmacological actions. Positron emission tomography (PET) allows researchers to determine tissue concentration time profiles of the PET probe upon the inhibition of OATP1B1/1B3, and to estimate the change in kinetic parameter for each intrinsic process of hepatic elimination of PET probe. Integration of the clinical data into the PBPK model realizes more precise prediction of DDI impact on the pharmacokinetics of drugs, and their therapeutic effects.
Collapse
Affiliation(s)
- Daiki Mori
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo
| | - Kazuya Maeda
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo
| | - Hiroyuki Kusuhara
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo
| |
Collapse
|
36
|
Müller F, Sharma A, König J, Fromm MF. Biomarkers for In Vivo Assessment of Transporter Function. Pharmacol Rev 2018; 70:246-277. [PMID: 29487084 DOI: 10.1124/pr.116.013326] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Drug-drug interactions are a major concern not only during clinical practice, but also in drug development. Due to limitations of in vitro-in vivo predictions of transporter-mediated drug-drug interactions, multiple clinical Phase I drug-drug interaction studies may become necessary for a new molecular entity to assess potential drug interaction liabilities. This is a resource-intensive process and exposes study participants, who frequently are healthy volunteers without benefit from study treatment, to the potential risks of a new drug in development. Therefore, there is currently a major interest in new approaches for better prediction of transporter-mediated drug-drug interactions. In particular, researchers in the field attempt to identify endogenous compounds as biomarkers for transporter function, such as hexadecanedioate, tetradecanedioate, coproporphyrins I and III, or glycochenodeoxycholate sulfate for hepatic uptake via organic anion transporting polypeptide 1B or N1-methylnicotinamide for multidrug and toxin extrusion protein-mediated renal secretion. We summarize in this review the currently proposed biomarkers and potential limitations of the substances identified to date. Moreover, we suggest criteria based on current experiences, which may be used to assess the suitability of a biomarker for transporter function. Finally, further alternatives and supplemental approaches to classic drug-drug interaction studies are discussed.
Collapse
Affiliation(s)
- Fabian Müller
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany (F.M., J.K., M.F.F.); and Department of Translational Medicine and Clinical Pharmacology, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach a.d. Riß, Germany (F.M., A.S.)
| | - Ashish Sharma
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany (F.M., J.K., M.F.F.); and Department of Translational Medicine and Clinical Pharmacology, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach a.d. Riß, Germany (F.M., A.S.)
| | - Jörg König
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany (F.M., J.K., M.F.F.); and Department of Translational Medicine and Clinical Pharmacology, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach a.d. Riß, Germany (F.M., A.S.)
| | - Martin F Fromm
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany (F.M., J.K., M.F.F.); and Department of Translational Medicine and Clinical Pharmacology, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach a.d. Riß, Germany (F.M., A.S.)
| |
Collapse
|
37
|
Shen H, Holenarsipur VK, Mariappan TT, Drexler DM, Cantone JL, Rajanna P, Singh Gautam S, Zhang Y, Gan J, Shipkova PA, Marathe P, Humphreys WG. Evidence for the Validity of Pyridoxic Acid (PDA) as a Plasma-Based Endogenous Probe for OAT1 and OAT3 Function in Healthy Subjects. J Pharmacol Exp Ther 2018; 368:136-145. [PMID: 30361237 DOI: 10.1124/jpet.118.252643] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 10/23/2018] [Indexed: 12/24/2022] Open
Abstract
Plasma pyridoxic acid (PDA) and homovanillic acid (HVA) were recently identified as novel endogenous biomarkers of organic anion transporter (OAT) 1/3 function in monkeys. Consequently, this clinical study assessed the dynamic changes and utility of plasma PDA and HVA as an initial evaluation of OAT1/3 inhibition in early-phase drug development. The study was designed as a single-dose randomized, three-phase, crossover study; 14 Indian healthy volunteers received probenecid (PROB) (1000 mg orally) alone, furosemide (FSM) (40 mg orally) alone, or FSM 1 hour after receiving PROB (40 and 1000 mg orally) on days 1, 8, and 15, respectively. PDA and HVA plasma concentrations remained stable over time in the prestudy and FSM groups. Administration of PROB significantly increased the area under the plasma concentration-time curve (AUC) of PDA by 3.1-fold (dosed alone; P < 0.05), and 3.2-fold (coadministered with FSM; P < 0.01), compared with the prestudy and FSM groups, respectively. The corresponding increase in HVA AUC was 1.8-fold (P > 0.05) and 2.1-fold (P < 0.05), respectively. The increases in PDA AUC are similar to those in FSM AUC, whereas those of HVA are smaller (3.1-3.2 and 1.8-2.1 vs. 3.3, respectively). PDA and HVA renal clearance (CL R) values were decreased by PROB to smaller extents compared with FSM (0.35-0.37 and 0.67-0.73 vs. 0.23, respectively). These data demonstrate that plasma PDA is a promising endogenous biomarker for OAT1/3 function and that its plasma exposure responds in a similar fashion to FSM upon OAT1/3 inhibition by PROB. The magnitude and variability of response in PDA AUC and CL R values between subjects is more favorable relative to HVA.
Collapse
Affiliation(s)
- Hong Shen
- Metabolism and Pharmacokinetics Department (H.S., Y.Z., J.G., P.M., W.G.H.) and Bioanalytical and Discovery Analytical Sciences Department (P.A.S.), Bristol-Myers Squibb Company, Princeton, New Jersey; Pharmaceutical Candidate Optimization, Biocon Bristol-Myers Squibb R&D Centre (BBRC), Syngene International Ltd., Biocon Park, Bangalore, India (V.K.H., T.T.M., P.R., S.S.G.); and Bioanalytical and Discovery Analytical Sciences Department, Bristol-Myers Squibb Company, Wallingford, Connecticut (D.M.D., J.L.C.)
| | - Vinay K Holenarsipur
- Metabolism and Pharmacokinetics Department (H.S., Y.Z., J.G., P.M., W.G.H.) and Bioanalytical and Discovery Analytical Sciences Department (P.A.S.), Bristol-Myers Squibb Company, Princeton, New Jersey; Pharmaceutical Candidate Optimization, Biocon Bristol-Myers Squibb R&D Centre (BBRC), Syngene International Ltd., Biocon Park, Bangalore, India (V.K.H., T.T.M., P.R., S.S.G.); and Bioanalytical and Discovery Analytical Sciences Department, Bristol-Myers Squibb Company, Wallingford, Connecticut (D.M.D., J.L.C.)
| | - T Thanga Mariappan
- Metabolism and Pharmacokinetics Department (H.S., Y.Z., J.G., P.M., W.G.H.) and Bioanalytical and Discovery Analytical Sciences Department (P.A.S.), Bristol-Myers Squibb Company, Princeton, New Jersey; Pharmaceutical Candidate Optimization, Biocon Bristol-Myers Squibb R&D Centre (BBRC), Syngene International Ltd., Biocon Park, Bangalore, India (V.K.H., T.T.M., P.R., S.S.G.); and Bioanalytical and Discovery Analytical Sciences Department, Bristol-Myers Squibb Company, Wallingford, Connecticut (D.M.D., J.L.C.)
| | - Dieter M Drexler
- Metabolism and Pharmacokinetics Department (H.S., Y.Z., J.G., P.M., W.G.H.) and Bioanalytical and Discovery Analytical Sciences Department (P.A.S.), Bristol-Myers Squibb Company, Princeton, New Jersey; Pharmaceutical Candidate Optimization, Biocon Bristol-Myers Squibb R&D Centre (BBRC), Syngene International Ltd., Biocon Park, Bangalore, India (V.K.H., T.T.M., P.R., S.S.G.); and Bioanalytical and Discovery Analytical Sciences Department, Bristol-Myers Squibb Company, Wallingford, Connecticut (D.M.D., J.L.C.)
| | - Joseph L Cantone
- Metabolism and Pharmacokinetics Department (H.S., Y.Z., J.G., P.M., W.G.H.) and Bioanalytical and Discovery Analytical Sciences Department (P.A.S.), Bristol-Myers Squibb Company, Princeton, New Jersey; Pharmaceutical Candidate Optimization, Biocon Bristol-Myers Squibb R&D Centre (BBRC), Syngene International Ltd., Biocon Park, Bangalore, India (V.K.H., T.T.M., P.R., S.S.G.); and Bioanalytical and Discovery Analytical Sciences Department, Bristol-Myers Squibb Company, Wallingford, Connecticut (D.M.D., J.L.C.)
| | - Prabhakar Rajanna
- Metabolism and Pharmacokinetics Department (H.S., Y.Z., J.G., P.M., W.G.H.) and Bioanalytical and Discovery Analytical Sciences Department (P.A.S.), Bristol-Myers Squibb Company, Princeton, New Jersey; Pharmaceutical Candidate Optimization, Biocon Bristol-Myers Squibb R&D Centre (BBRC), Syngene International Ltd., Biocon Park, Bangalore, India (V.K.H., T.T.M., P.R., S.S.G.); and Bioanalytical and Discovery Analytical Sciences Department, Bristol-Myers Squibb Company, Wallingford, Connecticut (D.M.D., J.L.C.)
| | - Shashyendra Singh Gautam
- Metabolism and Pharmacokinetics Department (H.S., Y.Z., J.G., P.M., W.G.H.) and Bioanalytical and Discovery Analytical Sciences Department (P.A.S.), Bristol-Myers Squibb Company, Princeton, New Jersey; Pharmaceutical Candidate Optimization, Biocon Bristol-Myers Squibb R&D Centre (BBRC), Syngene International Ltd., Biocon Park, Bangalore, India (V.K.H., T.T.M., P.R., S.S.G.); and Bioanalytical and Discovery Analytical Sciences Department, Bristol-Myers Squibb Company, Wallingford, Connecticut (D.M.D., J.L.C.)
| | - Yueping Zhang
- Metabolism and Pharmacokinetics Department (H.S., Y.Z., J.G., P.M., W.G.H.) and Bioanalytical and Discovery Analytical Sciences Department (P.A.S.), Bristol-Myers Squibb Company, Princeton, New Jersey; Pharmaceutical Candidate Optimization, Biocon Bristol-Myers Squibb R&D Centre (BBRC), Syngene International Ltd., Biocon Park, Bangalore, India (V.K.H., T.T.M., P.R., S.S.G.); and Bioanalytical and Discovery Analytical Sciences Department, Bristol-Myers Squibb Company, Wallingford, Connecticut (D.M.D., J.L.C.)
| | - Jinping Gan
- Metabolism and Pharmacokinetics Department (H.S., Y.Z., J.G., P.M., W.G.H.) and Bioanalytical and Discovery Analytical Sciences Department (P.A.S.), Bristol-Myers Squibb Company, Princeton, New Jersey; Pharmaceutical Candidate Optimization, Biocon Bristol-Myers Squibb R&D Centre (BBRC), Syngene International Ltd., Biocon Park, Bangalore, India (V.K.H., T.T.M., P.R., S.S.G.); and Bioanalytical and Discovery Analytical Sciences Department, Bristol-Myers Squibb Company, Wallingford, Connecticut (D.M.D., J.L.C.)
| | - Petia A Shipkova
- Metabolism and Pharmacokinetics Department (H.S., Y.Z., J.G., P.M., W.G.H.) and Bioanalytical and Discovery Analytical Sciences Department (P.A.S.), Bristol-Myers Squibb Company, Princeton, New Jersey; Pharmaceutical Candidate Optimization, Biocon Bristol-Myers Squibb R&D Centre (BBRC), Syngene International Ltd., Biocon Park, Bangalore, India (V.K.H., T.T.M., P.R., S.S.G.); and Bioanalytical and Discovery Analytical Sciences Department, Bristol-Myers Squibb Company, Wallingford, Connecticut (D.M.D., J.L.C.)
| | - Punit Marathe
- Metabolism and Pharmacokinetics Department (H.S., Y.Z., J.G., P.M., W.G.H.) and Bioanalytical and Discovery Analytical Sciences Department (P.A.S.), Bristol-Myers Squibb Company, Princeton, New Jersey; Pharmaceutical Candidate Optimization, Biocon Bristol-Myers Squibb R&D Centre (BBRC), Syngene International Ltd., Biocon Park, Bangalore, India (V.K.H., T.T.M., P.R., S.S.G.); and Bioanalytical and Discovery Analytical Sciences Department, Bristol-Myers Squibb Company, Wallingford, Connecticut (D.M.D., J.L.C.)
| | - W Griffith Humphreys
- Metabolism and Pharmacokinetics Department (H.S., Y.Z., J.G., P.M., W.G.H.) and Bioanalytical and Discovery Analytical Sciences Department (P.A.S.), Bristol-Myers Squibb Company, Princeton, New Jersey; Pharmaceutical Candidate Optimization, Biocon Bristol-Myers Squibb R&D Centre (BBRC), Syngene International Ltd., Biocon Park, Bangalore, India (V.K.H., T.T.M., P.R., S.S.G.); and Bioanalytical and Discovery Analytical Sciences Department, Bristol-Myers Squibb Company, Wallingford, Connecticut (D.M.D., J.L.C.)
| |
Collapse
|
38
|
Chu X, Liao M, Shen H, Yoshida K, Zur AA, Arya V, Galetin A, Giacomini KM, Hanna I, Kusuhara H, Lai Y, Rodrigues D, Sugiyama Y, Zamek-Gliszczynski MJ, Zhang L. Clinical Probes and Endogenous Biomarkers as Substrates for Transporter Drug-Drug Interaction Evaluation: Perspectives From the International Transporter Consortium. Clin Pharmacol Ther 2018; 104:836-864. [DOI: 10.1002/cpt.1216] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 08/01/2018] [Indexed: 02/06/2023]
Affiliation(s)
- Xiaoyan Chu
- Department of Pharmacokinetics, Pharmacodynamics and Drug Metabolism; Merck & Co., Inc; Kenilworth New Jersey USA
| | - Mingxiang Liao
- Department of Clinical Pharmacology; Clovis Oncology, Inc.; Boulder Colorado USA
| | - Hong Shen
- Department of Metabolism and Pharmacokinetics; Bristol-Myers Squibb; Princeton New Jersey USA
| | - Kenta Yoshida
- Clinical Pharmacology; Genentech Research and Early Development; South San Francisco California USA
| | | | - Vikram Arya
- Division of Clinical Pharmacology IV; Office of Clinical Pharmacology; Office of Translational Sciences; Center for Drug Evaluation and Research; Food and Drug Administration; Silver Spring Maryland USA
| | - Aleksandra Galetin
- Centre for Applied Pharmacokinetic Research; School of Health Sciences; University of Manchester; Manchester UK
| | - Kathleen M. Giacomini
- Department of Bioengineering and Therapeutic Sciences; Schools of Pharmacy and Medicine; University of California; San Francisco California USA
| | - Imad Hanna
- Pharmacokinetic Sciences; Novartis Institutes for Biomedical Research; East Hanover New Jersey USA
| | - Hiroyuki Kusuhara
- Graduate School of Pharmaceutical Sciences; The University of Tokyo; Tokyo Japan
| | - Yurong Lai
- Drug Metabolism; Gilead Science, Inc.; Foster City California USA
| | - David Rodrigues
- Pharmacokinetics, Dynamics, & Metabolism; Medicine Design; Pfizer Inc.; Groton Connecticut USA
| | - Yuichi Sugiyama
- Sugiyama Laboratory; RIKEN Baton Zone Program, Cluster for Science; RIKEN; Yokohama Japan
| | | | - Lei Zhang
- Office of Research and Standards; Office of Generic Drugs; Center for Drug Evaluation and Research; Food and Drug Administration; Silver Spring Maryland USA
| | | |
Collapse
|
39
|
Yoshida K, Guo C, Sane R. Quantitative Prediction of OATP-Mediated Drug-Drug Interactions With Model-Based Analysis of Endogenous Biomarker Kinetics. CPT-PHARMACOMETRICS & SYSTEMS PHARMACOLOGY 2018; 7:517-524. [PMID: 29924471 PMCID: PMC6118294 DOI: 10.1002/psp4.12315] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 05/23/2018] [Indexed: 12/18/2022]
Abstract
Quantitative prediction of the magnitude of transporter‐mediated clinical drug‐drug interactions (DDIs) solely from in vitro inhibition data remains challenging. The objective of the present work was to analyze the kinetic profile of an endogenous biomarker for organic anion‐transporting polypeptides 1B (OATP1B), coproporphyrin I (CPI), and to predict clinical DDIs with a probe OATP1B substrate (pravastatin) based on “in vivo” inhibition constants (Ki). The CPI kinetics in the presence and absence of strong and weak OATP1B inhibitors (rifampin and GDC‐0810) were described well with a one‐compartment model, and in vivo Ki were estimated. Clinical DDIs between pravastatin and these inhibitors were predicted using physiologically based pharmacokinetic (PBPK) models coupled with the estimated in vivo Ki and predicted magnitude matched well with the observed DDIs. In conclusion, model‐based analysis of the CPI profile has the potential to quantitatively predict liability of a new molecular entity (NME) as an OATP1B inhibitor early in drug development.
Collapse
Affiliation(s)
- Kenta Yoshida
- Clinical Pharmacology, Genentech Research and Early Development, South San Francisco, California, USA
| | - Cen Guo
- Clinical Pharmacology, Genentech Research and Early Development, South San Francisco, California, USA.,Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Rucha Sane
- Clinical Pharmacology, Genentech Research and Early Development, South San Francisco, California, USA
| |
Collapse
|
40
|
Yee SW, Brackman DJ, Ennis EA, Sugiyama Y, Kamdem LK, Blanchard R, Galetin A, Zhang L, Giacomini KM. Influence of Transporter Polymorphisms on Drug Disposition and Response: A Perspective From the International Transporter Consortium. Clin Pharmacol Ther 2018; 104:803-817. [PMID: 29679469 DOI: 10.1002/cpt.1098] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 04/10/2018] [Accepted: 04/11/2018] [Indexed: 12/21/2022]
Abstract
Advances in genomic technologies have led to a wealth of information identifying genetic polymorphisms in membrane transporters, specifically how these polymorphisms affect drug disposition and response. This review describes the current perspective of the International Transporter Consortium (ITC) on clinically important polymorphisms in membrane transporters. ITC suggests that, in addition to previously recommended polymorphisms in ABCG2 (BCRP) and SLCO1B1 (OATP1B1), polymorphisms in the emerging transporter, SLC22A1 (OCT1), be considered during drug development. Collectively, polymorphisms in these transporters are important determinants of interindividual differences in the levels, toxicities, and response to many drugs.
Collapse
Affiliation(s)
- Sook Wah Yee
- Department of Bioengineering and Therapeutic Sciences, Schools of Pharmacy and Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Deanna J Brackman
- Department of Bioengineering and Therapeutic Sciences, Schools of Pharmacy and Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Elizabeth A Ennis
- Department of Bioengineering and Therapeutic Sciences, Schools of Pharmacy and Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Yuichi Sugiyama
- Sugiyama Laboratory, RIKEN Innovation Center, Research Cluster for Innovation, RIKEN, Yokohama, Japan
| | - Landry K Kamdem
- Department of Pharmaceutical Sciences, Harding University College of Pharmacy, Searcy, Arkansas, USA
| | | | - Aleksandra Galetin
- Centre for Applied Pharmacokinetic Research, School of Health Sciences, University of Manchester, UK
| | - Lei Zhang
- Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| | - Kathleen M Giacomini
- Department of Bioengineering and Therapeutic Sciences, Schools of Pharmacy and Medicine, University of California, San Francisco, San Francisco, California, USA.,Institute of Human Genetics, University of California, San Francisco, San Francisco, California, USA
| |
Collapse
|
41
|
Takehara I, Yoshikado T, Ishigame K, Mori D, Furihata KI, Watanabe N, Ando O, Maeda K, Sugiyama Y, Kusuhara H. Comparative Study of the Dose-Dependence of OATP1B Inhibition by Rifampicin Using Probe Drugs and Endogenous Substrates in Healthy Volunteers. Pharm Res 2018; 35:138. [PMID: 29748935 DOI: 10.1007/s11095-018-2416-3] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Accepted: 04/22/2018] [Indexed: 12/11/2022]
Abstract
PURPOSE To evaluate association of the dose-dependent effect of rifampicin, an OATP1B inhibitor, on the plasma concentration-time profiles among OATP1B substrates drugs and endogenous substrates. METHODS Eight healthy volunteers received atorvastatin (1 mg), pitavastatin (0.2 mg), rosuvastatin (0.5 mg), and fluvastatin (2 mg) alone or with rifampicin (300 or 600 mg) in a crossover fashion. The plasma concentrations of these OATP1B probe drugs, total and direct bilirubin, glycochenodeoxycholate-3-sulfate (GCDCA-S), and coproporphyrin I, were determined. RESULTS The most striking effect of 600 mg rifampicin was on atorvastatin (6.0-times increase) and GCDCA-S (10-times increase). The AUC0-24h of atorvastatin was reasonably correlated with that of pitavastatin (r2 = 0.73) and with the AUC0-4h of fluvastatin (r2 = 0.62) and sufficiently with the AUC0-24h of rosuvastatin (r2 = 0.32). The AUC0-24h of GCDCA-S was reasonably correlated with those of direct bilirubin (r2 = 0.74) and coproporphyrin I (r2 = 0.78), and sufficiently with that of total bilirubin (r2 = 0.30). The AUC0-24h of GCDCA-S, direct bilirubin, and coproporphyrin I were reasonably correlated with that of atorvastatin (r2 = 0.48-0.70) [corrected]. CONCLUSION These results suggest that direct bilirubin, GCDCA-S, and coproporphyrin I are promising surrogate probes for the quantitative assessment of potential OATP1B-mediated DDI.
Collapse
Affiliation(s)
- Issey Takehara
- Biomarker Department, Daiichi Sankyo Co. Ltd., Tokyo, Japan.,Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Takashi Yoshikado
- Laboratory of Clinical Pharmacology, Yokohama University of Pharmacy, 601 Matano-cho, Totsuka-ku, Yokohama-shi, Kanagawa, 245-0066, Japan.,Sugiyama Laboratory, RIKEN Innovation Center, RIKEN, Yokohama, Japan
| | - Keiko Ishigame
- Sugiyama Laboratory, RIKEN Innovation Center, RIKEN, Yokohama, Japan
| | - Daiki Mori
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | | | - Nobuaki Watanabe
- Drug Metabolism & Pharmacokinetics Research Laboratories, Daiichi Sankyo Co., Ltd., Tokyo, Japan
| | - Osamu Ando
- Drug Metabolism & Pharmacokinetics Research Laboratories, Daiichi Sankyo Co., Ltd., Tokyo, Japan
| | - Kazuya Maeda
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Yuichi Sugiyama
- Sugiyama Laboratory, RIKEN Innovation Center, RIKEN, Yokohama, Japan
| | - Hiroyuki Kusuhara
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| |
Collapse
|
42
|
A pharmaceutical industry perspective on transporter and CYP-mediated drug–drug interactions: kidney transporter biomarkers. Bioanalysis 2018; 10:625-631. [DOI: 10.4155/bio-2017-0265] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
43
|
Novel LC–MS assays impacting CYP and transporter drug–drug interaction evaluations. Bioanalysis 2018. [DOI: 10.4155/bio-2018-0086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
44
|
Srinivas NR. Letter: high oral dose of taurine for portal hypertension in cirrhotic patients-some clinical pharmacology considerations. Aliment Pharmacol Ther 2018; 47:861-862. [PMID: 29446135 DOI: 10.1111/apt.14513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
Affiliation(s)
- N R Srinivas
- Zydus Research Center, Ahmedabad, Gujarat, India
| |
Collapse
|
45
|
Hamada Y, Ikemura K, Iwamoto T, Okuda M. Stereoselective Inhibition of Renal Basolateral Human Organic Anion Transporter 3 by Lansoprazole Enantiomers. Pharmacology 2018; 101:176-183. [PMID: 29353278 DOI: 10.1159/000485920] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 12/01/2017] [Indexed: 12/12/2022]
Abstract
Lansoprazole, a proton pump inhibitor, potently inhibits human organic anion transporter, hOAT3 (SLC22A8). Lansoprazole has an asymmetric atom in its structure and is clinically administered as a racemic mixture of (R)-and (S)-enantiomers. However, little is known about the stereoselective inhibitory potencies of lansoprazole against hOAT3 and its homolog, hOAT1. In the present study, the stereoselective inhibitory effect of lansoprazole was evaluated using hOAT1-and hOAT3-expressing cultured cells. hOAT1 and hOAT3 transported [14C]p-aminohippurate and [3H]estrone-3-sulfate (ES) with Michaelis-Menten constants of 29.8 ± 4.0 and 30.1 ± 9.0 µmol/L respectively. Lansoprazole enantiomers inhibited hOAT1- and hOAT3-mediated transport of each substrate in a concentration-dependent manner. The IC50 value of (S)-lansoprazole against hOAT3-mediated transport of [3H]ES (0.61 ± 0.08 µmol/L) was significantly lower than that of (R)-lansoprazole (1.75 ± 0.31 µmol/L). In contrast, stereoselectivity was not demonstrated for the inhibition of hOAT1. Furthermore, (S)-lansoprazole inhibited hOAT3-mediated transport of pemetrexed and methotrexate (hOAT3 substrates) more strongly than the corresponding (R)-lansoprazole. This study is the first to demonstrate that the stereoselective inhibitory potency of (S)-lansoprazole against hOAT3 is greater than that of (R)-lansoprazole. The present findings provide novel information about the drug interactions associated with lansoprazole.
Collapse
Affiliation(s)
- Yugo Hamada
- Department of Clinical Pharmacy and Biopharmaceutics, Mie University Graduate School of Medicine, Tsu, Japan
| | - Kenji Ikemura
- Department of Clinical Pharmacy and Biopharmaceutics, Mie University Graduate School of Medicine, Tsu, Japan.,Department of Pharmacy, Mie University Hospital, Tsu, Japan
| | - Takuya Iwamoto
- Department of Clinical Pharmacy and Biopharmaceutics, Mie University Graduate School of Medicine, Tsu, Japan.,Department of Pharmacy, Mie University Hospital, Tsu, Japan
| | - Masahiro Okuda
- Department of Clinical Pharmacy and Biopharmaceutics, Mie University Graduate School of Medicine, Tsu, Japan.,Department of Pharmacy, Mie University Hospital, Tsu, Japan
| |
Collapse
|
46
|
Shen H, Nelson DM, Oliveira RV, Zhang Y, Mcnaney CA, Gu X, Chen W, Su C, Reily MD, Shipkova PA, Gan J, Lai Y, Marathe P, Humphreys WG. Discovery and Validation of Pyridoxic Acid and Homovanillic Acid as Novel Endogenous Plasma Biomarkers of Organic Anion Transporter (OAT) 1 and OAT3 in Cynomolgus Monkeys. Drug Metab Dispos 2017; 46:178-188. [PMID: 29162614 DOI: 10.1124/dmd.117.077586] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 11/17/2017] [Indexed: 12/21/2022] Open
Abstract
Perturbation of organic anion transporter (OAT) 1- and OAT3-mediated transport can alter the exposure, efficacy, and safety of drugs. Although there have been reports of the endogenous biomarkers for OAT1/3, none of these have all of the characteristics required for a clinical useful biomarker. Cynomolgus monkeys were treated with intravenous probenecid (PROB) at a dose of 40 mg/kg in this study. As expected, PROB increased the area under the plasma concentration-time curve (AUC) of coadministered furosemide, a known substrate of OAT1 and OAT3, by 4.1-fold, consistent with the values reported in humans (3.1- to 3.7-fold). Of the 233 plasma metabolites analyzed using a liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based metabolomics method, 29 metabolites, including pyridoxic acid (PDA) and homovanillic acid (HVA), were significantly increased after either 1 or 3 hours in plasma from the monkeys pretreated with PROB compared with the treated animals. The plasma of animals was then subjected to targeted LC-MS/MS analysis, which confirmed that the PDA and HVA AUCs increased by approximately 2- to 3-fold by PROB pretreatments. PROB also increased the plasma concentrations of hexadecanedioic acid (HDA) and tetradecanedioic acid (TDA), although the increases were not statistically significant. Moreover, transporter profiling assessed using stable cell lines constitutively expressing transporters demonstrated that PDA and HVA are substrates for human OAT1, OAT3, OAT2 (HVA), and OAT4 (PDA), but not OCT2, MATE1, MATE2K, OATP1B1, OATP1B3, and sodium taurocholate cotransporting polypeptide. Collectively, these findings suggest that PDA and HVA might serve as blood-based endogenous probes of cynomolgus monkey OAT1 and OAT3, and investigation of PDA and HVA as circulating endogenous biomarkers of human OAT1 and OAT3 function is warranted.
Collapse
Affiliation(s)
- Hong Shen
- Departments of Metabolism and Pharmacokinetics (H.S., Y.Z., X.G., W.C., J.G., Y.L., P.M., W.G.H.), Discovery Toxicology (D.M.N.), Bioanalytical and Discovery Analytical Sciences (R.V.O., C.A.M., M.D.R., P.A.S.), and Discovery Pharmaceutics (C.S.), Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Research and Development, Princeton, New Jersey
| | - David M Nelson
- Departments of Metabolism and Pharmacokinetics (H.S., Y.Z., X.G., W.C., J.G., Y.L., P.M., W.G.H.), Discovery Toxicology (D.M.N.), Bioanalytical and Discovery Analytical Sciences (R.V.O., C.A.M., M.D.R., P.A.S.), and Discovery Pharmaceutics (C.S.), Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Research and Development, Princeton, New Jersey
| | - Regina V Oliveira
- Departments of Metabolism and Pharmacokinetics (H.S., Y.Z., X.G., W.C., J.G., Y.L., P.M., W.G.H.), Discovery Toxicology (D.M.N.), Bioanalytical and Discovery Analytical Sciences (R.V.O., C.A.M., M.D.R., P.A.S.), and Discovery Pharmaceutics (C.S.), Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Research and Development, Princeton, New Jersey
| | - Yueping Zhang
- Departments of Metabolism and Pharmacokinetics (H.S., Y.Z., X.G., W.C., J.G., Y.L., P.M., W.G.H.), Discovery Toxicology (D.M.N.), Bioanalytical and Discovery Analytical Sciences (R.V.O., C.A.M., M.D.R., P.A.S.), and Discovery Pharmaceutics (C.S.), Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Research and Development, Princeton, New Jersey
| | - Colleen A Mcnaney
- Departments of Metabolism and Pharmacokinetics (H.S., Y.Z., X.G., W.C., J.G., Y.L., P.M., W.G.H.), Discovery Toxicology (D.M.N.), Bioanalytical and Discovery Analytical Sciences (R.V.O., C.A.M., M.D.R., P.A.S.), and Discovery Pharmaceutics (C.S.), Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Research and Development, Princeton, New Jersey
| | - Xiaomei Gu
- Departments of Metabolism and Pharmacokinetics (H.S., Y.Z., X.G., W.C., J.G., Y.L., P.M., W.G.H.), Discovery Toxicology (D.M.N.), Bioanalytical and Discovery Analytical Sciences (R.V.O., C.A.M., M.D.R., P.A.S.), and Discovery Pharmaceutics (C.S.), Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Research and Development, Princeton, New Jersey
| | - Weiqi Chen
- Departments of Metabolism and Pharmacokinetics (H.S., Y.Z., X.G., W.C., J.G., Y.L., P.M., W.G.H.), Discovery Toxicology (D.M.N.), Bioanalytical and Discovery Analytical Sciences (R.V.O., C.A.M., M.D.R., P.A.S.), and Discovery Pharmaceutics (C.S.), Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Research and Development, Princeton, New Jersey
| | - Ching Su
- Departments of Metabolism and Pharmacokinetics (H.S., Y.Z., X.G., W.C., J.G., Y.L., P.M., W.G.H.), Discovery Toxicology (D.M.N.), Bioanalytical and Discovery Analytical Sciences (R.V.O., C.A.M., M.D.R., P.A.S.), and Discovery Pharmaceutics (C.S.), Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Research and Development, Princeton, New Jersey
| | - Michael D Reily
- Departments of Metabolism and Pharmacokinetics (H.S., Y.Z., X.G., W.C., J.G., Y.L., P.M., W.G.H.), Discovery Toxicology (D.M.N.), Bioanalytical and Discovery Analytical Sciences (R.V.O., C.A.M., M.D.R., P.A.S.), and Discovery Pharmaceutics (C.S.), Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Research and Development, Princeton, New Jersey
| | - Petia A Shipkova
- Departments of Metabolism and Pharmacokinetics (H.S., Y.Z., X.G., W.C., J.G., Y.L., P.M., W.G.H.), Discovery Toxicology (D.M.N.), Bioanalytical and Discovery Analytical Sciences (R.V.O., C.A.M., M.D.R., P.A.S.), and Discovery Pharmaceutics (C.S.), Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Research and Development, Princeton, New Jersey
| | - Jinping Gan
- Departments of Metabolism and Pharmacokinetics (H.S., Y.Z., X.G., W.C., J.G., Y.L., P.M., W.G.H.), Discovery Toxicology (D.M.N.), Bioanalytical and Discovery Analytical Sciences (R.V.O., C.A.M., M.D.R., P.A.S.), and Discovery Pharmaceutics (C.S.), Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Research and Development, Princeton, New Jersey
| | - Yurong Lai
- Departments of Metabolism and Pharmacokinetics (H.S., Y.Z., X.G., W.C., J.G., Y.L., P.M., W.G.H.), Discovery Toxicology (D.M.N.), Bioanalytical and Discovery Analytical Sciences (R.V.O., C.A.M., M.D.R., P.A.S.), and Discovery Pharmaceutics (C.S.), Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Research and Development, Princeton, New Jersey
| | - Punit Marathe
- Departments of Metabolism and Pharmacokinetics (H.S., Y.Z., X.G., W.C., J.G., Y.L., P.M., W.G.H.), Discovery Toxicology (D.M.N.), Bioanalytical and Discovery Analytical Sciences (R.V.O., C.A.M., M.D.R., P.A.S.), and Discovery Pharmaceutics (C.S.), Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Research and Development, Princeton, New Jersey
| | - W Griffith Humphreys
- Departments of Metabolism and Pharmacokinetics (H.S., Y.Z., X.G., W.C., J.G., Y.L., P.M., W.G.H.), Discovery Toxicology (D.M.N.), Bioanalytical and Discovery Analytical Sciences (R.V.O., C.A.M., M.D.R., P.A.S.), and Discovery Pharmaceutics (C.S.), Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Research and Development, Princeton, New Jersey
| |
Collapse
|
47
|
Huo X, Liu K. Renal organic anion transporters in drug-drug interactions and diseases. Eur J Pharm Sci 2017; 112:8-19. [PMID: 29109021 DOI: 10.1016/j.ejps.2017.11.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Revised: 10/10/2017] [Accepted: 11/01/2017] [Indexed: 12/17/2022]
Abstract
The kidney plays a vital role in maintaining systemic homeostasis. Active tubular secretion and reabsorption, which are mainly mediated by transporters, is an efficient mechanism for retaining glucose, amino acids, and other nutrients and for the clearance of endogenous waste products and xenobiotics. These substances are recognized by uptake transporters located in the basolateral and apical membranes of renal proximal tubule cells and are extracted from plasma and urine. Organic anion transporters (OATs) belong to the solute carrier (SLC) 22 superfamily and facilitate organic anions across the plasma membranes of renal proximal tubule cells. OATs are responsible for the transmembrane transport of anionic and zwitterionic organic molecules, including endogenous substances and many drugs. The alteration in OAT expression and function caused by diseases, drug-drug interactions (DDIs) or other issues can thus change the renal disposition of substrates, induce the accumulation of toxic metabolites, and lead to unexpected clinically outcome. This review summarizes the recent information regarding the expression, regulation, and substrate spectrum of OATs and discusses the roles of OATs in diseases and DDIs. These findings will enables us to have a better understanding of the related disease therapy and the potential risk of DDIs mediated by OATs.
Collapse
Affiliation(s)
- Xiaokui Huo
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian 116044, China; Key Laboratory of Pharmacokinetics and Transport of Liaoning Province, Dalian Medical University, Dalian 116044, China; College (Institute) of Integrative Medicine, Dalian Medical University, Dalian 116044, China
| | - Kexin Liu
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian 116044, China; Key Laboratory of Pharmacokinetics and Transport of Liaoning Province, Dalian Medical University, Dalian 116044, China; College (Institute) of Integrative Medicine, Dalian Medical University, Dalian 116044, China.
| |
Collapse
|
48
|
Chu X, Chan GH, Evers R. Identification of Endogenous Biomarkers to Predict the Propensity of Drug Candidates to Cause Hepatic or Renal Transporter-Mediated Drug-Drug Interactions. J Pharm Sci 2017; 106:2357-2367. [DOI: 10.1016/j.xphs.2017.04.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 04/06/2017] [Accepted: 04/07/2017] [Indexed: 12/18/2022]
|
49
|
Lepist EI, Ray AS. Beyond drug-drug interactions: effects of transporter inhibition on endobiotics, nutrients and toxins. Expert Opin Drug Metab Toxicol 2017; 13:1075-1087. [PMID: 28847160 DOI: 10.1080/17425255.2017.1372425] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Membrane transport proteins play a central role in regulating the disposition of endobiotics, dietary nutrients and environmental toxins. The inhibition of transporters by drugs has potential physiologic consequences. The full extent of the effect of drugs on the function of transporters is poorly understood because only a small subset of the hundreds of transporters expressed in humans - primarily those mediating the rate-determining step in the elimination of specific drugs - are assessed during clinical development. Areas covered: We provide a comprehensive overview of literature reports implicating the inhibition of transporters as the mechanism for off-target effects of drugs. Expert opinion: Transporter inhibition, the mechanism of action of many marketed drugs, appears to play an underappreciated role in a number of side effects including vitamin deficiency, edema, dyslipidemia, cholestasis and gout. Cell systems more broadly expressing transporter networks and methods like unbiased metabolomics should be incorporated into the screening paradigm to expand our understanding of the impact of drugs on the physiologic function of transporters and to allow for these effects to be taken into account in drug discovery and clinical practice.
Collapse
Affiliation(s)
- Eve-Irene Lepist
- a Departments of Drug Metabolism , Gilead Sciences, Inc ., Foster City , CA , USA
| | - Adrian S Ray
- b Clinical Research , Gilead Sciences, Inc ., Foster City , CA , USA
| |
Collapse
|
50
|
Rodrigues AD, Taskar KS, Kusuhara H, Sugiyama Y. Endogenous Probes for Drug Transporters: Balancing Vision With Reality. Clin Pharmacol Ther 2017; 103:434-448. [DOI: 10.1002/cpt.749] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 05/04/2017] [Accepted: 05/15/2017] [Indexed: 12/17/2022]
Affiliation(s)
- AD Rodrigues
- Pharmacokinetics; Dynamics & Metabolism, Medicine Design, Pfizer Inc.; Groton Connecticut USA
| | - KS Taskar
- Mechanistic Safety and Disposition; IVIVT, GlaxoSmithKline; Ware Hertfordshire UK
| | - H Kusuhara
- Laboratory of Molecular Pharmacokinetics; Graduate School of Pharmaceutical Sciences, University of Tokyo; Tokyo Japan
| | - Y Sugiyama
- RIKEN Innovation Center; Research Cluster for Innovation; RIKEN Kanagawa Japan
| |
Collapse
|