1
|
Russell LE, Yadav J, Maldonato BJ, Chien HC, Zou L, Vergara AG, Villavicencio EG. Transporter-mediated drug-drug interactions: regulatory guidelines, in vitro and in vivo methodologies and translation, special populations, and the blood-brain barrier. Drug Metab Rev 2024:1-28. [PMID: 38967415 DOI: 10.1080/03602532.2024.2364591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 05/31/2024] [Indexed: 07/06/2024]
Abstract
This review, part of a special issue on drug-drug interactions (DDIs) spearheaded by the International Society for the Study of Xenobiotics (ISSX) New Investigators, explores the critical role of drug transporters in absorption, disposition, and clearance in the context of DDIs. Over the past two decades, significant advances have been made in understanding the clinical relevance of these transporters. Current knowledge on key uptake and efflux transporters that affect drug disposition and development is summarized. Regulatory guidelines from the FDA, EMA, and PMDA that inform the evaluation of potential transporter-mediated DDIs are discussed in detail. Methodologies for preclinical and clinical testing to assess potential DDIs are reviewed, with an emphasis on the utility of physiologically based pharmacokinetic (PBPK) modeling. This includes the application of relative abundance and expression factors to predict human pharmacokinetics (PK) using preclinical data, integrating the latest regulatory guidelines. Considerations for assessing transporter-mediated DDIs in special populations, including pediatric, hepatic, and renal impairment groups, are provided. Additionally, the impact of transporters at the blood-brain barrier (BBB) on the disposition of CNS-related drugs is explored. Enhancing the understanding of drug transporters and their role in drug disposition and toxicity can improve efficacy and reduce adverse effects. Continued research is essential to bridge remaining gaps in knowledge, particularly in comparison with cytochrome P450 (CYP) enzymes.
Collapse
Affiliation(s)
- Laura E Russell
- Department of Quantitative, Translational, and ADME Sciences, AbbVie Inc, North Chicago, IL, USA
| | - Jaydeep Yadav
- Department of Pharmacokinetics, Dynamics, Metabolism, and Bioanalytics, Merck & Co., Inc, Boston, MA, USA
| | - Benjamin J Maldonato
- Department of Nonclinical Development and Clinical Pharmacology, Revolution Medicines, Inc, Redwood City, CA, USA
| | - Huan-Chieh Chien
- Department of Pharmacokinetics and Drug Metabolism, Amgen Inc, South San Francisco, CA, USA
| | - Ling Zou
- Department of Pharmacokinetics and Drug Metabolism, Amgen Inc, South San Francisco, CA, USA
| | - Ana G Vergara
- Department of Pharmacokinetics, Dynamics, Metabolism, and Bioanalytics, Merck & Co., Inc, Rahway, NJ, USA
| | - Erick G Villavicencio
- Department of Biology-Discovery, Imaging and Functional Genomics, Merck & Co., Inc, Rahway, NJ, USA
| |
Collapse
|
2
|
Arakawa H, Nakazono Y, Matsuoka N, Hayashi M, Shirasaka Y, Hirao A, Tamai I. Induction of open-form bile canaliculus formation by hepatocytes for evaluation of biliary drug excretion. Commun Biol 2023; 6:866. [PMID: 37608051 PMCID: PMC10444810 DOI: 10.1038/s42003-023-05216-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 08/04/2023] [Indexed: 08/24/2023] Open
Abstract
Biliary excretion is a major drug elimination pathway that affects their efficacy and safety. The currently available in vitro sandwich-cultured hepatocyte method is cumbersome because drugs accumulate in the closed bile canalicular lumen formed between hepatocytes and their amounts cannot be mealsured directly. This study proposes a hepatocyte culture model for the rapid evaluation of drug biliary excretion using permeation assays. When hepatocytes are cultured on a permeable support coated with the cell adhesion protein claudins, an open-form bile canalicular lumen is formed at the surface of the permeable support. Upon application to the basolateral (blood) side, drugs appear on the bile canalicular side. The biliary excretion clearance of several drugs, as estimated from the obtained permeabilities, correlates well with the reported in vivo biliary excretion clearance in humans. Thus, the established model is useful for applications in the efficient evaluation of biliary excretion during drug discovery and development.
Collapse
Affiliation(s)
- Hiroshi Arakawa
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Yuya Nakazono
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Natsumi Matsuoka
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Momoka Hayashi
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Yoshiyuki Shirasaka
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Atsushi Hirao
- Division of Molecular Genetics, Cancer Research Institute, Kanazawa University, Kanazawa, 920-1192, Japan
- WPI Nano Life Science Institute (WPI-Nano LSI), Kanazawa University, Kanazawa, 920-1192, Japan
| | - Ikumi Tamai
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-1192, Japan.
| |
Collapse
|
3
|
Özvegy-Laczka C, Ungvári O, Bakos É. Fluorescence-based methods for studying activity and drug-drug interactions of hepatic solute carrier and ATP binding cassette proteins involved in ADME-Tox. Biochem Pharmacol 2023; 209:115448. [PMID: 36758706 DOI: 10.1016/j.bcp.2023.115448] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 02/11/2023]
Abstract
In humans, approximately 70% of drugs are eliminated through the liver. This process is governed by the concerted action of membrane transporters and metabolic enzymes. Transporters mediating hepatocellular uptake of drugs belong to the SLC (Solute carrier) superfamily of transporters. Drug efflux either toward the portal vein or into the bile is mainly mediated by active transporters of the ABC (ATP Binding Cassette) family. Alteration in the function and/or expression of liver transporters due to mutations, disease conditions, or co-administration of drugs or food components can result in altered pharmacokinetics. On the other hand, drugs or food components interacting with liver transporters may also interfere with liver function (e.g., bile acid homeostasis) and may even cause liver toxicity. Accordingly, certain transporters of the liver should be investigated already at an early stage of drug development. Most frequently radioactive probes are applied in these drug-transporter interaction tests. However, fluorescent probes are cost-effective and sensitive alternatives to radioligands, and are gaining wider application in drug-transporter interaction tests. In our review, we summarize our current understanding about hepatocyte ABC and SLC transporters affected by drug interactions. We provide an update of the available fluorescent and fluorogenic/activable probes applicable in in vitro or in vivo testing of these ABC and SLC transporters, including near-infrared transporter probes especially suitable for in vivo imaging. Furthermore, our review gives a comprehensive overview of the available fluorescence-based methods, not directly relying on the transport of the probe, suitable for the investigation of hepatic ABC or SLC-type drug transporters.
Collapse
Affiliation(s)
- Csilla Özvegy-Laczka
- Institute of Enzymology, RCNS, Eötvös Loránd Research Network, H-1117 Budapest, Magyar tudósok krt. 2., Hungary.
| | - Orsolya Ungvári
- Institute of Enzymology, RCNS, Eötvös Loránd Research Network, H-1117 Budapest, Magyar tudósok krt. 2., Hungary; Doctoral School of Biology, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Éva Bakos
- Institute of Enzymology, RCNS, Eötvös Loránd Research Network, H-1117 Budapest, Magyar tudósok krt. 2., Hungary
| |
Collapse
|
4
|
Le Vée M, Moreau A, Jouan E, Denizot C, Parmentier Y, Fardel O. Inhibition of canalicular and sinusoidal taurocholate efflux by cholestatic drugs in human hepatoma HepaRG cells. Biopharm Drug Dispos 2022; 43:265-271. [PMID: 36195987 PMCID: PMC10092305 DOI: 10.1002/bdd.2333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 09/23/2022] [Accepted: 09/29/2022] [Indexed: 12/29/2022]
Abstract
HepaRG cells are highly-differentiated human hepatoma cells, which are increasingly recognized as a convenient cellular model for in vitro evaluation of hepatic metabolism, transport, and/or toxicity of drugs. The present study was designed to evaluate whether HepaRG cells can also be useful for studying drug-mediated inhibition of canalicular and/or sinusoidal hepatic efflux of bile acids, which constitutes a major mechanism of drug-induced liver toxicity. For this purpose, HepaRG cells, initially loaded with the bile acid taurocholate (TC), were reincubated in TC-free transport assay medium, in the presence or absence of calcium or drugs, before analysis of TC retention. This method allowed us to objectivize and quantitatively measure biliary and sinusoidal efflux of TC from HepaRG cells, through distinguishing cellular and canalicular compartments. In particular, time-course analysis of the TC-free reincubation period of HepaRG cells, that is, the efflux period, indicated that a 20 min-efflux period allowed reaching biliary and sinusoidal excretion indexes for TC around 80% and 60%, respectively. Addition of the prototypical cholestatic drugs bosentan, cyclosporin A, glibenclamide, or troglitazone during the TC-free efflux phase period was demonstrated to markedly inhibit canalicular and sinusoidal secretion of TC, whereas, by contrast, incubation with the noncholestatic compounds salicylic acid or flumazenil was without effect. Such data therefore support the use of human HepaRG cells for in vitro predicting drug-induced liver toxicity (DILI) due to the inhibition of hepatic bile acid secretion, using a biphasic TC loading/efflux assay.
Collapse
Affiliation(s)
- Marc Le Vée
- Univ Rennes, INSERM, EHESP, IRSET (Institut de recherche en santé, environnement et travail)-UMR_S 1085, Rennes, France
| | - Amélie Moreau
- Centre de Pharmacocinétique, Technologie Servier, Orléans, France
| | - Elodie Jouan
- Univ Rennes, INSERM, EHESP, IRSET (Institut de recherche en santé, environnement et travail)-UMR_S 1085, Rennes, France
| | - Claire Denizot
- Centre de Pharmacocinétique, Technologie Servier, Orléans, France
| | | | - Olivier Fardel
- Univ Rennes, CHU Rennes, INSERM, EHESP, IRSET (Institut de recherche en santé, environnement et travail)-UMR_S 1085, Rennes, France
| |
Collapse
|
5
|
Messelmani T, Morisseau L, Sakai Y, Legallais C, Le Goff A, Leclerc E, Jellali R. Liver organ-on-chip models for toxicity studies and risk assessment. LAB ON A CHIP 2022; 22:2423-2450. [PMID: 35694831 DOI: 10.1039/d2lc00307d] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The liver is a key organ that plays a pivotal role in metabolism and ensures a variety of functions in the body, including homeostasis, synthesis of essential components, nutrient storage, and detoxification. As the centre of metabolism for exogenous molecules, the liver is continuously exposed to a wide range of compounds, such as drugs, pesticides, and environmental pollutants. Most of these compounds can cause hepatotoxicity and lead to severe and irreversible liver damage. To study the effects of chemicals and drugs on the liver, most commonly, animal models or in vitro 2D cell cultures are used. However, data obtained from animal models lose their relevance when extrapolated to the human metabolic situation and pose ethical concerns, while 2D static cultures are poorly predictive of human in vivo metabolism and toxicity. As a result, there is a widespread need to develop relevant in vitro liver models for toxicology studies. In recent years, progress in tissue engineering, biomaterials, microfabrication, and cell biology has created opportunities for more relevant in vitro models for toxicology studies. Of these models, the liver organ-on-chip (OoC) has shown promising results by reproducing the in vivo behaviour of the cell/organ or a group of organs, the controlled physiological micro-environment, and in vivo cellular metabolic responses. In this review, we discuss the development of liver organ-on-chip technology and its use in toxicity studies. First, we introduce the physiology of the liver and summarize the traditional experimental models for toxicity studies. We then present liver OoC technology, including the general concept, materials used, cell sources, and different approaches. We review the prominent liver OoC and multi-OoC integrating the liver for drug and chemical toxicity studies. Finally, we conclude with the future challenges and directions for developing or improving liver OoC models.
Collapse
Affiliation(s)
- Taha Messelmani
- Université de Technologie de Compiègne, CNRS, Biomechanics and Bioengineering, Centre de Recherche Royallieu CS 60319, 60203 Compiègne Cedex, France.
| | - Lisa Morisseau
- Université de Technologie de Compiègne, CNRS, Biomechanics and Bioengineering, Centre de Recherche Royallieu CS 60319, 60203 Compiègne Cedex, France.
| | - Yasuyuki Sakai
- CNRS IRL 2820, Laboratory for Integrated Micro Mechatronic Systems, Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan.
- Department of Chemical Engineering, Faculty of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan
| | - Cécile Legallais
- Université de Technologie de Compiègne, CNRS, Biomechanics and Bioengineering, Centre de Recherche Royallieu CS 60319, 60203 Compiègne Cedex, France.
| | - Anne Le Goff
- Université de Technologie de Compiègne, CNRS, Biomechanics and Bioengineering, Centre de Recherche Royallieu CS 60319, 60203 Compiègne Cedex, France.
| | - Eric Leclerc
- CNRS IRL 2820, Laboratory for Integrated Micro Mechatronic Systems, Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan.
| | - Rachid Jellali
- Université de Technologie de Compiègne, CNRS, Biomechanics and Bioengineering, Centre de Recherche Royallieu CS 60319, 60203 Compiègne Cedex, France.
| |
Collapse
|
6
|
He T, Qiao S, Ma C, Peng Z, Wu Z, Ma C, Han L, Deng Q, Zhang T, Zhu Y, Pan G. FEK self-assembled peptide hydrogels facilitate primary hepatocytes culture and pharmacokinetics screening. J Biomed Mater Res B Appl Biomater 2022; 110:2015-2027. [PMID: 35301798 DOI: 10.1002/jbm.b.35056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 09/11/2021] [Accepted: 10/05/2021] [Indexed: 11/10/2022]
Abstract
A FEFEFKFK (FEK, F, phenylalaninyl; E, glutamyl; K, lysinyl)-based self-assembling peptide hydrogel (FEK-SAPH) was developed to replace sandwich culture (SC) for improved culture of primary hepatocytes in vitro. Under neutral conditions, FEK self-assembles to form β-sheet nanofibers, which in turn form FEK-SAPH. For the culture of rat primary hepatocytes (RPH), the use of FEK-SAPH simplified operation steps and promoted excellent cell-cell interactions while maintaining the SC-related RPH polarity trend. Compared with SC, FEK-SAPH cultured RPH for 14 days, the bile duct network was formed, the secretion of albumin and urea was improved, and the metabolic clearance rate based on cytochrome P450 (CYPs) was comparable. In FEK-SAPH culture, the expression level of the biliary efflux transporter bile salt export pump increased by 230.7%, while the biliary excretion index value of deuterium-labeled sodium taurocholate (d8-TCA) differed slightly from the SC value (72% and 77%, respectively, p = .0195). The inhibitory effect of cholestasis drugs on FEK-SAPH was significantly higher than that of SC. In FEK-SAPH, hepatoprotective drugs were more effective in antagonizing hepatotoxicity induced by lithocholic acid (LCA). FEK-SAPH cultured RPH with hepatoprotective drugs can better recover from LCA-induced damage. In summary, FEK-SAPH can be used as a substitute for SC for pharmacokinetic screening to evaluate the drug absorption, disposition, metabolism, excretion, and toxicity (ADMET) in hepatocytes.
Collapse
Affiliation(s)
- Ting He
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, China.,Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Shida Qiao
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Chen Ma
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Zhaoliang Peng
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Zhitao Wu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China.,Nanjing University of Chinese Medicine, Nanjing, China
| | - Chenhui Ma
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Li Han
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Qiangqiang Deng
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Tianwei Zhang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yishen Zhu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Guoyu Pan
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
7
|
Song XM, Li BJ, Zhang YY, Ge WJ, Zhang SF, Cui WF, Li GS, Liang RF. Rutaecarpine enhances the anti-diabetic activity and hepatic distribution of metformin via up-regulation of Oct1 in diabetic rats. Xenobiotica 2021; 51:818-830. [PMID: 33952086 DOI: 10.1080/00498254.2021.1926573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Diabetes mellitus is a chronic metabolic disorder with multiple complications, patients who receive metformin may have a simultaneous intake of herbal medicine containing rutaecarpine due to cardiovascular protection and hypolipidemic effects of rutaecarpine. There might be drug interactions between metformin and rutaecarpine. This study aimed to investigate the effects of rutaecarpine on the pharmacodynamics and pharmacokinetics of metformin in diabetic rats.The diabetic rat model was induced with high-fat diet and low dose streptozotocin. Metformin with or without rutaecarpine was administered by oral gavage for 42 days. Pharmacodynamics and pharmacokinetics parameters were evaluated.The pharmacodynamics results revealed that co-administration of rutaecarpine with metformin resulted in a remarkable reduction of serum glucose and lipid profiles in diabetic rats compared to metformin treated alone. The pharmacokinetics results showed that co-treatments of rutaecarpine with metformin did not affect the systemic exposure and renal distribution of metformin, but increased metformin concentration in liver. Furthermore, rutaecarpine increased Oct1-mediated metformin uptake into hepatocytes by upregulation of Oct1 expression in the liver.The above data indicate that rutaecarpine enhanced the anti-diabetic effect of metformin, which may be associated with the increased hepatic distribution of metformin through up-regulation of Oct1 in response to rutaecarpine.
Collapse
Affiliation(s)
- Xian-Mei Song
- Department of Pharmacology, Henan Medical College, Zhengzhou, China
| | - Bing-Jie Li
- Institute of Chinese Materia Medica, Henan Provincial Academy of Traditional Chinese Medicine, Zhengzhou, China.,School of Pharmacology, Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Yan-Yan Zhang
- Department of Pharmacology, Henan Medical College, Zhengzhou, China
| | - Wen-Jing Ge
- Institute of Chinese Materia Medica, Henan Provincial Academy of Traditional Chinese Medicine, Zhengzhou, China.,School of Pharmacology, Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - She-Feng Zhang
- Institute of Chinese Materia Medica, Henan Provincial Academy of Traditional Chinese Medicine, Zhengzhou, China
| | - Wei-Feng Cui
- Institute of Chinese Materia Medica, Henan Provincial Academy of Traditional Chinese Medicine, Zhengzhou, China
| | - Geng-Sheng Li
- Institute of Chinese Materia Medica, Henan Provincial Academy of Traditional Chinese Medicine, Zhengzhou, China
| | - Rui-Feng Liang
- Institute of Chinese Materia Medica, Henan Provincial Academy of Traditional Chinese Medicine, Zhengzhou, China.,School of Pharmacology, Henan University of Traditional Chinese Medicine, Zhengzhou, China
| |
Collapse
|
8
|
Liang X, Lai Y. Overcoming the shortcomings of the extended-clearance concept: a framework for developing a physiologically-based pharmacokinetic (PBPK) model to select drug candidates involving transporter-mediated clearance. Expert Opin Drug Metab Toxicol 2021; 17:869-886. [PMID: 33793347 DOI: 10.1080/17425255.2021.1912012] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Introduction:Human pharmacokinetic (PK) prediction can be a significant challenge to drug candidates undergoing transporter-mediated clearance, when only animal data and in vitro human parameters are available in the drug discovery stage.Areas covered:The extended clearance concept (ECC) that incorporates the processes of hepatic uptake, passive diffusion, metabolism and biliary secretion has been adapted to determine the rate-determining process of hepatic clearance and drug-drug interactions (DDIs). However, since the ECC is derived from the well-stirred model and does not consider the liver as a drug distribution organ to reflect the time-dependent variation of drug concentrations between the liver and plasma, it can be misused for compound selection in drug discovery.Expert opinion:The PBPK model consists of a set of differential equations of drug mass balance, and can overcome the shortcomings of the ECC in predicting human PK. The predictability, relevance and reliability of the model and the scaling factors for IVIVE must be validated using either the measured liver concentrations or DDI data with known transporter inhibitors, or both, in monkeys. A human PBPK model that incorporates in vitro human data and SFs obtained from the validated monkey PBPK model can be used for compound selection in the drug discovery phase.
Collapse
Affiliation(s)
- Xiaomin Liang
- Drug Metabolism, Gilead Sciences Inc., Foster City, CA, USA
| | - Yurong Lai
- Drug Metabolism, Gilead Sciences Inc., Foster City, CA, USA
| |
Collapse
|
9
|
Yang Y, Liu L, Xu M, Zhang X, Wang L, He Q, Xu M, Jiang X. Tanshinone ⅡA may alleviate rifampin-induced cholestasis by regulating the expression and function of NTCP. Hum Exp Toxicol 2020; 40:1003-1011. [PMID: 33307820 DOI: 10.1177/0960327120979030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The Na+-taurocholate cotransporting polypeptide (NTCP) acts as the major hepatic basolateral uptake system, and plays a key role in balancing bile flow. The anti-tuberculosis drugs rifampin (RFP) can affect bile flow causing liver injury, while tanshinone IIA (TAN IIA) has the effect of protecting liver. This study aimed to investigate the effects of RFP and TAN IIA on the NTCP expression and activity, and explore the potential connections. Herein, we established sandwich-cultured primary rat hepatocytes, and quantified mRNA and protein levels of NRF2 and NTCP after treatment with RFP (10, 25, or 50 μM) or co-treatment with TAN IIA (5, 10, or 20 μM) for 12, 24, 48 h (n = 3). NTCP activity was assessed by measuring the initial uptake rates of known substrates taurocholate (TCA) (n = 3) after treatment with different concentrations of RFP, TAN ⅡA for 12, 24 and 48 h. We found that RFP had inhibition effects on NRF2, NTCP mRNA and protein expression, and co-administration of TAN IIA could reverse RFP inhibition. TCA cellular accumulation was significantly decreased by RFP (39.1%), and TAN IIA could significantly induce TCA uptake of NTCP (2.9-fold at 48 h). The TCA uptake activity was correlated with the NTCP mRNA expression, confirming the role of RFP or TAN IIA on NTCP expression and activity is synchronous, and we can predict NTCP activity by detecting its mRNA expression. In conclusion, our work will enrich the significance of NTCP in the liver protection, and provide theoretical basis for TAN IIA to prevent RFP induced cholestatic liver injury.
Collapse
Affiliation(s)
- Y Yang
- Department of Pharmacy, 159411The Third People's Hospital of Chengdu, College of Medicine, Southwest Jiaotong University, Chengdu, China.,Department of Clinical Pharmacy and Pharmacy Administration, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, 535321West China School of Pharmacy, Sichuan University, Chengdu, China
| | - L Liu
- Department of Clinical Pharmacy and Pharmacy Administration, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, 535321West China School of Pharmacy, Sichuan University, Chengdu, China.,Department of Pharmacy, 575842the Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - M Xu
- Department of Clinical Pharmacy and Pharmacy Administration, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, 535321West China School of Pharmacy, Sichuan University, Chengdu, China
| | - X Zhang
- Department of Pharmacy, 159411The Third People's Hospital of Chengdu, College of Medicine, Southwest Jiaotong University, Chengdu, China
| | - L Wang
- Department of Clinical Pharmacy and Pharmacy Administration, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, 535321West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Q He
- Department of Pharmacy, 159411The Third People's Hospital of Chengdu, College of Medicine, Southwest Jiaotong University, Chengdu, China
| | - M Xu
- Department of Pharmacy, 159411The Third People's Hospital of Chengdu, College of Medicine, Southwest Jiaotong University, Chengdu, China
| | - X Jiang
- Department of Clinical Pharmacy and Pharmacy Administration, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, 535321West China School of Pharmacy, Sichuan University, Chengdu, China
| |
Collapse
|
10
|
Wada S, Matsunaga N, Tamai I. Mathematical modeling analysis of hepatic uric acid disposition using human sandwich-cultured hepatocytes. Drug Metab Pharmacokinet 2020; 35:432-440. [PMID: 32807664 DOI: 10.1016/j.dmpk.2020.06.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 05/24/2020] [Accepted: 06/15/2020] [Indexed: 12/14/2022]
Abstract
Uric acid is biosynthesized from purine by xanthine oxidase (XO) mainly in the liver and is excreted into urine and feces. Although several transporters responsible for renal and intestinal handling of uric acid have been reported, information on hepatic transporters is limited. In the present study, we studied quantitative contribution of transporters for hepatic handling of uric acid by mathematical modeling analysis in human sandwich-cultured hepatocytes (hSCH). Stable isotope-labeled hypoxanthine, hypoxanthine-13C2,15N (HX), was incubated with hSCH and formed 13C2,15N-labeled xanthine (XA) and uric acid (UA) were measured by LC-MS/MS time dependently. Rate constants for metabolism and efflux and uptake transport across sinusoidal and bile canalicular membranes of HX, XA and UA were estimated in the presence of inhibitors of XO and uric acid transporters. An XO inhibitor allopurinol significantly decreased metabolisms of HX and XA. Efflux into bile canalicular lumen was negligible and sinusoidal efflux was considered main efflux pathway of formed UA. Transporter inhibition study highlighted that GLUT9 strongly and MRP4 intermediately contribute to the sinusoidal efflux of UA with minor contribution of NPT1/4. Modeling analysis developed in the present study should be useful for quantitative prediction of uric acid disposition in liver.
Collapse
Affiliation(s)
- Sho Wada
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Japan
| | - Norikazu Matsunaga
- Pharmacokinetic Research Laboratories, Ono Pharmaceutical Co., Ltd., Japan
| | - Ikumi Tamai
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Japan.
| |
Collapse
|
11
|
Chan TS, Scaringella YS, Raymond K, Taub ME. Evaluation of Erythromycin as a Tool to Assess CYP3A Contribution of Low Clearance Compounds in a Long-Term Hepatocyte Culture. Drug Metab Dispos 2020; 48:690-697. [PMID: 32503882 DOI: 10.1124/dmd.120.090951] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 04/29/2020] [Indexed: 12/16/2022] Open
Abstract
Long-term hepatocyte culture systems such as HepatoPac are well suited to evaluate the metabolic turnover of low clearance (CL) drugs because of their sustained metabolic capacity and longer-term viability. Erythromycin (ERY), a moderate, mechanism-based inhibitor of CYP3A, was evaluated as a tool in the HepatoPac model to assess contribution of CYP3A to the clearance of drug candidates. ERY inhibited CYP3A activity by 58% and 80% at 3 and 10 μM, respectively, for up to 72 hours. At 30 µM, ERY inhibited midazolam hydroxylation by >85% for the entire 144-hour duration of the incubation. Alprazolam CLint was inhibited 58% by 3 μM of ERY, 75% by 15 μM of ERY, 89% by 30 μM of ERY, and 94% by 60 μM of ERY. ERY (30 μM) did not markedly affect CLint of substrates for several other major cytochrome P450 isoforms evaluated and did not markedly inhibit uridine diphosphoglucuronosyl transferase (UGT) isoforms 1A1, 1A3, 1A4, 1A6, 1A9, 2B7, or 2B15 as assessed using recombinant UGTs. ERY only mildly increased CYP3A4 gene expression by 2.1-fold (14% of rifampicin induction) at 120 µM, indicating that at effective concentrations for inhibition of CYP3A activity (30-60 µM), arylhydrocarbon receptor, constitutive androstane receptor, and pregnane-X-receptor activation are not likely to markedly increase levels of other drug-metabolizing enzymes or transporters. ERY at concentrations up to 60 µM was not toxic for up to 6 days of incubation. Use of ERY to selectively inhibit CYP3A in high-functioning, long-term hepatocyte models such as HepatoPac can be a valuable strategy to evaluate the contribution of CYP3A metabolism to the overall clearance of slowly metabolized drug candidates. SIGNIFICANCE STATEMENT: This work describes the use of erythromycin as a selective inhibitor of CYP3A to assess the contribution of CYP3A in the metabolism of compounds using long-term hepatocyte cultures.
Collapse
Affiliation(s)
- Tom S Chan
- Boehringer Ingelheim Pharmaceuticals Inc., Drug Metabolism and Pharmacokinetics, Ridgefield, Connecticut
| | - Young-Sun Scaringella
- Boehringer Ingelheim Pharmaceuticals Inc., Drug Metabolism and Pharmacokinetics, Ridgefield, Connecticut
| | - Klairynne Raymond
- Boehringer Ingelheim Pharmaceuticals Inc., Drug Metabolism and Pharmacokinetics, Ridgefield, Connecticut
| | - Mitchell E Taub
- Boehringer Ingelheim Pharmaceuticals Inc., Drug Metabolism and Pharmacokinetics, Ridgefield, Connecticut
| |
Collapse
|
12
|
Kang D, Hong G, An S, Jang I, Yun WS, Shim JH, Jin S. Bioprinting of Multiscaled Hepatic Lobules within a Highly Vascularized Construct. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1905505. [PMID: 32078240 DOI: 10.1002/smll.201905505] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 01/25/2020] [Indexed: 06/10/2023]
Abstract
Highly vascularized complex liver tissue is generally divided into lobes, lobules, hepatocytes, and sinusoids, which can be viewed under different types of lens from the micro- to macro-scale. To engineer multiscaled heterogeneous tissues, a sophisticated and rapid tissue engineering approach is required, such as advanced 3D bioprinting. In this study, a preset extrusion bioprinting technique, which can create heterogeneous, multicellular, and multimaterial structures simultaneously, is utilized for creating a hepatic lobule (≈1 mm) array. The fabricated hepatic lobules include hepatic cells, endothelial cells, and a lumen. The endothelial cells surround the hepatic cells, the exterior of the lobules, the lumen, and finally, become interconnected with each other. Compared to hepatic cell/endothelial cell mixtures, the fabricated hepatic lobule shows higher albumin secretion, urea production, and albumin, MRP2, and CD31 protein levels, as well as, cytochrome P450 enzyme activity. It is found that each cell type with spatial cell patterning in bioink accelerates cellular organization, which could preserve structural integrity and improve cellular functions. In conclusion, preset extruded hepatic lobules within a highly vascularized construct are successfully constructed, enabling both micro- and macro-scale tissue fabrication, which can support the creation of large 3D tissue constructs for multiscale tissue engineering.
Collapse
Affiliation(s)
- Donggu Kang
- Research Institute, T&R Biofab. Co. Ltd., 242 Pangyo-ro, Seongnam-si, 13487, Republic of Korea
| | - Gyusik Hong
- Department of Mechanical Engineering, Korea Polytechnic University, 237 Sangidaehak-ro, Siheung-si, 15073, Republic of Korea
| | - Seongmin An
- Department of Mechanical Engineering, Korea Polytechnic University, 237 Sangidaehak-ro, Siheung-si, 15073, Republic of Korea
| | - Ilho Jang
- Research Institute, T&R Biofab. Co. Ltd., 242 Pangyo-ro, Seongnam-si, 13487, Republic of Korea
| | - Won-Soo Yun
- Department of Mechanical Engineering, Korea Polytechnic University, 237 Sangidaehak-ro, Siheung-si, 15073, Republic of Korea
| | - Jin-Hyung Shim
- Department of Mechanical Engineering, Korea Polytechnic University, 237 Sangidaehak-ro, Siheung-si, 15073, Republic of Korea
| | - Songwan Jin
- Department of Mechanical Engineering, Korea Polytechnic University, 237 Sangidaehak-ro, Siheung-si, 15073, Republic of Korea
| |
Collapse
|
13
|
Lu C, Di L. In vitro
and
in vivo
methods to assess pharmacokinetic drug– drug interactions in drug discovery and development. Biopharm Drug Dispos 2020; 41:3-31. [DOI: 10.1002/bdd.2212] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 09/27/2019] [Accepted: 10/28/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Chuang Lu
- Department of DMPKSanofi Company Waltham MA 02451
| | - Li Di
- Pharmacokinetics, Dynamics and MetabolismPfizer Worldwide Research & Development Groton CT 06340
| |
Collapse
|
14
|
Evaluation of Drug Biliary Excretion Using Sandwich-Cultured Human Hepatocytes. Eur J Drug Metab Pharmacokinet 2019; 44:13-30. [PMID: 30167999 DOI: 10.1007/s13318-018-0502-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Evaluation of hepatobiliary transport of drugs is an important challenge, notably during the development of new molecular identities. In this context, sandwich-cultured human hepatocytes (SCHH) have been proposed as an interesting and integrated tool for predicting in vitro biliary excretion of drugs. The present review was therefore designed to summarize key findings about SCHH, including their establishment, their main functional features and their use for the determination of canalicular transport and the prediction of in vivo biliary clearance and hepatobiliary excretion-related drug-drug interactions. Reviewed data highlight the fact that SCHH represent an original and probably unique holistic in vitro approach to predict biliary clearance in humans, through taking into account sinusoidal drug uptake, passive drug diffusion, drug metabolism and sinusoidal and canalicular drug efflux. Limits and proposed refinements for SCHH-based analysis of drug biliary excretion, as well as putative human alternative in vitro models to SCHH are also discussed.
Collapse
|
15
|
Mao Q, Lai Y, Wang J. Drug Transporters in Xenobiotic Disposition and Pharmacokinetic Prediction. Drug Metab Dispos 2018; 46:561-566. [PMID: 29636376 DOI: 10.1124/dmd.118.081356] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 03/14/2018] [Indexed: 12/18/2022] Open
Abstract
Drug transporters are widely expressed in organs and tissue barriers throughout human and animal bodies. Studies over the last two decades have identified various ATP-binding cassette and solute carrier transporters that play critical roles in the absorption, distribution, metabolism, and elimination of drugs and xenobiotics. This special section contains more than 20 original manuscripts and reviews that cover the most recent advances in the areas of drug transporter research, including the basic biology and function of transporters, expression of drug transporters in organ and tissue barriers, the mechanisms underlying regulation of transporter expression, transporter-mediated drug disposition in animal models, and the development and utilization of new technologies in drug transporter study, as well as pharmacokinetic modeling and simulation to assess transporter involvement in drug disposition and drug-drug interactions. We believe that the topics covered in this special section will advance our understanding of the roles of transporters in drug disposition, efficacy, and safety.
Collapse
Affiliation(s)
- Qingcheng Mao
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington (Q.M., J.W.), and Gilead Sciences, Inc., Foster City, California (Y.L.)
| | - Yurong Lai
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington (Q.M., J.W.), and Gilead Sciences, Inc., Foster City, California (Y.L.)
| | - Joanne Wang
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington (Q.M., J.W.), and Gilead Sciences, Inc., Foster City, California (Y.L.)
| |
Collapse
|
16
|
Affiliation(s)
| | - Kevin Beaumont
- Pharmacokinetics, Dynamics and Metabolism, Pfizer Inc., Cambridge, Massachusetts 02139, United States
| | - Tristan S. Maurer
- Pharmacokinetics, Dynamics and Metabolism, Pfizer Inc., Cambridge, Massachusetts 02139, United States
| | - Li Di
- Pharmacokinetics, Dynamics and Metabolism, Pfizer Inc., Groton, Connecticut 06340, United States
| |
Collapse
|