1
|
Bällgren F, Hu Y, Li S, van de Beek L, Hammarlund-Udenaes M, Loryan I. Region-independent active CNS net uptake of marketed H +/OC antiporter system substrates. Front Cell Neurosci 2024; 18:1493644. [PMID: 39534684 PMCID: PMC11554538 DOI: 10.3389/fncel.2024.1493644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 10/14/2024] [Indexed: 11/16/2024] Open
Abstract
The pyrilamine-sensitive proton-coupled organic cation (H+/OC) antiporter system facilitates the active net uptake of several marketed organic cationic drugs across the blood-brain barrier (BBB). This rare phenomenon has garnered interest in the H+/OC antiporter system as a potential target for CNS drug delivery. However, analysis of pharmacovigilance data has uncovered a significant association between substrates of the H+/OC antiporter and neurotoxicity, particularly drug-induced seizures (DIS) and mood- and cognitive-related adverse events (MCAEs). This preclinical study aimed to elucidate the CNS regional disposition of H+/OC antiporter substrates at therapeutically relevant plasma concentrations to uncover potential pharmacokinetic mechanisms underlying DIS and MCAEs. Here, we investigated the neuropharmacokinetics of pyrilamine, diphenhydramine, bupropion, tramadol, oxycodone, and memantine. Using the Combinatory Mapping Approach for Regions of Interest (CMA-ROI), we characterized the transport of unbound drugs across the BBB in specific CNS regions, as well as the blood-spinal cord barrier (BSCB) and the blood-cerebrospinal fluid barrier (BCSFB). Our findings demonstrated active net uptake across the BBB and BSCB, with unbound ROI-to-plasma concentration ratio, Kp,uu,ROI, values consistently exceeding unity in all assessed regions. Despite minor regional differences, no significant distinctions were found when comparing the whole brain to investigated regions of interest, indicating region-independent active transport. Furthermore, we observed intracellular accumulation via lysosomal trapping for all studied drugs. These results provide new insights into the CNS regional neuropharmacokinetics of these drugs, suggesting that while the brain uptake is region-independent, the active transport mechanism enables high extracellular and intracellular drug concentrations, potentially contributing to neurotoxicity. This finding emphasizes the necessity of thorough neuropharmacokinetic evaluation and neurotoxicity profiling in the development of drugs that utilize this transport pathway.
Collapse
Affiliation(s)
| | | | | | | | | | - Irena Loryan
- Department of Pharmacy, Faculty of Pharmacy, Translational Pharmacokinetics-Pharmacodynamics Group, Translational Pharmacokinetics Pharmacodynamics (tPKPD), Uppsala University, Uppsala, Sweden
| |
Collapse
|
2
|
Redeker KEM, Brockmöller J. Several orphan solute carriers functionally identified as organic cation transporters: Substrates specificity compared with known cation transporters. J Biol Chem 2024; 300:107629. [PMID: 39098524 PMCID: PMC11406361 DOI: 10.1016/j.jbc.2024.107629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/10/2024] [Accepted: 07/25/2024] [Indexed: 08/06/2024] Open
Abstract
Organic cations comprise a significant part of medically relevant drugs and endogenous substances. Such substances need organic cation transporters for efficient transfer via cell membranes. However, the membrane transporters of most natural or synthetic organic cations are still unknown. To identify these transporters, genes of 10 known OCTs and 18 orphan solute carriers (SLC) were overexpressed in HEK293 cells and characterized concerning their transport activities with a broad spectrum of low molecular weight substances emphasizing organic cations. Several SLC35 transporters and SLC38A10 significantly enhanced the transport of numerous relatively hydrophobic organic cations. Significant organic cation transport activities have been found in gene families classified as transporters of other substance classes. For instance, SLC35G3 and SLC38A10 significantly accelerated the uptake of several cations, such as clonidine, 3,4-methylenedioxymethamphetamine, and nicotine, which are known as substrates of a thus far genetically unidentified proton/organic cation antiporter. The transporters SLC35G4 and SLC35F5 stood out by their significantly increased choline uptake, and several other SLC transported choline together with a broader spectrum of organic cations. Overall, there are many more polyspecific organic cation transporters than previously estimated. Several transporters had one predominant substrate but accepted some other cationic substrates, and others showed no particular preference for one substrate but transported several organic cations. The role of these transporters in biology and drug therapy remains to be elucidated.
Collapse
Affiliation(s)
- Kyra-Elisa Maria Redeker
- Institute of Clinical Pharmacology, University Medical Center Göttingen, Georg-August-University Göttingen, Göttingen, Germany.
| | - Jürgen Brockmöller
- Institute of Clinical Pharmacology, University Medical Center Göttingen, Georg-August-University Göttingen, Göttingen, Germany
| |
Collapse
|
3
|
Bao MY, Feng CY, Li XQ, He Y, Han B, Yang YN, Zhang Y, Li X. Targeting of KOR by famotidine promotes OPC maturation differentiation and CNS remyelination via STAT3 signaling pathway. Int J Biol Macromol 2024; 269:131964. [PMID: 38692525 DOI: 10.1016/j.ijbiomac.2024.131964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 04/26/2024] [Accepted: 04/27/2024] [Indexed: 05/03/2024]
Abstract
This study aims to identify FDA-approved drugs that can target the kappa-opioid receptor (KOR) for the treatment of demyelinating diseases. Demyelinating diseases are characterized by myelin sheath destruction or formation that results in severe neurological dysfunction. Remission of this disease is largely dependent on the differentiation of oligodendrocyte precursor cells (OPCs) into mature oligodendrocytes (OLGs) in demyelinating lesions. KOR is an important regulatory protein and drug target for the treatment of demyelinating diseases. However, no drug targeting KOR has been developed due to the long clinical trials for drug discovery. Here, a structure-based virtual screening was applied to identify drugs targeting KOR among 1843 drugs of FDA-approved drug libraries, and famotidine was screen out by its high affinity cooperation with KOR as well as the clinical safety. We discovered that famotidine directly promoted OPC maturation and remyelination using the complementary in vitro and in vivo models. Administration of famotidine was not only effectively enhanced CNS myelinogenesis, but also promoted remyelination. Mechanically speaking, famotidine promoted myelinogenesis or remyelination through KOR/STAT3 signaling pathway. In general, our study provided evidence of new clinical applicability of famotidine for the treatment of demyelinating diseases for which there is currently no effective therapy.
Collapse
Affiliation(s)
- Ming-Yue Bao
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Chen-Yu Feng
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Xiu-Qing Li
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Yan He
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Bing Han
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Ya-Na Yang
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Yuan Zhang
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China.
| | - Xing Li
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China.
| |
Collapse
|
4
|
Li J, Xie F, Ma X. Advances in nanomedicines: a promising therapeutic strategy for ischemic cerebral stroke treatment. Nanomedicine (Lond) 2024; 19:811-835. [PMID: 38445614 DOI: 10.2217/nnm-2023-0266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024] Open
Abstract
Ischemic stroke, prevalent among the elderly, necessitates attention to reperfusion injury post treatment. Limited drug access to the brain, owing to the blood-brain barrier, restricts clinical applications. Identifying efficient drug carriers capable of penetrating this barrier is crucial. Blood-brain barrier transporters play a vital role in nutrient transport to the brain. Recently, nanoparticles emerged as drug carriers, enhancing drug permeability via surface-modified ligands. This article introduces the blood-brain barrier structure, elucidates reperfusion injury pathogenesis, compiles ischemic stroke treatment drugs, explores nanomaterials for drug encapsulation and emphasizes their advantages over conventional drugs. Utilizing nanoparticles as drug-delivery systems offers targeting and efficiency benefits absent in traditional drugs. The prospects for nanomedicine in stroke treatment are promising.
Collapse
Affiliation(s)
- Jun Li
- Faculty of Environment & Life, Beijing University of Technology, Beijing, 100124, PR China
- Beijing Molecular Hydrogen Research Center, Beijing, 100124, PR China
| | - Fei Xie
- Faculty of Environment & Life, Beijing University of Technology, Beijing, 100124, PR China
- Beijing Molecular Hydrogen Research Center, Beijing, 100124, PR China
| | - Xuemei Ma
- Faculty of Environment & Life, Beijing University of Technology, Beijing, 100124, PR China
- Beijing Molecular Hydrogen Research Center, Beijing, 100124, PR China
| |
Collapse
|
5
|
Yamaguchi T, Sako D, Kurosawa T, Nishijima M, Miyano A, Kubo Y, Ohtsuki S, Kawabata K, Deguchi Y. Development and Functional Evaluation of MDR1-expressing Microvascular Endothelial-like Cells Derived from Human iPS Cells as an In vitro Blood-brain Barrier Model. J Pharm Sci 2023; 112:3216-3223. [PMID: 37690777 DOI: 10.1016/j.xphs.2023.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/04/2023] [Accepted: 09/05/2023] [Indexed: 09/12/2023]
Abstract
In order to establish an in vitro model of the human blood-brain barrier (BBB), MDR1-overexpressing human induced pluripotent stem cells (hiPSCs) were generated, and they were differentiated to MDR1-expressing brain microvascular endothelial-like cells (MDR1-expressing hiPS-BMECs). MDR1-expressing hiPS-BMECs monolayers showed good barrier function in terms of tight junction protein expression and trans-epithelial electrical resistance (TEER). In sequential window acquisition of all theoretical fragment ion spectra mass spectrometry (SWATH-MS), MDR1 protein expression was markedly increased in MDR1-expressing hiPS-BMECs, whereas other ABC and SLC transporters showed almost identical expression between MDR1-expressing hiPS-BMECs and mock hiPS-BMECs, suggesting that MDR1 overexpression had little or no knock-on effect on other proteins. The basolateral-to-apical transport of MDR1 substrates, such as quinidine, [3H]digoxin and [3H]vinblastine, was higher than the apical-to-basolateral transport, and the efflux-dominant transport was attenuated by PSC833, an MDR1-specific inhibitor, indicating that MDR1-mediated efflux transport is functional. The robust MDR1 function was also supported by the efflux-dominant transports of [3H]cyclosporin A, loperamide, cetirizine, and verapamil by MDR1-expressing hiPS-BMECs. These results suggest that MDR1-expressing hiPS-BMECs can be used as an in vitro model of the human BBB.
Collapse
Affiliation(s)
- Tomoko Yamaguchi
- Laboratory of Cell Model for Drug Discovery, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8 Saito-Asagi, Ibaraki, 567-0085, Japan
| | - Daiki Sako
- Laboratory of Drug Disposition & Pharmacokinetics, Faculty of Pharma-Sciences, Teikyo University, 2-11-1 Kaga, Itabashi, Tokyo 173-8605, Japan
| | - Toshiki Kurosawa
- Laboratory of Drug Disposition & Pharmacokinetics, Faculty of Pharma-Sciences, Teikyo University, 2-11-1 Kaga, Itabashi, Tokyo 173-8605, Japan
| | - Misae Nishijima
- Laboratory of Cell Model for Drug Discovery, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8 Saito-Asagi, Ibaraki, 567-0085, Japan
| | - Ayaka Miyano
- Department of Pharmaceutical Microbiology, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-Honmachi, Chuo-Ku, Kumamoto 862-0973, Japan
| | - Yoshiyuki Kubo
- Laboratory of Drug Disposition & Pharmacokinetics, Faculty of Pharma-Sciences, Teikyo University, 2-11-1 Kaga, Itabashi, Tokyo 173-8605, Japan
| | - Sumio Ohtsuki
- Department of Pharmaceutical Microbiology, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-Honmachi, Chuo-Ku, Kumamoto 862-0973, Japan; Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University, 5-1 Oe-Honmachi, Chuo-Ku, Kumamoto 862-0973, Japan
| | - Kenji Kawabata
- Laboratory of Cell Model for Drug Discovery, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8 Saito-Asagi, Ibaraki, 567-0085, Japan; Laboratory of Biomedical Innovation, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita 565-0871, Japan; Department of Microbiology and Immunology, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan.
| | - Yoshiharu Deguchi
- Laboratory of Drug Disposition & Pharmacokinetics, Faculty of Pharma-Sciences, Teikyo University, 2-11-1 Kaga, Itabashi, Tokyo 173-8605, Japan.
| |
Collapse
|
6
|
Parvez MM, Sadighi A, Ahn Y, Keller SF, Enoru JO. Uptake Transporters at the Blood-Brain Barrier and Their Role in Brain Drug Disposition. Pharmaceutics 2023; 15:2473. [PMID: 37896233 PMCID: PMC10610385 DOI: 10.3390/pharmaceutics15102473] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/03/2023] [Accepted: 10/05/2023] [Indexed: 10/29/2023] Open
Abstract
Uptake drug transporters play a significant role in the pharmacokinetic of drugs within the brain, facilitating their entry into the central nervous system (CNS). Understanding brain drug disposition is always challenging, especially with respect to preclinical to clinical translation. These transporters are members of the solute carrier (SLC) superfamily, which includes organic anion transporter polypeptides (OATPs), organic anion transporters (OATs), organic cation transporters (OCTs), and amino acid transporters. In this systematic review, we provide an overview of the current knowledge of uptake drug transporters in the brain and their contribution to drug disposition. Here, we also assemble currently available proteomics-based expression levels of uptake transporters in the human brain and their application in translational drug development. Proteomics data suggest that in association with efflux transporters, uptake drug transporters present at the BBB play a significant role in brain drug disposition. It is noteworthy that a significant level of species differences in uptake drug transporters activity exists, and this may contribute toward a disconnect in inter-species scaling. Taken together, uptake drug transporters at the BBB could play a significant role in pharmacokinetics (PK) and pharmacodynamics (PD). Continuous research is crucial for advancing our understanding of active uptake across the BBB.
Collapse
Affiliation(s)
- Md Masud Parvez
- Department of Quantitative, Translational & ADME Sciences (QTAS), AbbVie Biotherapeutics, San Francisco, CA 94080, USA; (M.M.P.)
| | - Armin Sadighi
- Department of Quantitative, Translational & ADME Sciences (QTAS), AbbVie Biotherapeutics, San Francisco, CA 94080, USA; (M.M.P.)
| | - Yeseul Ahn
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, 1300 S Coulter St., Amarillo, TX 79106, USA
- Center for Blood-Brain Barrier Research, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Steve F. Keller
- Department of Quantitative, Translational & ADME Sciences (QTAS), AbbVie Biotherapeutics, San Francisco, CA 94080, USA; (M.M.P.)
| | - Julius O. Enoru
- Department of Quantitative, Translational & ADME Sciences (QTAS), AbbVie Biotherapeutics, San Francisco, CA 94080, USA; (M.M.P.)
| |
Collapse
|
7
|
Sachkova A, Jensen O, Dücker C, Ansari S, Brockmöller J. The mystery of the human proton-organic cation antiporter: One transport protein or many? Pharmacol Ther 2022; 239:108283. [DOI: 10.1016/j.pharmthera.2022.108283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/20/2022] [Accepted: 09/20/2022] [Indexed: 10/14/2022]
|
8
|
He J, Biswas R, Bugde P, Li J, Liu DX, Li Y. Application of CRISPR-Cas9 System to Study Biological Barriers to Drug Delivery. Pharmaceutics 2022; 14:pharmaceutics14050894. [PMID: 35631480 PMCID: PMC9147533 DOI: 10.3390/pharmaceutics14050894] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 04/11/2022] [Accepted: 04/19/2022] [Indexed: 02/05/2023] Open
Abstract
In recent years, sequence-specific clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated (Cas) systems have been widely used in genome editing of various cell types and organisms. The most developed and broadly used CRISPR-Cas system, CRISPR-Cas9, has benefited from the proof-of-principle studies for a better understanding of the function of genes associated with drug absorption and disposition. Genome-scale CRISPR-Cas9 knockout (KO) screen study also facilitates the identification of novel genes in which loss alters drug permeability across biological membranes and thus modulates the efficacy and safety of drugs. Compared with conventional heterogeneous expression models or other genome editing technologies, CRISPR-Cas9 gene manipulation techniques possess significant advantages, including ease of design, cost-effectiveness, greater on-target DNA cleavage activity and multiplexing capabilities, which makes it possible to study the interactions between membrane proteins and drugs more accurately and efficiently. However, many mechanistic questions and challenges regarding CRISPR-Cas9 gene editing are yet to be addressed, ranging from off-target effects to large-scale genetic alterations. In this review, an overview of the mechanisms of CRISPR-Cas9 in mammalian genome editing will be introduced, as well as the application of CRISPR-Cas9 in studying the barriers to drug delivery.
Collapse
Affiliation(s)
- Ji He
- School of Science, Auckland University of Technology, Auckland 1010, New Zealand; (J.H.); (R.B.); (P.B.); (J.L.); (D.-X.L.)
| | - Riya Biswas
- School of Science, Auckland University of Technology, Auckland 1010, New Zealand; (J.H.); (R.B.); (P.B.); (J.L.); (D.-X.L.)
| | - Piyush Bugde
- School of Science, Auckland University of Technology, Auckland 1010, New Zealand; (J.H.); (R.B.); (P.B.); (J.L.); (D.-X.L.)
| | - Jiawei Li
- School of Science, Auckland University of Technology, Auckland 1010, New Zealand; (J.H.); (R.B.); (P.B.); (J.L.); (D.-X.L.)
| | - Dong-Xu Liu
- School of Science, Auckland University of Technology, Auckland 1010, New Zealand; (J.H.); (R.B.); (P.B.); (J.L.); (D.-X.L.)
- The Centre for Biomedical and Chemical Sciences, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland 1010, New Zealand
| | - Yan Li
- School of Science, Auckland University of Technology, Auckland 1010, New Zealand; (J.H.); (R.B.); (P.B.); (J.L.); (D.-X.L.)
- The Centre for Biomedical and Chemical Sciences, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland 1010, New Zealand
- School of Interprofessional Health Studies, Auckland University of Technology, Auckland 1010, New Zealand
- Correspondence: ; Tel.: +64-9921-9999 (ext. 7109)
| |
Collapse
|
9
|
Construction and Functional Evaluation of a Three-Dimensional Blood–Brain Barrier Model Equipped With Human Induced Pluripotent Stem Cell-Derived Brain Microvascular Endothelial Cells. Pharm Res 2022; 39:1535-1547. [PMID: 35411503 PMCID: PMC9246774 DOI: 10.1007/s11095-022-03249-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 03/29/2022] [Indexed: 12/28/2022]
Abstract
Abstract
Purpose
The purpose of this study was to construct and validate an in vivo three-dimensional blood–brain barrier (3D-BBB) model system equipped with brain microvascular endothelial cells derived from human induced pluripotent stem cells (hiPS-BMECs).
Methods
The 3D-BBB system was constructed by seeding hiPS-BMECs onto the capillary lane of a MIMETAS OrganoPlate® 3-lane coated with fibronectin/collagen IV. hiPS-BMECs were incubated under continuous switchback flow with an OrganoFlow® for 2 days. The 3D capillary structure and expression of tight-junction proteins and transporters were confirmed by immunocytochemistry. The mRNA expression of transporters in the 3D environment was determined using qRT-PCR, and the permeability of endogenous substances and drugs was evaluated under various conditions.
Results and Discussion
The expression of tight-junction proteins, including claudin-5 and ZO-1, was confirmed by immunohistochemistry. The permeability rate constant of lucifer yellow through hiPS-BMECs was undetectably low, indicating that paracellular transport is highly restricted by tight junctions in the 3D-BBB system. The mRNA expression levels of transporters and receptors in the 3D-BBB system differed from those in the 2D-culture system by 0.2- to 5.8-fold. The 3D-cultured hiPS-BMECs showed asymmetric transport of substrates of BCRP, CAT1 and LAT1 between the luminal (blood) and abluminal (brain) sides. Proton-coupled symport function of MCT1 was also confirmed.
Conclusion
The 3D-BBB system constructed in this study mimics several important characteristics of the human BBB, and is expected to be a useful high-throughput evaluation tool in the development of CNS drugs.
Collapse
|
10
|
Kadoguchi M, Arakawa H, Honda R, Hotta K, Shirasaka Y, Deguchi Y, Tamai I. Characterization of Aripiprazole Uptake Transporter in the Blood-Brain Barrier Model hCMEC/D3 Cells by Targeted siRNA Screening. Pharm Res 2022; 39:1549-1559. [PMID: 35314999 DOI: 10.1007/s11095-022-03223-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 03/03/2022] [Indexed: 12/12/2022]
Abstract
AIM Identification of blood-brain barrier (BBB) uptake transporters is a major challenge in the research and development of central nervous system (CNS) drugs. However, conventional methods that consider known drug uptake characteristics have failed at identifying the responsible transporter molecule. The present study aimed at identifying aripiprazole uptake transporters in BBB model hCMEC/D3 cells using a knockdown screening study targeting various transporters, including uncharacterized ones. METHODS We evaluated the effect of 214 types of siRNA targeting transporters on the uptake of aripiprazole, an atypical antipsychotic drug, in hCMEC/D3 cells. Aripiprazole uptake was determined using Xenopus oocytes expressing the candidate genes extracted from the siRNA screening assay. RESULTS The estimated unbound brain to plasma concentration ratio (Kp,uu,brain) of aripiprazole was estimated as 0.67 in wild-type mice and 1.94 in abcb1a/1b/abcg2 knockout mice, suggesting the involvement of both uptake and efflux transporters in BBB permeation. According to siRNA knockdown screening studies, organic cation/carnitine transporter 2 (OCTN2) and long-chain fatty acid transporter 1 (FATP1) were identified as candidate genes. The uptake of aripiprazole by hCMEC/D3 cells was decreased by OCTN2 inhibitors, but not by FATP1 inhibitors. A partially increased uptake of aripiprazole was observed in OCTN2-expressing Xenopus oocytes. Finally, to evaluate transporter-mediated BBB permeation of drugs, the reported and estimated Kp,uu,brain values were summarized. CONCLUSIONS A knockdown screening study in combination with Kp,uu,brain values showed that aripiprazole was a potential substrate of OCTN2. The technique described in this study can be applied to identifying novel BBB transporters for CNS drugs.
Collapse
Affiliation(s)
- Moeno Kadoguchi
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa, 920-1192, Japan
| | - Hiroshi Arakawa
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa, 920-1192, Japan
| | - Ryokichi Honda
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa, 920-1192, Japan
| | - Kazuki Hotta
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa, 920-1192, Japan
| | - Yoshiyuki Shirasaka
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa, 920-1192, Japan
| | - Yoshiharu Deguchi
- Faculty of Pharma-Sciences, Teikyo University, 2-11-1 Kaga, Itabashi, Tokyo, 173-8605, Japan
| | - Ikumi Tamai
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa, 920-1192, Japan.
| |
Collapse
|
11
|
Hashimoto Y, Michiba K, Maeda K, Kusuhara H. Quantitative prediction of pharmacokinetic properties of drugs in humans: Recent advance in in vitro models to predict the impact of efflux transporters in the small intestine and blood-brain barrier. J Pharmacol Sci 2021; 148:142-151. [PMID: 34924119 DOI: 10.1016/j.jphs.2021.10.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/17/2021] [Accepted: 10/20/2021] [Indexed: 12/12/2022] Open
Abstract
Efflux transport systems are essential to suppress the absorption of xenobiotics from the intestinal lumen and protect the critical tissues at the blood-tissue barriers, such as the blood-brain barrier. The function of drug efflux transport is dominated by various transporters. Accumulated clinical evidences have revealed that genetic variations of the transporters, together with coadministered drugs, affect the expression and/or function of transporters and subsequently the pharmacokinetics of substrate drugs. Thus, in the preclinical stage of drug development, quantitative prediction of the impact of efflux transporters as well as that of uptake transporters and metabolic enzymes on the pharmacokinetics of drugs in humans has been performed using various in vitro experimental tools. Various kinds of human-derived cell systems can be applied to the precise prediction of drug transport in humans. Mathematical modeling consisting of each intrinsic metabolic or transport process enables us to understand the disposition of drugs both at the organ level and at the level of the whole body by integrating a variety of experimental results into model parameters. This review focuses on the role of efflux transporters in the intestinal absorption and brain distribution of drugs, in addition to recent advances in predictive tools and methodologies.
Collapse
Affiliation(s)
- Yoshiki Hashimoto
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kazuyoshi Michiba
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kazuya Maeda
- Laboratory of Pharmaceutics, Kitasato University School of Pharmacy, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Hiroyuki Kusuhara
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| |
Collapse
|
12
|
Watanabe D, Nakagawa S, Morofuji Y, Tóth AE, Vastag M, Aruga J, Niwa M, Deli MA. Characterization of a Primate Blood-Brain Barrier Co-Culture Model Prepared from Primary Brain Endothelial Cells, Pericytes and Astrocytes. Pharmaceutics 2021; 13:pharmaceutics13091484. [PMID: 34575559 PMCID: PMC8470770 DOI: 10.3390/pharmaceutics13091484] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/09/2021] [Accepted: 09/13/2021] [Indexed: 01/25/2023] Open
Abstract
Culture models of the blood-brain barrier (BBB) are important research tools. Their role in the preclinical phase of drug development to estimate the permeability for potential neuropharmaceuticals is especially relevant. Since species differences in BBB transport systems exist, primate models are considered as predictive for drug transport to brain in humans. Based on our previous expertise we have developed and characterized a non-human primate co-culture BBB model using primary cultures of monkey brain endothelial cells, rat brain pericytes, and rat astrocytes. Monkey brain endothelial cells in the presence of both pericytes and astrocytes (EPA model) expressed enhanced barrier properties and increased levels of tight junction proteins occludin, claudin-5, and ZO-1. Co-culture conditions also elevated the expression of key BBB influx and efflux transporters, including glucose transporter-1, MFSD2A, ABCB1, and ABCG2. The correlation between the endothelial permeability coefficients of 10 well known drugs was higher (R2 = 0.8788) when the monkey and rat BBB culture models were compared than when the monkey culture model was compared to mouse in vivo data (R2 = 0.6619), hinting at transporter differences. The applicability of the new non-human primate model in drug discovery has been proven in several studies.
Collapse
Affiliation(s)
- Daisuke Watanabe
- Department of Medical Pharmacology, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan; (D.W.); (J.A.)
- BBB Laboratory, PharmaCo-Cell Co., Ltd., Nagasaki 852-8135, Japan;
| | - Shinsuke Nakagawa
- Department of Pharmaceutical Care and Health Sciences, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan;
| | - Yoichi Morofuji
- Department of Neurosurgery, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan;
| | - Andrea E. Tóth
- Institute of Biophysics, Biological Research Centre, Temesvári krt. 62, H-6726 Szeged, Hungary;
| | - Monika Vastag
- In Vitro Metabolism Research, Division of Pharmacology and Drug Safety Research, Gedeon Richter Plc., Gyömrői út 19-21, H-1103 Budapest, Hungary;
| | - Jun Aruga
- Department of Medical Pharmacology, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan; (D.W.); (J.A.)
| | - Masami Niwa
- BBB Laboratory, PharmaCo-Cell Co., Ltd., Nagasaki 852-8135, Japan;
| | - Mária A. Deli
- Institute of Biophysics, Biological Research Centre, Temesvári krt. 62, H-6726 Szeged, Hungary;
- Correspondence:
| |
Collapse
|
13
|
Kurosawa T, Tega Y, Sako D, Mochizuki T, Yamaguchi T, Kawabata K, Inoue K, Ito N, Kusuhara H, Deguchi Y. Transport Characteristics of 6-Mercaptopurine in Brain Microvascular Endothelial Cells Derived From Human Induced Pluripotent Stem Cells. J Pharm Sci 2021; 110:3484-3490. [PMID: 34102205 DOI: 10.1016/j.xphs.2021.06.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 06/03/2021] [Accepted: 06/03/2021] [Indexed: 01/25/2023]
Abstract
The likelihood of reoccurrence of acute lymphoblastic leukemia is influenced by the cerebral concentration of the therapeutic agent 6-mercaptopurine (6-MP) during treatment. Therefore, it is important to understand the blood-brain barrier (BBB) transport mechanism of 6-MP. The purpose of this study was to characterize this mechanism using human induced pluripotent stem cell-derived microvascular endothelial cells (hiPS-BMECs). The permeability coefficient of 6-MP across hiPS-BMECs monolayer in the basal-to-apical direction (B-to-A) was significantly greater than that in the opposite direction (A-to-B). The inhibition profiles of 6-MP transport in the A-to-B direction were different from those in the B-to-A direction. Transport in the A-to-B direction was mainly inhibited by adenine (an inhibitor of equilibrative nucleobase transporter 1; ENBT1), while transport in the B-to-A direction was significantly reduced by inhibitors of multidrug resistance-associated proteins (MRPs), especially zaprinast (an MRP5 inhibitor). Immunocytochemical analyses demonstrated the expression of ENBT1 and MRP5 proteins in hiPS-BMECs. We confirmed that the cellular uptake of 6-MP is decreased by ENBT1 inhibitors in hiPS-BMECs and by knockdown of ENBT1 in hCMEC/D3 cells. These results suggest that ENBT1 and MRP5 make substantial contributions to the transport of 6-MP in hiPS-BMECs and hCMEC/D3 cells.
Collapse
Affiliation(s)
- Toshiki Kurosawa
- Laboratory of Drug Disposition and Pharmacokinetics, Faculty of Pharma-Sciences, Teikyo University, 2-11-1 Kaga, Itabashi, Tokyo 173-8605, Japan
| | - Yuma Tega
- Laboratory of Drug Disposition and Pharmacokinetics, Faculty of Pharma-Sciences, Teikyo University, 2-11-1 Kaga, Itabashi, Tokyo 173-8605, Japan
| | - Daiki Sako
- Laboratory of Drug Disposition and Pharmacokinetics, Faculty of Pharma-Sciences, Teikyo University, 2-11-1 Kaga, Itabashi, Tokyo 173-8605, Japan
| | - Tatsuki Mochizuki
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Tomoko Yamaguchi
- Laboratory of Stem Cell Regulation, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8 Saito-Asagi, Ibaraki, Osaka 567-0085, Japan
| | - Kenji Kawabata
- Laboratory of Stem Cell Regulation, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8 Saito-Asagi, Ibaraki, Osaka 567-0085, Japan
| | - Katsuhisa Inoue
- Department of Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Naoki Ito
- Department of Pediatrics, School of Medicine, Teikyo University, 2-11-1 Kaga, Itabashi, Tokyo 173-8605, Japan
| | - Hiroyuki Kusuhara
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yoshiharu Deguchi
- Laboratory of Drug Disposition and Pharmacokinetics, Faculty of Pharma-Sciences, Teikyo University, 2-11-1 Kaga, Itabashi, Tokyo 173-8605, Japan.
| |
Collapse
|