1
|
Ebert A, Dahley C. Can membrane permeability of zwitterionic compounds be predicted by the solubility-diffusion model? Eur J Pharm Sci 2024; 199:106819. [PMID: 38815700 DOI: 10.1016/j.ejps.2024.106819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/23/2024] [Accepted: 05/27/2024] [Indexed: 06/01/2024]
Abstract
Zwitterions contain both positively and negatively charged functional groups, resulting in an overall net neutral charge. Nevertheless, the membrane permeability of the zwitterionic form of a compound is assumed to be much lower than the permeability of the uncharged neutral form. Although a significant proportion of pharmaceuticals are zwitterionic, it has not been clear so far whether their permeability is dominated by the permeation of the zwitterionic or the neutral form, since neutral fractions are often quite low as compared to the zwitterionic fraction. This complicates the in silico prediction of the permeability of zwitterionic compounds. In this work, we re-evaluated existing in vitro permeability data from literature measured with Caco-2/MDCK cell assays, using more strict exclusion criteria for effects like diffusion limitation by the aqueous boundary layers, paracellular transport, active transport and retention. Using this re-evaluated data set, we show that extracted intrinsic permeabilities of the neutral fraction are well predicted by the solubility-diffusion model (RMSE = 1.21; n = 18) if the permeability of the zwitterionic species is assumed negligible. Our work thus suggests that only the neutral species is relevant for the membrane permeability of zwitterionic compounds, and that membrane permeability of zwitterionic compounds is indeed predictable by the solubility-diffusion model.
Collapse
Affiliation(s)
- Andrea Ebert
- Department of Computational Biology & Chemistry, Helmholtz Centre for Environmental Research (UFZ), Permoserstraße 15, 04318 Leipzig, Germany.
| | - Carolin Dahley
- Department of Computational Biology & Chemistry, Helmholtz Centre for Environmental Research (UFZ), Permoserstraße 15, 04318 Leipzig, Germany
| |
Collapse
|
2
|
Ebert A, Dahley C, Goss KU. Pitfalls in evaluating permeability experiments with Caco-2/MDCK cell monolayers. Eur J Pharm Sci 2024; 194:106699. [PMID: 38232636 DOI: 10.1016/j.ejps.2024.106699] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/05/2024] [Accepted: 01/08/2024] [Indexed: 01/19/2024]
Abstract
When studying the transport of molecules across biological membranes, intrinsic membrane permeability (P0) is more informative than apparent permeability (Papp), because it eliminates external (setup-specific) factors, provides consistency across experiments and mechanistic insight. It is thus an important building block for modeling the total permeability in any given scenario. However, extracting P0 is often difficult, if not impossible, when the membrane is not the dominant transport resistance. In this work, we set out to analyze Papp values measured with Caco-2/MDCK cell monolayers of 69 literature references. We checked the Papp values for a total of 318 different compounds for the extractability of P0, considering possible limitations by aqueous boundary layers, paracellular transport, recovery issues, active transport, a possible proton flux limitation, and sink conditions. Overall, we were able to extract 77 reliable P0 values, which corresponds to about one quarter of the total compounds analyzed, while about half were limited by the diffusion through the aqueous layers. Compared to an existing data set of P0 values published by Avdeef, our approach resulted in a much higher exclusion of compounds. This is a consequence of stricter compound- and reference-specific exclusion criteria, but also because we considered possible concentration-shift effects due to different pH values in the aqueous layers, an effect only recently described in literature. We thus provide a consistent and reliable set of P0, e.g. as a basis for future modeling.
Collapse
Affiliation(s)
- Andrea Ebert
- Department of Analytical Environmental Chemistry, Helmholtz Centre for Environmental Research (UFZ), Permoserstraße 15, Leipzig 04318, Federal Republic of Germany.
| | - Carolin Dahley
- Department of Analytical Environmental Chemistry, Helmholtz Centre for Environmental Research (UFZ), Permoserstraße 15, Leipzig 04318, Federal Republic of Germany
| | - Kai-Uwe Goss
- Department of Analytical Environmental Chemistry, Helmholtz Centre for Environmental Research (UFZ), Permoserstraße 15, Leipzig 04318, Federal Republic of Germany; Institute of Chemistry, University of Halle-Wittenberg, Kurt-Mothes-Straße 2, Halle 06120, Federal Republic of Germany
| |
Collapse
|
3
|
Chothe PP, Mitra P, Nakakariya M, Ramsden D, Rotter CJ, Sandoval P, Tohyama K. Drug transporters in drug disposition - the year 2022 in review. Drug Metab Rev 2023; 55:343-370. [PMID: 37644867 DOI: 10.1080/03602532.2023.2252618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 08/11/2023] [Indexed: 08/31/2023]
Abstract
On behalf of all the authors, I am pleased to share our third annual review on drug transporter science with an emphasis on articles published and deemed influential in signifying drug transporters' role in drug disposition in the year 2022. As the drug transporter field is rapidly evolving several key findings were noted including promising endogenous biomarkers, rhythmic activity, IVIVE approaches in transporter-mediated clearance, new modality interaction, and transporter effect on gut microbiome. As identified previously (Chothe et Cal. 2021, 2022) the goal of this review is to highlight key findings without a comprehensive overview of each article and to this end, each coauthor independently selected 1-3 peer-reviewed articles published or available online in the year 2022 (Table 1). Each article is summarized in synopsis and commentary with unbiased viewpoints by each coauthor. We strongly encourage readers to consult original articles for specifics of the study. Finally, I would like to thank all coauthors for their continued support in writing this annual review on drug transporters and invite anyone interested in contributing to future versions of this review.
Collapse
Affiliation(s)
- Paresh P Chothe
- Department of Drug Metabolism and Pharmacokinetics, Oncology Research and Development, AstraZeneca, Waltham, MA, USA
| | - Pallabi Mitra
- Department of Drug Metabolism and Pharmacokinetics, Boehringer Ingelheim Pharmaceuticals Inc, Ridgefield, CT, USA
| | - Masanori Nakakariya
- Drug Metabolism and Pharmacokinetics Research Laboratories, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| | - Diane Ramsden
- Department of Drug Metabolism and Pharmacokinetics, Oncology Research and Development, AstraZeneca, Waltham, MA, USA
| | - Charles J Rotter
- Global Drug Metabolism and Pharmacokinetics, Takeda Development Center Americas, Inc. (TDCA), San Diego, CA, USA
| | - Philip Sandoval
- Global Drug Metabolism and Pharmacokinetics, Takeda Development Center Americas, Inc. (TDCA), Lexington, MA, USA
| | - Kimio Tohyama
- Drug Metabolism and Pharmacokinetics Research Laboratories, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| |
Collapse
|
4
|
Nies AT, Schaeffeler E, Schwab M. Hepatic solute carrier transporters and drug therapy: Regulation of expression and impact of genetic variation. Pharmacol Ther 2022; 238:108268. [DOI: 10.1016/j.pharmthera.2022.108268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/25/2022] [Accepted: 08/15/2022] [Indexed: 11/30/2022]
|
5
|
Sulaiman Hameed G, Basim Mohsin Mohamed M, Naji Sahib M. Binary or ternary mixture of solid dispersion: Meloxicam case. PHARMACIA 2022. [DOI: 10.3897/pharmacia.69.e86744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The present work was carried out to assess the value of adding water insoluble polymer to meloxicam amorphous solid formulation (ASD). Meloxicam was mixed with polyvinylpyrrolidone (PVP) (1:1 ratio) as a binary mixture and with PVP and ethyl cellulose (1:1:1 ratio) as a ternary mixture. Solvent evaporation method was used to prepare ASD formulations. The differential scanning calorimetry, powder X-Ray diffraction, Cambridge Structural Database and in-vitro dissolution were performed to assess the formulas. The results showed that the addition of insoluble polymer could prevent the recrystallization process during ASD formation. However, the binary mixture showed higher drug release percentage than the ternary mixture. Therefore, a rational amount of insoluble polymer could be considered to control recrystallization and manipulate drug release from ASD formulations.
Collapse
|
6
|
Zamek-Gliszczynski MJ, Sangha V, Shen H, Feng B, Wittwer MB, Varma MVS, Liang X, Sugiyama Y, Zhang L, Bendayan R. Transporters in drug development: International transporter consortium update on emerging transporters of clinical importance. Clin Pharmacol Ther 2022; 112:485-500. [PMID: 35561119 DOI: 10.1002/cpt.2644] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 05/08/2022] [Indexed: 11/07/2022]
Abstract
During its 4th transporter workshop in 2021, the International Transporter Consortium (ITC) provided updates on emerging clinically relevant transporters for drug development. Previously highlighted and new transporters were considered based on up-to-date clinical evidence of their importance in drug-drug interactions and potential for altered drug efficacy and safety, including drug-nutrient interactions leading to nutrient deficiencies. For the first time, folate transport pathways (PCFT, RFC, and FRα) were examined in-depth as a potential mechanism of drug-induced folate deficiency and related toxicities (e.g., neural tube defects, megaloblastic anemia). However, routine toxicology studies conducted in support of drug development appear sufficient to flag such folate deficiency toxicities, while prospective prediction from in vitro folate metabolism and transport inhibition is not well enough established to inform drug development. Previous suggestion of retrospective study of intestinal OATP2B1 inhibition to explain unexpected decreases in drug exposure were updated. Furthermore, when the absorption of a new molecular entity is more rapid and extensive than can be explained by passive permeability, evaluation of OATP2B1 transport may be considered. Emerging research on hepatic and renal OAT2 is summarized, but current understanding of the importance of OAT2 was deemed insufficient to justify specific consideration for drug development. Hepatic, renal, and intestinal MRPs (MRP2, MRP3, MRP4) were revisited. MRPs may be considered when they are suspected to be the major determinant of drug disposition (e.g., direct glucuronide conjugates); MRP2 inhibition as a mechanistic explanation for drug-induced hyperbilirubinemia remains justified. There were no major changes in recommendations from previous ITC whitepapers.
Collapse
Affiliation(s)
| | - Vishal Sangha
- Department of Pharmaceutical Sciences, University of Toronto, Leslie Dan Faculty of Pharmacy, 144 College Street, Toronto, ON, M5S 3M2, Canada
| | - Hong Shen
- Drug Metabolism and PK, Bristol Myers Squibb Company, Route 206 & Province Line Road, Princeton, NJ, 08543, USA
| | - Bo Feng
- Drug Metabolism and PK, Vertex Pharmaceuticals, Inc, 50 Northern Avenue, Boston, MA, 02210, USA
| | - Matthias B Wittwer
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, CH-4070, Basel, Switzerland
| | - Manthena V S Varma
- PK, Dynamics and Metabolism, Medicine Design, Pfizer Inc, Worldwide R&D, Groton, CT, 06340, USA
| | - Xiaomin Liang
- Drug Metabolism, Gilead Sciences, Inc, 333 Lakeside Drive, Foster City, CA, 94404, USA
| | - Yuichi Sugiyama
- Laboratory of Quantitative System PK/Pharmacodynamics, School of Pharmacy, Josai International University, Kioicho Campus, Tokyo, 102-0093, Japan
| | - Lei Zhang
- Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, 10903 New Hampshire Ave, Silver Spring, MD, 20993, USA
| | - Reina Bendayan
- Department of Pharmaceutical Sciences, University of Toronto, Leslie Dan Faculty of Pharmacy, 144 College Street, Toronto, ON, M5S 3M2, Canada
| | | |
Collapse
|