1
|
Miao X, Dear GJ, Beaumont C, Vitulli G, Collins G, Gorycki PD, Harrell AW, Sakatis MZ. Cyanide Trapping of Iminium Ion Reactive Metabolites: Implications for Clinical Hepatotoxicity. Chem Res Toxicol 2024; 37:698-710. [PMID: 38619497 DOI: 10.1021/acs.chemrestox.3c00402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Reactive metabolite formation is a major mechanism of hepatotoxicity. Although reactive electrophiles can be soft or hard in nature, screening strategies have generally focused on the use of glutathione trapping assays to screen for soft electrophiles, with many data sets available to support their use. The use of a similar assay for hard electrophiles using cyanide as the trapping agent is far less common, and there is a lack of studies with sufficient supporting data. Using a set of 260 compounds with a defined hepatotoxicity status by the FDA, a comprehensive literature search yielded cyanide trapping data on an unbalanced set of 20 compounds that were all clinically hepatotoxic. Thus, a further set of 19 compounds was selected to generate cyanide trapping data, resulting in a more balanced data set of 39 compounds. Analysis of the data demonstrated that the cyanide trapping assay had high specificity (92%) and a positive predictive value (83%) such that hepatotoxic compounds would be confidently flagged. Structural analysis of the adducts formed revealed artifactual methylated cyanide adducts to also occur, highlighting the importance of full structural identification to confirm the nature of the adduct formed. The assay was demonstrated to add the most value for compounds containing typical structural alerts for hard electrophile formation: half of the severe hepatotoxins with these structural alerts formed cyanide adducts, while none of the severe hepatotoxins with no relevant structural alerts formed adducts. The assay conditions used included cytosolic enzymes (e.g., aldehyde oxidase) and an optimized cyanide concentration to minimize the inhibition of cytochrome P450 enzymes by cyanide. Based on the demonstrated added value of this assay, it is to be initiated for use at GSK as part of the integrated hepatotoxicity strategy, with its performance being reviewed periodically as more data is generated.
Collapse
Affiliation(s)
- Xiusheng Miao
- Drug Metabolism and Pharmacokinetics, GSK, Collegeville, Pennsylvania 19426, United States
| | - Gordon J Dear
- Drug Metabolism and Pharmacokinetics, GSK, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Claire Beaumont
- Drug Metabolism and Pharmacokinetics, GSK, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Giovanni Vitulli
- Drug Metabolism and Pharmacokinetics, GSK, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Gary Collins
- Drug Metabolism and Pharmacokinetics, GSK, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Peter D Gorycki
- Drug Metabolism and Pharmacokinetics, GSK, Collegeville, Pennsylvania 19426, United States
| | - Andrew W Harrell
- Drug Metabolism and Pharmacokinetics, GSK, Stevenage, Hertfordshire SG1 2NY, U.K
| | | |
Collapse
|
2
|
Latham BD, Geffert RM, Jackson KD. Kinase Inhibitors FDA Approved 2018-2023: Drug Targets, Metabolic Pathways, and Drug-Induced Toxicities. Drug Metab Dispos 2024; 52:479-492. [PMID: 38286637 PMCID: PMC11114602 DOI: 10.1124/dmd.123.001430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 01/11/2024] [Accepted: 01/24/2024] [Indexed: 01/31/2024] Open
Abstract
Small molecule kinase inhibitors are one of the fastest growing classes of drugs, which are approved by the US Food and Drug Administration (FDA) for cancer and noncancer indications. As of September 2023, there were over 70 FDA-approved small molecule kinase inhibitors on the market, 42 of which were approved in the past five years (2018-2023). This minireview discusses recent advances in our understanding of the pharmacology, metabolism, and toxicity profiles of recently approved kinase inhibitors with a central focus on tyrosine kinase inhibitors (TKIs). In this minireview we discuss the most common therapeutic indications and molecular target(s) of kinase inhibitors FDA approved 2018-2023. We also describe unique aspects of the metabolism, bioactivation, and drug-drug interaction (DDI) potential of kinase inhibitors; discuss drug toxicity concerns related to kinase inhibitors, such as drug-induced liver injury; and highlight clinical outcomes and challenges relevant to TKI therapy. Case examples are provided for common TKI targets, metabolism pathways, DDI potential, and risks for serious adverse drug reactions. The minireview concludes with a discussion of perspectives on future research to optimize TKI therapy to maximize efficacy and minimize drug toxicity. SIGNIFICANCE STATEMENT: This minireview highlights important aspects of the clinical pharmacology and toxicology of small molecule kinase inhibitors FDA approved 2018-2023. We describe key advances in the therapeutic indications and molecular targets of TKIs. The major metabolism pathways and toxicity profiles of recently approved TKIs are discussed. Clinically relevant case examples are provided that demonstrate the risk for hepatotoxic drug interactions involving TKIs and coadministered drugs.
Collapse
Affiliation(s)
- Bethany D Latham
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Raeanne M Geffert
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Klarissa D Jackson
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
3
|
Wei W, Tang LWT, Verma RK, Fan H, Chan ECY. Probe Substrate Dependencies in CYP3A4 Allosteric Inhibition: A Novel Molecular Mechanism Involving F-F' Loop Perturbations. J Chem Inf Model 2024; 64:2058-2067. [PMID: 38457234 DOI: 10.1021/acs.jcim.3c01837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
The biochemical basis for substrate dependences in apparent inhibition constant values (Ki) remains unknown. Our study aims to elucidate plausible structural determinants underpinning these observations. In vitro steady-state inhibition assays conducted using human recombinant CYP3A4 enzyme and testosterone substrate revealed that fibroblast growth factor receptor (FGFR) inhibitors erdafitinib and pemigatinib noncompetitively inhibited CYP3A4 with apparent Ki values of 10.2 ± 1.1 and 3.3 ± 0.9 μM, respectively. However, when rivaroxaban was adopted as the probe substrate, there were 2.0- and 3.2-fold decreases in its apparent Ki values. To glean mechanistic insights into this phenomenon, erdafitinib and pemigatinib were docked to allosteric sites in CYP3A4. Subsequently, molecular dynamics (MD) simulations of apo- and holo-CYP3A4 were conducted to investigate the structural changes induced. Comparative structural analyses of representative MD frames extracted by hierarchical clustering revealed that the allosteric inhibition of CYP3A4 by erdafitinib and pemigatinib did not substantially modulate its active site characteristics. In contrast, we discovered that allosteric binding of the FGFR inhibitors reduces the structural flexibility of the F-F' loop region, an important gating mechanism to regulate access of the substrate to the catalytic heme. We surmised that the increased rigidity of the F-F' loop engenders a more constrained entrance to the CYP3A4 active site, which in turn impedes access to the larger rivaroxaban molecule to a greater extent than testosterone and culminates in more potent inhibition of its CYP3A4-mediated metabolism. Our findings suggest a potential mechanism to rationalize probe substrate dependencies in Ki arising from the allosteric noncompetitive inhibition of CYP3A4.
Collapse
Affiliation(s)
- Wan Wei
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, 138671 Singapore
| | - Lloyd Wei Tat Tang
- Department of Pharmacy, Faculty of Science, National University of Singapore, 18 Science Drive 4, 117543 Singapore
| | - Ravi Kumar Verma
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, 138671 Singapore
| | - Hao Fan
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, 138671 Singapore
| | - Eric Chun Yong Chan
- Department of Pharmacy, Faculty of Science, National University of Singapore, 18 Science Drive 4, 117543 Singapore
| |
Collapse
|
4
|
Wang S, Argikar UA, Cheruzel L, Cho S, Crouch RD, Dhaware D, Heck CJS, Johnson KM, Kalgutkar AS, King L, Liu J, Ma B, Maw H, Miller GP, Seneviratne HK, Takahashi RH, Wei C, Khojasteh SC. Bioactivation and reactivity research advances - 2022 year in review‡. Drug Metab Rev 2023; 55:267-300. [PMID: 37608698 DOI: 10.1080/03602532.2023.2244193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 06/05/2023] [Indexed: 08/24/2023]
Abstract
With the 50th year mark since the launch of Drug Metabolism and Disposition journal, the field of drug metabolism and bioactivation has advanced exponentially in the past decades (Guengerich 2023).This has, in a major part, been due to the continued advances across the whole spectrum of applied technologies in hardware, software, machine learning (ML), and artificial intelligence (AI). LC-MS platforms continue to evolve to support key applications in the field, and automation is also improving the accuracy, precision, and throughput of these supporting assays. In addition, sample generation and processing is being aided by increased diversity and quality of reagents and bio-matrices so that what is being analyzed is more relevant and translatable. The application of in silico platforms (applied software, ML, and AI) is also making great strides, and in tandem with the more traditional approaches mentioned previously, is significantly advancing our understanding of bioactivation pathways and how these play a role in toxicity. All of this continues to allow the area of bioactivation to evolve in parallel with associated fields to help bring novel or improved medicines to patients with urgent or unmet needs.Shuai Wang and Cyrus Khojasteh, on behalf of the authors.
Collapse
Affiliation(s)
- Shuai Wang
- Department of Drug Metabolism and Pharmacokinetics, Genentech, Inc., South San Francisco, CA, USA
| | - Upendra A Argikar
- Non-clinical Development, Bill and Melinda Gates Medical Research Institute, Cambridge, MA, USA
| | - Lionel Cheruzel
- Department of Drug Metabolism and Pharmacokinetics, Genentech, Inc., South San Francisco, CA, USA
| | - Sungjoon Cho
- Department of Drug Metabolism and Pharmacokinetics, Genentech, Inc., South San Francisco, CA, USA
| | - Rachel D Crouch
- Department of Pharmacy and Pharmaceutical Sciences, Lipscomb University College of Pharmacy, Nashville, TN, USA
| | | | - Carley J S Heck
- Medicine Design, Pfizer Worldwide Research, Development and Medical, Groton, CT, USA
| | - Kevin M Johnson
- Drug Metabolism and Pharmacokinetics, Inotiv, Maryland Heights, MO, USA
| | - Amit S Kalgutkar
- Medicine Design, Pfizer Worldwide Research, Development and Medical, Cambridge, MA, USA
| | - Lloyd King
- Quantitative Drug Discovery, UCB Biopharma UK, Slough, UK
| | - Joyce Liu
- Department of Drug Metabolism and Pharmacokinetics, Genentech, Inc., South San Francisco, CA, USA
| | - Bin Ma
- Department of Drug Metabolism and Pharmacokinetics, Genentech, Inc., South San Francisco, CA, USA
| | - Hlaing Maw
- Drug Metabolism and Pharmacokinetics, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, CT, USA
| | - Grover P Miller
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Herana Kamal Seneviratne
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, MD, USA
| | | | - Cong Wei
- Drug Metabolism and Pharmacokinetics, Biogen Inc., Cambridge, MA, USA
| | - S Cyrus Khojasteh
- Department of Drug Metabolism and Pharmacokinetics, Genentech, Inc., South San Francisco, CA, USA
| |
Collapse
|
5
|
Metabolic activation of drugs by cytochrome P450 enzymes: Biochemical insights into mechanism-based inactivation by fibroblast growth factor receptor inhibitors and chemical approaches to attenuate reactive metabolite formation. Biochem Pharmacol 2022; 206:115336. [DOI: 10.1016/j.bcp.2022.115336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/26/2022] [Accepted: 10/26/2022] [Indexed: 11/06/2022]
|
6
|
Zhao Q, Wu ZE, Li B, Li F. Recent advances in metabolism and toxicity of tyrosine kinase inhibitors. Pharmacol Ther 2022; 237:108256. [DOI: 10.1016/j.pharmthera.2022.108256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/20/2022] [Accepted: 07/20/2022] [Indexed: 11/15/2022]
|
7
|
Atypical kinetics of cytochrome P450 enzymes in pharmacology and toxicology. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2022; 95:131-176. [PMID: 35953154 DOI: 10.1016/bs.apha.2022.05.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Atypical kinetics are observed in metabolic reactions catalyzed by cytochrome P450 enzymes (P450). Yet, this phenomenon is regarded as experimental artifacts in some instances despite increasing evidence challenging the assumptions of typical Michaelis-Menten kinetics. As P450 play a major role in the metabolism of a wide range of substrates including drugs and endogenous compounds, it becomes critical to consider the impact of atypical kinetics on the accuracy of estimated kinetic and inhibitory parameters which could affect extrapolation of pharmacological and toxicological implications. The first half of this book chapter will focus on atypical non-Michaelis-Menten kinetics (e.g. substrate inhibition, biphasic and sigmoidal kinetics) as well as proposed underlying mechanisms supported by recent insights in mechanistic enzymology. In particular, substrate inhibition kinetics in P450 as well as concurrent drug inhibition of P450 in the presence of substrate inhibition will be further discussed. Moreover, mounting evidence has revealed that despite the high degree of sequence homology between CYP3A isoforms (i.e. CYP3A4 and CYP3A5), they have the propensities to exhibit vastly different susceptibilities and potencies of mechanism-based inactivation (MBI) with a common drug inhibitor. These experimental observations pertaining to the presence of these atypical isoform- and probe substrate-specific complexities in CYP3A isoforms by several clinically-relevant drugs will therefore be expounded and elaborated upon in the second half of this book chapter.
Collapse
|
8
|
Jackson KD, Argikar UA, Cho S, Crouch RD, Driscoll JP, Heck C, King L, Maw HH, Miller GP, Seneviratne HK, Wang S, Wei C, Zhang D, Khojasteh SC. Bioactivation and Reactivity Research Advances - 2021 year in review. Drug Metab Rev 2022; 54:246-281. [PMID: 35876116 DOI: 10.1080/03602532.2022.2097254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
This year's review on bioactivation and reactivity began as a part of the annual review on biotransformation and bioactivation led by Cyrus Khojasteh (Khojasteh et al., 2021, 2020, 2019, 2018, 2017; Baillie et al., 2016). Increased contributions from experts in the field led to the development of a stand alone edition for the first time this year focused specifically on bioactivation and reactivity. Our objective for this review is to highlight and share articles which we deem influential and significant regarding the development of covalent inhibitors, mechanisms of reactive metabolite formation, enzyme inactivation, and drug safety. Based on the selected articles, we created two sections: (1) reactivity and enzyme inactivation, and (2) bioactivation mechanisms and safety (Table 1). Several biotransformation experts have contributed to this effort from academic and industry settings.
Collapse
Affiliation(s)
- Klarissa D Jackson
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, Chapel Hill, NC 27599, USA
| | - Upendra A Argikar
- Non-clinical Development, Bill & Melinda Gates Medical Research Institute, Cambridge, MA, 02139, USA
| | - Sungjoon Cho
- Department of Drug Metabolism and Pharmacokinetics, Genentech, Inc., South San Francisco, CA, 94080, USA
| | - Rachel D Crouch
- Department of Pharmaceutical Sciences, Lipscomb University College of Pharmacy and Health Sciences, Nashville, TN, 37203, USA
| | - James P Driscoll
- Department of Drug Metabolism and Pharmacokinetics. Bristol Myers Squibb, Brisbane, CA, 94005, USA
| | - Carley Heck
- Medicine Design, Pfizer Worldwide Research, Development and Medical, Eastern Point Road, Groton, Connecticut, USA
| | - Lloyd King
- Department of DMPK, UCB Biopharma UK, 216 Bath Road, Slough, SL1 3WE, UK
| | - Hlaing Holly Maw
- Drug Metabolism and Pharmacokinetics, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, CT, 06877, USA
| | - Grover P Miller
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, 4301 W Markham St Slot 516, Little Rock, Arkansas, 72205, USA
| | - Herana Kamal Seneviratne
- Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Shuai Wang
- Department of Drug Metabolism and Pharmacokinetics, Genentech, Inc., South San Francisco, CA, 94080, USA
| | - Cong Wei
- Drug Metabolism & Pharmacokinetics, Biogen Inc., Cambridge, MA, 02142, USA
| | - Donglu Zhang
- Department of Drug Metabolism and Pharmacokinetics, Genentech, Inc., South San Francisco, CA, 94080, USA
| | - S Cyrus Khojasteh
- Department of Drug Metabolism and Pharmacokinetics, Genentech, Inc., 1 DNA Way, MS412a, South San Francisco, CA, 94080, USA
| |
Collapse
|
9
|
Tang LWT, Wu G, Chan ECY. Identification of Infigratinib as a Potent Reversible Inhibitor and Mechanism-Based Inactivator of CYP2J2: Nascent Evidence for a Potential In Vivo Metabolic Drug-Drug Interaction with Rivaroxaban. J Pharmacol Exp Ther 2022; 382:123-134. [PMID: 35640957 PMCID: PMC9639665 DOI: 10.1124/jpet.122.001222] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/04/2022] [Indexed: 11/22/2022] Open
Abstract
Infigratinib (INF) is a fibroblast growth factor receptor inhibitor that was recently FDA-approved for the treatment of advanced or metastatic cholangiocarcinoma. We previously established that INF inhibited and inactivated cytochrome P450 3A4 (CYP3A4). Here, in a follow-up to our previous study, we identified for the first time that INF also elicited potent competitive inhibition and mechanism-based inactivation (MBI) of CYP2J2 with kinetic parameters K i, K I, k inact, and partition ratio of 1.94 µM, 0.10 µM, 0.026 min-1 and ~3 respectively when rivaroxaban was harnessed as the probe substrate. Inactivation was revealed to exhibit cofactor-dependency and was attenuated by an alternative substrate (astemizole) and direct inhibitor (nilotinib) of CYP2J2. Additionally, the nature of inactivation was unlikely to be pseudo-irreversible and instead arose from covalent modification due to the lack of substantial enzyme activity recovery following dialysis and chemical oxidation as well as the lack of a resolvable Soret band in spectral scans. Glutathione trapping confirmed that the identity of the putative reactive intermediate implicated in the covalent inactivation of both CYP2J2 and CYP3A4 was identical and likely attributable to an electrophilic p-benzoquinonediimine intermediate of INF. Finally, mechanistic static modelling revealed that by integrating the previously arcane inhibition and inactivation kinetic parameters of CYP2J2-mediated rivaroxaban hydroxylation by INF illuminated in this work together with those previously documented for CYP3A4, a 49% increase in the systemic exposure of rivaroxaban was projected. Our modelling results predicted a potential risk of metabolic DDI between the clinically-relevant combination of rivaroxaban and INF in the setting of cancer. Significance Statement In this study, we reported that INF elicits potent reversible inhibition and MBI of CYP2J2. Furthermore, static modelling predicted that its coadministration with the direct oral anticoagulant rivaroxaban may potentially culminate in an metabolic DDI leading to an increased risk of major bleeding. As rivaroxaban is steadily gaining prominence as the anticoagulant of choice in the treatment of cancer-associated venous thromboembolism, the DDI projections reported here are clinically-relevant and warrants further investigation via physiologically-based pharmacokinetic modelling and simulation.
Collapse
Affiliation(s)
| | - Guoyi Wu
- National University of Singapore, Singapore
| | | |
Collapse
|
10
|
Tang LWT, Fu J, Koh SK, Wu G, Zhou L, Chan ECY. Metabolic Activation of the Acrylamide Michael Acceptor Warhead in Futibatinib to an Epoxide Intermediate Engenders Covalent Inactivation of Cytochrome P450 3A. Drug Metab Dispos 2022; 50:931-941. [PMID: 35512804 DOI: 10.1124/dmd.122.000895] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 04/06/2022] [Indexed: 11/22/2022] Open
Abstract
Futibatinib (FUT) is a potent inhibitor of fibroblast growth factor receptor (FGFR) 1-4 that is currently under clinical investigation for intrahepatic cholangiocarcinoma. Unlike its predecessors, FUT possesses an acrylamide warhead which enables it to bind covalently to a free cysteine residue in the FGFR kinase domain. However, it remains uninterrogated if this electrophilic α,β-unsaturated carbonyl scaffold could also directly or indirectly engender off-target covalent binding to nucleophilic centres on other cellular proteins. Here, we discovered that FUT inactivated both cytochrome P450 3A (CYP3A) isoforms with K I, k inact, and partition ratio of 12.5 and 51.4 µM, 0.25 and 0.06 min-1 and ~52 and ~58 for CYP3A4 and CYP3A5, respectively. Along with its time-, concentration- and cofactor-dependent inhibitory profile, FUT also exhibited several cardinal features that were consistent with mechanism-based inactivation. Moreover, the nature of inactivation was unlikely to be pseudo-irreversible and instead arose from the covalent modification of the P450 apoprotein and/or its heme moiety due to the lack of substantial enzyme activity recovery following dialysis and chemical oxidation as well as the absence of the diagnostic Soret peak in spectral analyses. Finally, utilizing GSH trapping and high-resolution mass spectrometry, we illuminated that while the acrylamide moiety in FUT could nonenzymatically conjugate to GSH via Michael addition, it was not implicated in the covalent inactivation of CYP3A. Rather, we surmised that it likely stemmed from the metabolic activation of its acrylamide covalent warhead to a highly electrophilic epoxide intermediate that could covalently modify CYP3A and culminate in its catalytic inactivation. Significance Statement In this study, we reported for the first time the inactivation of CYP3A by FUT. Furthermore, using FUT as an exemplary targeted covalent inhibitor, our study revealed the propensity for its acrylamide Michael acceptor moiety to be metabolically activated to a highly electrophilic epoxide. Due to the growing resurgence of covalent inhibitors and the well-established toxicological ramifications associated with epoxides, we advocate that closer scrutiny be adopted when profiling the reactive metabolites of compounds possessing an α,β-unsaturated carbonyl scaffold.
Collapse
Affiliation(s)
| | - Jiaxin Fu
- National University of Singapore, Singapore
| | | | - Guoyi Wu
- National University of Singapore, Singapore
| | - Lei Zhou
- Singapore Eye Research Institute, Singapore
| | | |
Collapse
|
11
|
Quantification of the Irreversible Fibroblast Growth Factor Receptor Inhibitor Futibatinib by UPLC-MS/MS: Application to the Metabolic Stability Assay in Human Liver Microsomes for the Estimation of its In Vitro Hepatic Intrinsic Clearance. J Pharm Biomed Anal 2022; 214:114731. [DOI: 10.1016/j.jpba.2022.114731] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 12/15/2022]
|