1
|
Xue L, Singla RK, He S, Arrasate S, González-Díaz H, Miao L, Shen B. Warfarin-A natural anticoagulant: A review of research trends for precision medication. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 128:155479. [PMID: 38493714 DOI: 10.1016/j.phymed.2024.155479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 01/29/2024] [Accepted: 02/22/2024] [Indexed: 03/19/2024]
Abstract
BACKGROUND Warfarin is a widely prescribed anticoagulant in the clinic. It has a more considerable individual variability, and many factors affect its variability. Mathematical models can quantify the quantitative impact of these factors on individual variability. PURPOSE The aim is to comprehensively analyze the advanced warfarin dosing algorithm based on pharmacometrics and machine learning models of personalized warfarin dosage. METHODS A bibliometric analysis of the literature retrieved from PubMed and Scopus was performed using VOSviewer. The relevant literature that reported the precise dosage of warfarin calculation was retrieved from the database. The multiple linear regression (MLR) algorithm was excluded because a recent systematic review that mainly reviewed this algorithm has been reported. The following terms of quantitative systems pharmacology, mechanistic model, physiologically based pharmacokinetic model, artificial intelligence, machine learning, pharmacokinetic, pharmacodynamic, pharmacokinetics, pharmacodynamics, and warfarin were added as MeSH Terms or appearing in Title/Abstract into query box of PubMed, then humans and English as filter were added to retrieve the literature. RESULTS Bibliometric analysis revealed important co-occuring MeShH and index keywords. Further, the United States, China, and the United Kingdom were among the top countries contributing in this domain. Some studies have established personalized warfarin dosage models using pharmacometrics and machine learning-based algorithms. There were 54 related studies, including 14 pharmacometric models, 31 artificial intelligence models, and 9 model evaluations. Each model has its advantages and disadvantages. The pharmacometric model contains biological or pharmacological mechanisms in structure. The process of pharmacometric model development is very time- and labor-intensive. Machine learning is a purely data-driven approach; its parameters are more mathematical and have less biological interpretation. However, it is faster, more efficient, and less time-consuming. Most published models of machine learning algorithms were established based on cross-sectional data sourced from the database. CONCLUSION Future research on personalized warfarin medication should focus on combining the advantages of machine learning and pharmacometrics algorithms to establish a more robust warfarin dosage algorithm. Randomized controlled trials should be performed to evaluate the established algorithm of warfarin dosage. Moreover, a more user-friendly and accessible warfarin precision medicine platform should be developed.
Collapse
Affiliation(s)
- Ling Xue
- Joint Laboratory of Artificial Intelligence for Critical Care Medicine, Department of Critical Care Medicine and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China; Department of Pharmacy, The First Affiliated Hospital of Soochow University, Suzhou, China; Department of Pharmacology, Faculty of Medicine, University of The Basque Country (UPV/EHU), Bilbao, Basque Country, Spain
| | - Rajeev K Singla
- Joint Laboratory of Artificial Intelligence for Critical Care Medicine, Department of Critical Care Medicine and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China; School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab-144411, India
| | - Shan He
- IKERDATA S.l., ZITEK, University of The Basque Country (UPVEHU), Rectorate Building, 48940, Bilbao, Basque Country, Spain; Department of Organic and Inorganic Chemistry, Faculty of Science and Technology, University of The Basque Country (UPV/EHU), P.O. Box 644, 48080, Bilbao, Basque Country, Spain
| | - Sonia Arrasate
- Department of Organic and Inorganic Chemistry, Faculty of Science and Technology, University of The Basque Country (UPV/EHU), P.O. Box 644, 48080, Bilbao, Basque Country, Spain
| | - Humberto González-Díaz
- Department of Organic and Inorganic Chemistry, Faculty of Science and Technology, University of The Basque Country (UPV/EHU), P.O. Box 644, 48080, Bilbao, Basque Country, Spain; BIOFISIKA: Basque Center for Biophysics CSIC, University of The Basque Country (UPV/EHU), Barrio Sarriena s/n, Leioa, Bizkaia 48940, Basque Country, Spain; IKERBASQUE, Basque Foundation for Science, 48011, Bilbao, Basque Country, Spain
| | - Liyan Miao
- Department of Pharmacy, The First Affiliated Hospital of Soochow University, Suzhou, China; Institute for Interdisciplinary Drug Research and Translational Sciences, Soochow University, Suzhou, China; College of Pharmaceutical Sciences, Soochow University, Suzhou, China.
| | - Bairong Shen
- Joint Laboratory of Artificial Intelligence for Critical Care Medicine, Department of Critical Care Medicine and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
2
|
Geng K, Shen C, Wang X, Wang X, Shao W, Wang W, Chen T, Sun H, Xie H. A physiologically-based pharmacokinetic/pharmacodynamic modeling approach for drug-drug-gene interaction evaluation of S-warfarin with fluconazole. CPT Pharmacometrics Syst Pharmacol 2024; 13:853-869. [PMID: 38487942 PMCID: PMC11098157 DOI: 10.1002/psp4.13123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/17/2024] [Accepted: 02/07/2024] [Indexed: 05/18/2024] Open
Abstract
Warfarin is a widely used anticoagulant, and its S-enantiomer has higher potency compared to the R-enantiomer. S-warfarin is mainly metabolized by cytochrome P450 (CYP) 2C9, and its pharmacological target is vitamin K epoxide reductase complex subunit 1 (VKORC1). Both CYP2C9 and VKORC1 have genetic polymorphisms, leading to large variations in the pharmacokinetics (PKs) and pharmacodynamics (PDs) of warfarin in the population. This makes dosage management of warfarin difficult, especially in the case of drug-drug interactions (DDIs). This study provides a whole-body physiologically-based pharmacokinetic/PD (PBPK/PD) model of S-warfarin for predicting the effects of drug-drug-gene interactions on S-warfarin PKs and PDs. The PBPK/PD model of S-warfarin was developed in PK-Sim and MoBi. Drug-dependent parameters were obtained from the literature or optimized. Of the 34 S-warfarin plasma concentration-time profiles used, 96% predicted plasma concentrations within twofold range compared to observed data. For S-warfarin plasma concentration-time profiles with CYP2C9 genotype, 364 of 386 predicted plasma concentration values (~94%) fell within the twofold of the observed values. This model was tested in DDI predictions with fluconazole as CYP2C9 perpetrators, with all predicted DDI area under the plasma concentration-time curve to the last measurable timepoint (AUClast) ratio within twofold of the observed values. The anticoagulant effect of S-warfarin was described using an indirect response model, with all predicted international normalized ratio (INR) within twofold of the observed values. This model also incorporates a dose-adjustment method that can be used for dose adjustment and predict INR when warfarin is used in combination with CYP2C9 perpetrators.
Collapse
Affiliation(s)
- Kuo Geng
- Anhui Provincial Center for Drug Clinical EvaluationYijishan Hospital of Wannan Medical CollegeWuhuAnhuiChina
- Wannan Medical CollegeWuhuAnhuiChina
| | - Chaozhuang Shen
- Department of Clinical Pharmacy and Pharmacy Administration, West China College of PharmacySichuan UniversityChengduSichuanChina
| | - Xiaohu Wang
- Department of PharmaceuticsChina Pharmaceutical UniversityNanjingChina
| | - Xingwen Wang
- Anhui Provincial Center for Drug Clinical EvaluationYijishan Hospital of Wannan Medical CollegeWuhuAnhuiChina
- Wannan Medical CollegeWuhuAnhuiChina
| | - Wenxin Shao
- Anhui Provincial Center for Drug Clinical EvaluationYijishan Hospital of Wannan Medical CollegeWuhuAnhuiChina
- Wannan Medical CollegeWuhuAnhuiChina
| | - Wenhui Wang
- Anhui Provincial Center for Drug Clinical EvaluationYijishan Hospital of Wannan Medical CollegeWuhuAnhuiChina
- Wannan Medical CollegeWuhuAnhuiChina
| | - Tao Chen
- Anhui Provincial Center for Drug Clinical EvaluationYijishan Hospital of Wannan Medical CollegeWuhuAnhuiChina
- Wannan Medical CollegeWuhuAnhuiChina
| | - Hua Sun
- Anhui Provincial Center for Drug Clinical EvaluationYijishan Hospital of Wannan Medical CollegeWuhuAnhuiChina
| | - Haitang Xie
- Anhui Provincial Center for Drug Clinical EvaluationYijishan Hospital of Wannan Medical CollegeWuhuAnhuiChina
| |
Collapse
|
3
|
Zhang X, Mu H, Zhong Y, Wang R, Li W. Effect of High Altitude Environment on Pharmacokinetic and Pharmacodynamic of Warfarin in Rats. Curr Drug Metab 2024; 25:54-62. [PMID: 38409697 DOI: 10.2174/0113892002277930240201101256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/22/2023] [Accepted: 01/12/2024] [Indexed: 02/28/2024]
Abstract
BACKGROUND High altitude environment affects the pharmacokinetic (PK) parameters of drugs and the PK parameters are an important theoretical basis for guiding the rational clinical use of drugs. Warfarin is an oral anticoagulant of the coumarin class commonly used in clinical practice, but it has a narrow therapeutic window and wide individual variation. However, the effect of high altitude environment on PK and pharmacodynamic (PD) of warfarin is unclear. OBJECTIVE The objective of this study is to investigate the effect of a high altitude environment on PK and PD of warfarin in rats. METHOD Rats were randomly divided into plain group and high altitude group and blood samples were collected through the orbital venous plexus after administration of 2 mg/kg warfarin. Warfarin concentrations in plasma samples were determined by liquid chromatography-tandem mass spectrometry (LC-MS/MS) and PK parameters were calculated by the non-compartment model using WinNonlin 8.1 software. Meanwhile, the expression of PXR, P-gp and CYP2C9 in liver tissues was also determined by western blotting. The effect of high altitude environment on PD of warfarin was explored by measuring activated partial thromboplastin time (APTT) and prothrombin time (PT) values and then calculated international normalized ratio (INR) values based on PT. RESULTS Significant changes in PK behaviors and PD of warfarin in high altitude-rats were observed. Compared with the plain-rats, the peak concentration (Cmax) and the area under the plasma concentration-time curve (AUC) increased significantly by 50.9% and 107.46%, respectively. At the same time, high altitude environment significantly inhibited the expression of PXR, P-gp and CYP2C9 in liver tissues. The results of the PD study showed that high altitude environments significantly prolonged PT, APTT and INR values. CONCLUSION High altitude environment inhibited the metabolism and increased the absorption of warfarin in rats and increased the effect of anticoagulant effect, suggesting that the optimal dose of warfarin for patients at high altitude should be reassessed.
Collapse
Affiliation(s)
- Xiaojing Zhang
- Department of Pharmacy, 940th Hospital of Joint Logistic Support Force of Chinese People's Liberation Army, Lanzhou, China
| | - Hongfang Mu
- Department of Pharmacy, 940th Hospital of Joint Logistic Support Force of Chinese People's Liberation Army, Lanzhou, China
| | - Yan Zhong
- Department of Pharmacy, 940th Hospital of Joint Logistic Support Force of Chinese People's Liberation Army, Lanzhou, China
| | - Rong Wang
- Department of Pharmacy, 940th Hospital of Joint Logistic Support Force of Chinese People's Liberation Army, Lanzhou, China
| | - Wenbin Li
- Department of Pharmacy, 940th Hospital of Joint Logistic Support Force of Chinese People's Liberation Army, Lanzhou, China
| |
Collapse
|
4
|
Lee W, Kim MS, Kim J, Aoki Y, Sugiyama Y. Predicting In Vivo Target Occupancy (TO) Profiles via Physiologically Based Pharmacokinetic-TO Modeling of Warfarin Pharmacokinetics in Blood: Importance of Low Dose Data and Prediction of Stereoselective Target Interactions. Drug Metab Dispos 2023; 51:1145-1156. [PMID: 36914276 DOI: 10.1124/dmd.122.000968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 02/09/2023] [Accepted: 03/09/2023] [Indexed: 03/14/2023] Open
Abstract
Warfarin is well recognized for its high-affinity and capacity-limited binding to the pharmacological target and undergoes target-mediated drug disposition. Here, we developed a physiologically based pharmacokinetic (PBPK) model that incorporated saturable target binding and other reported hepatic disposition components of warfarin. The PBPK model parameters were optimized by fitting to the reported blood pharmacokinetic (PK) profiles of warfarin with no stereoisomeric separation after oral dosing of racemic warfarin (0.1, 2, 5, or 10 mg) using the Cluster Gauss-Newton method (CGNM). The CGNM-based analysis yielded multiple "accepted" sets for six optimized parameters, which were then used to simulate the warfarin blood PK and in vivo target occupancy (TO) profiles. When further analyses examined the impact of dose selection on uncertainty in parameter estimation by the PBPK modeling, the PK data from 0.1 mg dose (well below target saturation) was important in practically identifying the target binding-related parameters in vivo. When stereoselective differences were incorporated for both hepatic disposition and target interactions, our PBPK modeling predicted that R-warfarin (of slower clearance and lower target affinity than S-warfarin) contributes to TO prolongation after oral dosing of racemic warfarin. Our results extend the validity of the approach by which the PBPK-TO modeling of blood PK profiles can yield TO prediction in vivo (applicable to the drugs with targets of high affinity and abundance and limited distribution volume via nontarget interactions). Our findings support that model-informed dose selection and PBPK-TO modeling may aid in TO and efficacy assessment in preclinical and clinical phase 1 studies. SIGNIFICANCE STATEMENT: The current physiologically based pharmacokinetic modeling incorporated the reported hepatic disposition components and target binding of warfarin and analyzed the blood pharmacokinetic (PK) profiles from varying warfarin doses, practically identifying target binding-related parameters in vivo. By implementing the stereoselective differences between R- and S-warfarin, our analysis predicted the role of R-warfarin in prolonging overall target occupancy. Our results extend the validity of analyzing blood PK profiles to predict target occupancy in vivo, which may guide efficacy assessment.
Collapse
Affiliation(s)
- Wooin Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Korea (W.L., M-S.K., J.K.); Laboratory of Quantitative System Pharmacokinetics/Pharmacodynamics, Josai International University, Tokyo, Japan (Y.A., Y.S.); and Drug Metabolism and Pharmacokinetics, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden (Y.A.)
| | - Min-Soo Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Korea (W.L., M-S.K., J.K.); Laboratory of Quantitative System Pharmacokinetics/Pharmacodynamics, Josai International University, Tokyo, Japan (Y.A., Y.S.); and Drug Metabolism and Pharmacokinetics, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden (Y.A.)
| | - Jiyoung Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Korea (W.L., M-S.K., J.K.); Laboratory of Quantitative System Pharmacokinetics/Pharmacodynamics, Josai International University, Tokyo, Japan (Y.A., Y.S.); and Drug Metabolism and Pharmacokinetics, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden (Y.A.)
| | - Yasunori Aoki
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Korea (W.L., M-S.K., J.K.); Laboratory of Quantitative System Pharmacokinetics/Pharmacodynamics, Josai International University, Tokyo, Japan (Y.A., Y.S.); and Drug Metabolism and Pharmacokinetics, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden (Y.A.)
| | - Yuichi Sugiyama
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Korea (W.L., M-S.K., J.K.); Laboratory of Quantitative System Pharmacokinetics/Pharmacodynamics, Josai International University, Tokyo, Japan (Y.A., Y.S.); and Drug Metabolism and Pharmacokinetics, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden (Y.A.)
| |
Collapse
|