1
|
A novel lipidic peptide with potential to promote balanced effector-regulatory T cell responses. Sci Rep 2022; 12:11185. [PMID: 35778468 PMCID: PMC9249808 DOI: 10.1038/s41598-022-15455-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/30/2021] [Accepted: 06/23/2022] [Indexed: 11/08/2022] Open
Abstract
T cell-dendritic cell (DC) interactions contribute to reciprocal stimulation leading to DC maturation that results in production of interleukin-12 (IL-12) and interferon-gamma (IFN-γ). Both cytokines have been implicated in autoimmune diseases while being necessary for effective immune responses against foreign antigens. We describe a lipidic peptide, designated IK14004, that modifies crosstalk between T cells and DCs resulting in suppression of IL-12p40/IFN-γ production. T cell production of interleukin-2 (IL-2) and IFN-γ is uncoupled and IL-12p70 production is enhanced. IK14004 induces expression of activating co-receptors in CD8+ T cells and increases the proportion of Foxp3-expressing CD4+ T regulatory cells. The potential for IK14004 to impact on signalling pathways required to achieve a balanced immune response upon stimulation of DCs and T cells is highlighted. This novel compound provides an opportunity to gain further insights into the complexity of T cell-DC interactions relevant to autoimmunity associated with malignancies and may have therapeutic benefit.
Collapse
|
2
|
Henidi HA, Al-Abd AM, Al-Abbasi FA, BinMahfouz HA, El-Deeb IM. Design and synthesis of novel phenylaminopyrimidines with antiproliferative activity against colorectal cancer. RSC Adv 2019; 9:21578-21586. [PMID: 35521305 PMCID: PMC9066187 DOI: 10.1039/c9ra03359a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/05/2019] [Accepted: 07/04/2019] [Indexed: 01/01/2023] Open
Abstract
New phenylaminopyrimidine (PAP) derivatives have been designed and synthesised as potential tyrosine kinase inhibitors for the treatment of cancer. The synthesized compounds share a general structure and vary in the substitution pattern at position-2 of the pyridine ring. Several derivatives have demonstrated potent anticancer activities against HCT-116, HT-29 and LS-174T colorectal cancer cells. Furthermore, a number of hits showed good selectivity to Src-kinase. The cytotoxic mechanisms of these compounds were also investigated by studying their effects on cell-cycle distribution. Among all the compounds examined, compound 8b (with a terminal pyridin-3-yl moiety at the pyridine ring) showed the highest inhibitory selectivity towards src-kinase, which was coupled with cell cycle arrest, and apoptotic and autophagic interference, in colorectal cancer cells. This report introduces a novel category of PAP derivatives with promising kinase inhibitory and anticancer effects against colon cancer.
Collapse
Affiliation(s)
- Hanan A Henidi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University Jeddah Saudi Arabia
| | - Ahmed M Al-Abd
- Department of Pharmaceutical Sciences, College of Pharmacy, Gulf Medical University Ajman UAE
- Pharmacology Department, Medical Division, National Research Centre Giza Egypt
| | - Fahad A Al-Abbasi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University Jeddah Saudi Arabia
| | - Hawazen A BinMahfouz
- Department of Biochemistry, Faculty of Science, King Abdulaziz University Jeddah Saudi Arabia
| | - Ibrahim M El-Deeb
- Royal College of Surgeons in Ireland-Medical University of Bahrain Bahrain
- Institute for Glycomics, Griffith University Gold Coast Queensland Australia
| |
Collapse
|
3
|
Shatrova AN, Mityushova EV, Vassilieva IO, Aksenov ND, Zenin VV, Nikolsky NN, Marakhova II. Time-Dependent Regulation of IL-2R α-Chain (CD25) Expression by TCR Signal Strength and IL-2-Induced STAT5 Signaling in Activated Human Blood T Lymphocytes. PLoS One 2016; 11:e0167215. [PMID: 27936140 PMCID: PMC5172478 DOI: 10.1371/journal.pone.0167215] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/07/2016] [Accepted: 11/10/2016] [Indexed: 12/30/2022] Open
Abstract
The expression of the IL-2R α-chain (IL-2Rα) is regulated at the transcriptional
level via TCR- and IL-2R-signaling. The question is how to precede in time the
activation signals to induce the IL-2Rα expression in native primary T cells. By
comparing the effects of selective drugs on the dynamics of CD25 expression
during the mitogen stimulation of human peripheral blood lymphocytes, we
identified distinct Src- and JAK-dependent stages of IL-2Rα upregulation. PP2, a
selective inhibitor of TCR-associated Src kinase, prevents CD25 expression at
initial stages of T cell activation, prior to the cell growth. This early IL-2Rα
upregulation underlies the T cell competence and the IL-2 responsiveness. We
found that the activated with “weak” mitogen, the population of blood
lymphocytes has some pool of competent CD25+ cells bearing a high affinity
IL-2R. A distinct pattern of IL-2R signaling in resting and competent T
lymphocytes has been shown. Based on the inhibitory effect of WHI-P131, a
selective drug of JAK3 kinase activity, we concluded that in quiescent primary T
lymphocytes, the constitutive STAT3 and the IL-2-induced prolonged STAT5
activity (assayed by tyrosine phosphorylation) is mostly JAK3-independent. In
competent T cells, in the presence of IL-2 JAK3/STAT5 pathway is switched to
maintain the higher and sustained IL-2Rα expression as well as cell growth and
proliferation. We believe that understanding the temporal coordination of
antigen- and cytokine-evoked signals in primary T cells may be useful for
improving immunotherapeutic strategies.
Collapse
Affiliation(s)
- Alla N. Shatrova
- Department of Intracellular Signaling and Transport,
Institute of Cytology, Russian Academy of Sciences, St-Petersburg,
Russia
| | - Elena V. Mityushova
- Department of Intracellular Signaling and Transport,
Institute of Cytology, Russian Academy of Sciences, St-Petersburg,
Russia
| | - Irina O. Vassilieva
- Department of Intracellular Signaling and Transport,
Institute of Cytology, Russian Academy of Sciences, St-Petersburg,
Russia
| | - Nikolay D. Aksenov
- Department of Intracellular Signaling and Transport,
Institute of Cytology, Russian Academy of Sciences, St-Petersburg,
Russia
| | - Valery V. Zenin
- Department of Intracellular Signaling and Transport,
Institute of Cytology, Russian Academy of Sciences, St-Petersburg,
Russia
| | - Nikolay N. Nikolsky
- Department of Intracellular Signaling and Transport,
Institute of Cytology, Russian Academy of Sciences, St-Petersburg,
Russia
| | - Irina I. Marakhova
- Department of Intracellular Signaling and Transport,
Institute of Cytology, Russian Academy of Sciences, St-Petersburg,
Russia
- * E-mail:
| |
Collapse
|
4
|
Poli G, Tuccinardi T, Rizzolio F, Caligiuri I, Botta L, Granchi C, Ortore G, Minutolo F, Schenone S, Martinelli A. Identification of New Fyn Kinase Inhibitors Using a FLAP-Based Approach. J Chem Inf Model 2013; 53:2538-47. [DOI: 10.1021/ci4002553] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 02/08/2023]
Affiliation(s)
- Giulio Poli
- Department
of Pharmacy, University of Pisa, 56126 Pisa, Italy
| | | | - Flavio Rizzolio
- Division of Experimental
and Clinical Pharmacology, Department of Molecular Biology
and Translational Research, National Cancer Institute and Center for Molecular Biomedicine, CRO, Aviano, 33081 Pordenone, Italy
| | - Isabella Caligiuri
- Division of Experimental
and Clinical Pharmacology, Department of Molecular Biology
and Translational Research, National Cancer Institute and Center for Molecular Biomedicine, CRO, Aviano, 33081 Pordenone, Italy
| | - Lorenzo Botta
- Dipartimento
Farmaco Chimico Tecnologico, Università di Siena, Via Alcide de Gasperi 2, I-53100 Siena, Italy
| | | | | | | | - Silvia Schenone
- Dipartimento
di Scienze Farmaceutiche, Università degli Studi di Genova, Viale Benedetto
XV 3, 16132 Genova, Italy
| | | |
Collapse
|
5
|
Anisimov VM, Bugaenko VL. QM/QM docking method based on the variational finite localized molecular orbital approximation. J Comput Chem 2009; 30:784-98. [DOI: 10.1002/jcc.21100] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/06/2022]
|
6
|
Abstract
Some bacterial and viral proteins are potent activators of the immune response, earning them the title of superantigens (SAgs). Infection with pathogens containing these proteins can produce massive T cell activation and can result in various potentially fatal conditions, such as toxic shock and food poisoning. Unlike conventional peptide antigens, SAgs bind promiscuously to the external faces of class II major histocompatibility complex (MHC) molecules and families of T cell receptors (TCRs), thereby activating large numbers of T cells simultaneously. The manner in which SAgs bind MHC and TCR differs from the way in which peptide antigens interact with these structures. Nevertheless, because they simultaneously engage MHC and TCR, SAgs were assumed to activate T cells through the canonical signaling pathway that has been described for T cell activation by TCR engagement of peptide-MHC complexes. However, recent research shows that SAgs also activate an alternative signaling pathway in T cells. This study shows that SAgs can stimulate T cells in the absence of the Src family kinase, Lck, by activating a heterotrimeric guanine nucleotide-binding protein (G protein), Galpha(11). Galpha(11) activates phospholipase C-beta (PLC-beta), rather than the more abundant PLC-gamma1, and, by this means, links SAg signaling to the phosphatidylinositol and protein kinase C signaling pathways. The discovery of a signaling pathway specifically activated by SAgs, and not by conventional peptide antigens, opens the possibility of developing therapeutic reagents that may help control diseases caused by these agents.
Collapse
MESH Headings
- Antigens, Bacterial/immunology
- Antigens, Bacterial/physiology
- Antigens, Viral/immunology
- Antigens, Viral/physiology
- Calcium Signaling
- GTP-Binding Protein alpha Subunits, Gq-G11/physiology
- Humans
- Isoenzymes/physiology
- Jurkat Cells
- Lymphocyte Activation
- Lymphocyte Specific Protein Tyrosine Kinase p56(lck)/deficiency
- Lymphocyte Specific Protein Tyrosine Kinase p56(lck)/physiology
- Major Histocompatibility Complex/immunology
- Models, Immunological
- Phospholipase C beta
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/physiology
- Signal Transduction/immunology
- Superantigens/immunology
- Superantigens/physiology
- T-Lymphocyte Subsets/immunology
- Type C Phospholipases/physiology
Collapse
Affiliation(s)
- Rose Zamoyska
- Molecular Immunology, Medical Research Council National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 4RD, UK.
| |
Collapse
|
7
|
|
8
|
Bueno C, Lemke CD, Criado G, Baroja ML, Ferguson SSG, Rahman AKMNU, Tsoukas CD, McCormick JK, Madrenas J. Bacterial Superantigens Bypass Lck-Dependent T Cell Receptor Signaling by Activating a Gα11-Dependent, PLC-β-Mediated Pathway. Immunity 2006; 25:67-78. [PMID: 16860758 DOI: 10.1016/j.immuni.2006.04.012] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/24/2006] [Revised: 04/07/2006] [Accepted: 04/12/2006] [Indexed: 11/18/2022]
Abstract
The paradigm to explain antigen-dependent T cell receptor (TCR) signaling is based on the activation of the CD4 or CD8 coreceptor-associated kinase Lck. It is widely assumed that this paradigm is also applicable to signaling by bacterial superantigens. However, these bacterial toxins can activate human T cells lacking Lck, suggesting the existence of an additional pathway of TCR signaling. Here we showed that this alternative pathway operates in the absence of Lck-dependent tyrosine-phosphorylation events and was initiated by the TCR-dependent activation of raft-enriched heterotrimeric Galpha11 proteins. This event, in turn, activated a phospholipase C-beta and protein kinase C-mediated cascade that turned on the mitogen-activated protein kinases ERK-1 and ERK-2, triggered Ca(2+) influx, and translocated the transcription factors NF-AT and NF-kappaB to the nucleus, ultimately inducing the production of interleukin-2 in Lck-deficient T cells. The triggering of this alternative pathway by superantigens suggests that these toxins use a G protein-coupled receptor as a coreceptor on T cells.
Collapse
Affiliation(s)
- Clara Bueno
- The FOCIS Centre for Clinical Immunology and Immunotherapeutics, London, Ontario N6A 5K8, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Ichikawa J, Kaneko M, Yokota M, Itonaga M, Yokoyama T. Friedel−Crafts-Type Cyclization of 2,2-Difluorovinyl Ketones via α-Fluorocarbocations and Its Application in Domino Cyclizations. Org Lett 2006; 8:3167-70. [PMID: 16836357 DOI: 10.1021/ol060912r] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/28/2022]
Abstract
[Structure: see text] 2,2-Difluorovinyl ketones bearing an aryl group undergo Friedel-Crafts-type cyclization via carbocations stabilized by alpha-fluorines on treatment with a trimethylsilylating agent [Me3SiOTf or Me3SiB(OTf)4]. The reaction affords 4-fluorinated 3-acyl-1,2-dihydronaphthalenes, which are successfully subjected to a substitution-cyclodehydration process or a Nazarov-type cyclization to construct fused polycyclic systems.
Collapse
Affiliation(s)
- Junji Ichikawa
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | | | | | | | | |
Collapse
|
10
|
Guan H, Laird AD, Blake RA, Tang C, Liang C. Design and synthesis of aminopropyl tetrahydroindole-based indolin-2-ones as selective and potent inhibitors of Src and Yes tyrosine kinase. Bioorg Med Chem Lett 2004; 14:187-90. [PMID: 14684325 DOI: 10.1016/j.bmcl.2003.09.069] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 10/26/2022]
Abstract
A novel series of substituted 3-[3-(aminopropyl)-4,5,6,7-tetrahydro-1H-indol-2-ylmethylene]-1,3-dihydro-indole-2-ones was discovered as potent inhibitors of the non-receptor tyrosine kinase Src and Yes. A structure-activity relationship was developed in order to optimize their potency and selectivity. Syntheses of these compounds are also described herein.
Collapse
Affiliation(s)
- Huiping Guan
- Department of Chemistry, SUGEN, Inc., 230 East Grand Avenue, South San Francisco, CA 94080, USA
| | | | | | | | | |
Collapse
|
11
|
Criado G, Madrenas J. Superantigen stimulation reveals the contribution of Lck to negative regulation of T cell activation. THE JOURNAL OF IMMUNOLOGY 2004; 172:222-30. [PMID: 14688329 DOI: 10.4049/jimmunol.172.1.222] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 11/19/2022]
Abstract
The conventional paradigm of T cell activation through the TCR states that Lck plays a critical activating role in this signaling process. However, the T cell response to bacterial superantigens does not require Lck. In this study we report that not only is Lck dispensable for T cell activation by superantigens, but it actively inhibits this signaling pathway. Disruption of Lck function, either by repression of Lck gene expression or by selective pharmacologic inhibitors of Lck, led to increased IL-2 production in response to superantigen stimulation. This negative regulatory effect of Lck on superantigen-induced T cell responses required the kinase activity of Lck and correlated with early TCR signaling, but was independent of immunological synapse formation and TCR internalization. Our data demonstrate that the multistage role of Lck in T cell signaling includes the activation of a negative regulatory pathway of T cell activation.
Collapse
Affiliation(s)
- Gabriel Criado
- FOCIS Center for Clinical Immunology and Immunotherapeutics, Robarts Research Institute, 100 Perth Drive, London, Ontario, Canada N6A 5K8
| | | |
Collapse
|