1
|
Jantorn P, Noosak C, Iamthanaporn K, Saeloh Sotthibandhu D. Silk fibroin thermosensitive polymers: Osteogenic, anti-inflammatory, and angiogenic effects for osteomyelitis treatment. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2025:1-17. [PMID: 39955672 DOI: 10.1080/09205063.2025.2458887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 01/22/2025] [Indexed: 02/17/2025]
Abstract
Infectious bone defects pose a significant challenge in orthopedics by hindering healing and vascularization. This study explored the impact of fibroin thermosensitive hydrogel on osteogenesis, inflammatory response, and angiogenesis as a potential biomaterial for bone regeneration in osteomyelitis treatment. The biocompatibility of the hydrogel by live/dead staining revealed a high number of viable osteoblast cells after 14 days. ALP activity was significantly increased in all hydrogel formulations, with F3 showing the highest levels of total protein content and calcium deposition, indicating more effective osteogenesis. Gene expression analysis of the osteogenesis-related genes demonstrated that RUNX2 was upregulated by day 7, followed by increased expressions of the OCN and COL-1 genes at later stages. The inflammatory response to F3 was assessed by measuring the nitric oxide (NO) production and pro-inflammatory gene expression in LPS-stimulated RAW 264.7 macrophages. The F3 formulation significantly reduced NO production and iNOS expression, suggesting selective inhibition of the inflammatory pathway. The VEGF-loaded F3 formulation exhibited substantial angiogenic potential, enhancing HUVEC cell proliferation by 140% over 48 h. The osteogenic, anti-inflammatory, and angiogenic effects shown by the F3 formulation were well-suited for applications in osteomyelitis treatment.
Collapse
Affiliation(s)
- Pavarish Jantorn
- Faculty of Medical Technology, Prince of Songkla University, Songkhla, Thailand
| | - Chayanee Noosak
- Faculty of Medical Technology, Prince of Songkla University, Songkhla, Thailand
| | - Khanin Iamthanaporn
- Department of Orthopedics, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
| | | |
Collapse
|
2
|
Zou YH, Guan PP, Zhang SQ, Guo YS, Wang P. Rofecoxib Attenuates the Pathogenesis of Amyotrophic Lateral Sclerosis by Alleviating Cyclooxygenase-2-Mediated Mechanisms. Front Neurosci 2020; 14:817. [PMID: 32903591 PMCID: PMC7438558 DOI: 10.3389/fnins.2020.00817] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 07/13/2020] [Indexed: 12/11/2022] Open
Abstract
Cyclooxygenase-2 (COX-2) is reported to be activated during the course of amyotrophic lateral sclerosis (ALS) development and progression. However, the roles of COX-2 in aggravating ALS and the underlying mechanism have been largely overlooked. To reveal the mechanisms, the canonical SOD1G93A mouse model was used as an experimental model for ALS in the current study. In addition, a specific inhibitor of COX-2 activity, rofecoxib, was orally administered to SOD1G93A mice. With this in vivo approach, we revealed that COX-2 proinflammatory signaling cascades were inhibited by rofecoxib in SOD1G93A mice. Specifically, the protein levels of COX-2, interleukin (IL)-1β, and tumor necrosis factor (TNF)-α were elevated as a result of activation of astrocytes and microglia during the course of ALS development and progression. These proinflammatory reactions may contribute to the death of neurons by triggering the movement of astrocytes and microglia to neurons in the context of ALS. Treatment with rofecoxib alleviated this close association between glial cells and neurons and significantly decreased the density of inflammatory cells, which helped to restore the number of motor neurons in SOD1G93A mice. Mechanistically, rofecoxib treatment decreased the expression of COX-2 and its downstream signaling targets, including IL-1β and TNF-α, by deactivating glial cells, which in turn ameliorated the progression of SOD1G93A mice by postponing disease onset and modestly prolonging survival. Collectively, these results provide novel insights into the mechanisms of ALS and aid in the development of new drugs to improve the clinical treatment of ALS.
Collapse
Affiliation(s)
- Yan-Hui Zou
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Pei-Pei Guan
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Shen-Qing Zhang
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Yan-Su Guo
- Beijing Geriatric Healthcare Center, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Pu Wang
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| |
Collapse
|
3
|
Nishidono Y, Ishii T, Okada R, Norimoto H, Murayama C, He D, Okuyama T, Nishizawa M, Tanaka K. Effect of heat processing on the chemical constituents and NO-suppressing activity of Bletilla Tuber. J Nat Med 2019; 74:219-228. [PMID: 31720996 DOI: 10.1007/s11418-019-01371-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 11/04/2019] [Indexed: 12/14/2022]
|
4
|
Grösch S, Niederberger E, Geisslinger G. Investigational drugs targeting the prostaglandin E2 signaling pathway for the treatment of inflammatory pain. Expert Opin Investig Drugs 2017; 26:51-61. [PMID: 27841017 DOI: 10.1080/13543784.2017.1260544] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Non-steroidal anti-inflammatory drugs (NSAID) are the most commonly used drugs for the treatment of pain, inflammation and fever. Although they are effective for a huge number of users, their analgesic properties are not sufficient for several patients and the occurrence of side effects still constitutes a big challenge during long term therapy. Areas covered: This review gives an overview about the first and second generations of NSAIDs (COX1/2 non-selective, COX-2 selective), and their main side effects which gave still an urgent need for safer drugs and for the establishment of novel treatment strategies (improved safety, tolerability, patient convenience). The current developments of a possible third generation NSAID class comprise changes in the formulation of already approved drugs, combination therapies, dual cyclooxygenase-lipoxygenase inhibitors, NO- and H2S-releasing NSAIDs, prostaglandin synthase inhibitors and EP receptor modulators, respectively. Literature search has been done with PubMed NCBI. Expert opinion: Currently, there is no newly developed drug that is superior to the already approved selective and non-selective NSAIDs. Several novel approaches show promising analgesic efficacy but side effects are still an important problem. Solutions might be constituted by combination therapies allowing administration of lower drug doses or by individualized therapies targeting molecules apart from COX, respectively.
Collapse
Affiliation(s)
- Sabine Grösch
- a Pharmazentrum frankfurt/ZAFES , Institut für Klinische Pharmakologie, Klinikum der Goethe-Universität Frankfurt , Frankfurt am Main , Germany
| | - Ellen Niederberger
- a Pharmazentrum frankfurt/ZAFES , Institut für Klinische Pharmakologie, Klinikum der Goethe-Universität Frankfurt , Frankfurt am Main , Germany
| | - Gerd Geisslinger
- a Pharmazentrum frankfurt/ZAFES , Institut für Klinische Pharmakologie, Klinikum der Goethe-Universität Frankfurt , Frankfurt am Main , Germany
- b Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Project Group for Translational Medicine & Pharmacology (TMP) , Frankfurt/Main , Germany
| |
Collapse
|
5
|
Sang X, Li B, Ze Y, Hong J, Ze X, Gui S, Sun Q, Liu H, Zhao X, Sheng L, Liu D, Yu X, Wang L, Hong F. Toxicological mechanisms of nanosized titanium dioxide-induced spleen injury in mice after repeated peroral application. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:5590-5599. [PMID: 23621103 DOI: 10.1021/jf3035989] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Due to an increase in surface area per particle weight, nanosized titanium dioxide (nano-TiO2) has greatly increased its function as a catalyst and is used for whitening and brightening foods. However, concerns over the safety of nano-TiO2 have been raised. The purpose of this study was to determine whether the protein kinase MAPKs/PI3-K/Akt signaling pathways and transcription factors are activated prior to or concurrent with COX-2 up-regulation in mouse spleen following exposure to 10 mg/kg BW of pure anatase nano-TiO2 by the intragastric route for 15-90 days. The study clearly showed that nano-TiO2 was deposited in the spleen and resulted in reactive oxygen species production, time-dependent splenic inflammation, and necrosis, coupled with a 12.64-64.06% increase in COX-2 and prostaglandin E2 expression, respectively. Furthermore, nano-TiO2 elevated the expressions of ERK, AP-1, CRE, Akt, JNK2, MAPKs, PI3-K, c-Jun, and c-Fos in the spleen by 1.08-6-fold with increased exposure duration, respectively. These findings suggested that nano-TiO2-induced COX-2 expression may be mediated predominantly through the induction of AP-1 and CRE and that AP-1/CRE induction occurred via the MAPKs/PI3-K/Akt signaling pathways in the spleen. Therefore, the findings suggest the need for caution when using nanomaterials as food additives.
Collapse
Affiliation(s)
- Xuezi Sang
- Medical College of Soochow University, Suzhou 215123, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Mika J, Zychowska M, Popiolek-Barczyk K, Rojewska E, Przewlocka B. Importance of glial activation in neuropathic pain. Eur J Pharmacol 2013; 716:106-19. [PMID: 23500198 DOI: 10.1016/j.ejphar.2013.01.072] [Citation(s) in RCA: 347] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Revised: 12/17/2012] [Accepted: 01/09/2013] [Indexed: 12/13/2022]
Abstract
Glia plays a crucial role in the maintenance of neuronal homeostasis in the central nervous system. The microglial production of immune factors is believed to play an important role in nociceptive transmission. Pain may now be considered a neuro-immune disorder, since it is known that the activation of immune and immune-like glial cells in the dorsal root ganglia and spinal cord results in the release of both pro- and anti-inflammatory cytokines, as well as algesic and analgesic mediators. In this review we presented an important role of cytokines (IL-1alfa, IL-1beta, IL-2, IL-4, IL-6, IL-10, IL-15, IL-18, TNFalpha, IFNgamma, TGF-beta 1, fractalkine and CCL2); complement components (C1q, C3, C5); metaloproteinases (MMP-2,-9) and many other factors, which become activated on spinal cord and DRG level under neuropathic pain. We discussed the role of the immune system in modulating chronic pain. At present, unsatisfactory treatment of neuropathic pain will seek alternative targets for new drugs and it is possible that anti-inflammatory factors like IL-10, IL-4, IL-1alpha, TGF-beta 1 would fulfill this role. Another novel approach for controlling neuropathic pain can be pharmacological attenuation of glial and immune cell activation. It has been found that propentofylline, pentoxifylline, minocycline and fluorocitrate suppress the development of neuropathic pain. The other way of pain control can be the decrease of pro-nociceptive agents like transcription factor synthesis (NF-kappaB, AP-1); kinase synthesis (MEK, p38MAPK, JNK) and protease activation (cathepsin S, MMP9, MMP2). Additionally, since it is known that the opioid-induced glial activation opposes opioid analgesia, some glial inhibitors, which are safe and clinically well tolerated, are proposed as potential useful ko-analgesic agents for opioid treatment of neuropathic pain. This review pointed to some important mechanisms underlying the development of neuropathic pain, which led to identify some possible new approaches to the treatment of neuropathic pain, based on the more comprehensive knowledge of the interaction between the nervous system and glial and immune cells.
Collapse
Affiliation(s)
- Joanna Mika
- Department of Pain Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Street, 31-343 Krakow, Poland.
| | | | | | | | | |
Collapse
|
7
|
Möser CV, Kynast K, Baatz K, Russe OQ, Ferreirós N, Costiuk H, Lu R, Schmidtko A, Tegeder I, Geisslinger G, Niederberger E. The Protein Kinase IKKε Is a Potential Target for the Treatment of Inflammatory Hyperalgesia. THE JOURNAL OF IMMUNOLOGY 2011; 187:2617-25. [DOI: 10.4049/jimmunol.1004088] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
8
|
Non-Steroidal Anti-Inflammatory Drugs and Brain Inflammation: Effects on Microglial Functions. Pharmaceuticals (Basel) 2010; 3:1949-1965. [PMID: 27713336 PMCID: PMC4033961 DOI: 10.3390/ph3061949] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2010] [Revised: 05/21/2010] [Accepted: 06/11/2010] [Indexed: 01/04/2023] Open
Abstract
The term NSAID refers to structurally diverse chemical compounds that share the ability to inhibit the activity of the prostaglandin (PG) biosynthetic enzymes, the cyclooxygenase (COX) isoforms 1 and 2. The suppression of PG synthesis at sites of inflammation has been regarded as primarily responsible for the beneficial properties of NSAIDs, but several COX-independent effects have been described in recent years. Epidemiological studies indicate that NSAIDs are neuroprotective, although the mechanisms underlying their beneficial effect remain largely unknown. Microglial cells play a major role in brain inflammation and are often viewed as major contributors to the neurodegeneration. Therefore, microglia represent a likely target for NSAIDs within the brain. In the present review, we focused on the direct effects of NSAIDs and selective COX-2 inhibitors on microglial functions and discuss the potential efficacy in controlling brain inflammation.
Collapse
|
9
|
Han EH, Hwang YP, Kim HG, Park JH, Jeong TC, Jeong HG. Upregulation of cyclooxygenase-2 by 4-nonylphenol is mediated through the cyclic amp response element activation pathway. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2010; 73:1451-1464. [PMID: 20954072 DOI: 10.1080/15287394.2010.511551] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The organic compound nonylphenol (NP) belongs to the family of alkylphenols and is a product of industrial synthesis formed during phenol alkylation. Nonylphenol is considered to be an endocrine disruptor due to weak ability to mimic estrogen and subsequently to disrupt the natural balance of hormones in a given organism. Since the endocrine and immune systems share portions of common signaling pathways, it is conceivable that NP may also affect immune system functions. However, the influence of NP on inflammation and macrophages responsiveness to NP is unclear. Thus, the effects of NP were investigated on cyclooxygenase (COX)-2 expression in cultured macrophages. NP induced COX-2 protein and gene expression in murine macrophage RAW264.7 cells and enhanced COX-2 promoter activity and prostaglandin E(2) production. Transfection of RAW264.7 cells with hCOX-2 or various deletion and mutation promoter constructs revealed that the cyclic AMP response element (CRE) was the predominant mediator responsive to NP-induced effects. Moreover, transfection with pCRE-Luc plasmid followed by immunoblotting demonstrated that NP activated CRE sites and CRE binding protein (CREB) phosphorylation. NP also increased nuclear CREB accumulation and CREB binding to the COX-2 promoter. Phosphatidylinositol 3 (PI3)-kinase, Akt, and the mitogen-activated protein kinases (MAP kinases) p38 and JNK were also significantly activated by NP. Our data demonstrate that NP induces COX-2 expression through the PI3-kinase/Akt/MAP kinases/CRE pathway. These findings provide insight into the signal transduction pathways involved in the inflammatory responses induced by NP in macrophages.
Collapse
Affiliation(s)
- Eun Hee Han
- Department of Toxicology, College of Pharmacy, Chungnam National University, Daejeon, South Korea
| | | | | | | | | | | |
Collapse
|
10
|
Kim KS, Oh DH, Choi HM, Bang JS, Ryu CJ, Kim JH, Yoo MC, Yang HI. Pyrrolidine dithiocarbamate, a NF-κB inhibitor, upregulates MMP-1 and MMP-13 in IL-1β-stimulated rheumatoid arthritis fibroblast-like synoviocytes. Eur J Pharmacol 2009; 613:167-75. [DOI: 10.1016/j.ejphar.2009.04.026] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2008] [Revised: 04/07/2009] [Accepted: 04/08/2009] [Indexed: 12/16/2022]
|
11
|
Han EH, Kim JY, Kim HK, Hwang YP, Jeong HG. o,p′-DDT induces cyclooxygenase-2 gene expression in murine macrophages: Role of AP-1 and CRE promoter elements and PI3-kinase/Akt/MAPK signaling pathways. Toxicol Appl Pharmacol 2008; 233:333-42. [DOI: 10.1016/j.taap.2008.09.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2008] [Revised: 09/04/2008] [Accepted: 09/05/2008] [Indexed: 01/13/2023]
|
12
|
Niederberger E, Geisslinger G. The IKK-NF-kappaB pathway: a source for novel molecular drug targets in pain therapy? FASEB J 2008; 22:3432-42. [PMID: 18559989 DOI: 10.1096/fj.08-109355] [Citation(s) in RCA: 159] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Several studies indicate that the nuclear factor-kappa B (NF-kappaB) -activation cascade plays a crucial role not only in immune responses, inflammation, and apoptosis but also in the development and processing of pathological pain. Accordingly, a pharmacological intervention into this pathway may have antinociceptive effects and could provide novel treatment strategies for pain and inflammation. In this review we summarize the role of NF-kappaB in the nervous system, its impact on nociception, and several approaches that investigated the effects of various modulators of the classical I-kappaB-kinase-NF-kappaB signal transduction pathway in inflammatory nociception and neuropathic pain. The results indicate that NF-kappaB has an impact on nociceptive transmission and processing and that a number of substances that inhibit the NF-kappaB-activating cascade are capable of reducing the nociceptive response in different animal models. Therefore, a modulation of specific participants in the NF-kappaB signal transduction might exert a useful approach for the development of new painkillers.
Collapse
Affiliation(s)
- Ellen Niederberger
- Pharmazentrum Frankfurt/ZAFES, Institut für Klinische Pharmakologie, Klinikum der Johann Wolfgang Goethe-Universität Frankfurt, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany.
| | | |
Collapse
|
13
|
O'Rielly DD, Loomis CW. Spinal nerve ligation-induced activation of nuclear factor kappaB is facilitated by prostaglandins in the affected spinal cord and is a critical step in the development of mechanical allodynia. Neuroscience 2008; 155:902-13. [PMID: 18617333 DOI: 10.1016/j.neuroscience.2008.04.077] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2008] [Revised: 04/14/2008] [Accepted: 04/15/2008] [Indexed: 01/22/2023]
Abstract
This study investigated the effect of 5th and 6th lumbar nerve (L5/L6) spinal nerve ligation (SNL) on activated nuclear factor kappaB (NFkBa) in nuclear extracts from the lumbar dorsal horn of the rat, and its relationship to prostaglandin (PG)-dependent spinal hyperexcitability and allodynia 3 days later. Male Sprague-Dawley rats, fitted with intrathecal (i.t.) catheters, underwent SNL- or sham-surgery. Paw withdrawal threshold (PWT), electromyographic analysis of the biceps femoris flexor reflex, and immunoblotting of the spinal cord were used. Both allodynia (PWT <or=4 g) and exaggerated A- and C-fiber-mediated reflex responses (AFRR and CFRR), featuring decreased activation thresholds and evoked hyperexcitability, were evident only in nerve-ligated animals. This was preceded by an increase in NFkBa in the ipsilateral lumbar dorsal horn at 12 h which was still present 3 days after SNL. The amount of NFkBa in the ventral horns was unchanged compared with sham-controls. Blocking the activation of spinal NFkappaB, either directly with ammonium pyrrolidedithiocarbamate (PDTC; 100 microg i.t.) or indirectly with S(+)-ibuprofen (100 microg i.t.) administered immediately after SNL, prevented the SNL-induced expression of spinal cyclooxygenase-2 and the development of spinal hyperexcitability and allodynia 3 days later. R(-)-Ibuprofen and vehicle had no effect. These results demonstrate that NFkappaB is not only activated by SNL, but that spinal PG generated in the affected spinal cord from the onset of nerve injury facilitates this process. NFkappaB is a critical antecedent in the development of spinal PG-dependent hyperexcitability and allodynia in the SNL model.
Collapse
Affiliation(s)
- D D O'Rielly
- Division of Basic Medical Sciences, Faculty of Medicine and School of Pharmacy, Memorial University of Newfoundland, 300 Prince Philip Drive, St. John's, Newfoundland, Canada A1B 3V6
| | | |
Collapse
|
14
|
Dudhgaonkar SP, Tandan SK, Kumar D, Arunadevi R, Prakash VR. Synergistic interaction between meloxicam and aminoguanidine in formalin-induced nociception in mice. Eur J Pain 2007; 12:321-8. [PMID: 17703974 DOI: 10.1016/j.ejpain.2007.06.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2007] [Revised: 06/26/2007] [Accepted: 06/26/2007] [Indexed: 12/31/2022]
Abstract
OBJECTIVES The objective of this study was to examine the nature of interaction between cyclooxygenase-2 inhibitor meloxicam and inducible nitric oxide synthase inhibitor aminoguanidine in formalin-induced nociception in mice and the possible therapeutic advantage. METHODS Antinociceptive effect of meloxicam (1, 3, 10 and 30 mg/kg, oral) and aminoguanidine (10, 30, 100 and 300 mg/kg, oral) and their combinations was examined in formalin-induced paw licking model in mice. Analysis of variance and isobolographic method were employed to identify the nature of antinociceptive interaction. RESULTS Higher doses of meloxicam (10 and 30 mg/kg) and aminoguanidine (100 and 300 mg/kg) produced significant reduction in paw licking time (antinociceptive) in late phase of formalin-induced nociception. Combination of sub-threshold dose of meloxicam (3 mg/kg) with increasing doses of aminoguanidine (10, 30, 100 and 300 mg/kg) resulted in synergistic antinociceptive effect. Similarly, co-administration of sub-threshold dose of aminoguanidine (30 mg/kg) with increasing doses of meloxicam (1, 3, 10 and 30 mg/kg) produced significant reduction in formalin-induced paw licking behaviour. The experimental ED(50) for combination with their confidence limits are below the confidence interval of theoretical line of additive interaction, suggesting synergistic nature of interaction between meloxicam and aminoguanidine in isobolographic analysis. CONCLUSION Co-administration of meloxicam and aminoguanidine showed synergistic antinociceptive effect which might possibly reduce gastrointestinal toxicity associated with the use of meloxicam.
Collapse
Affiliation(s)
- Shailesh P Dudhgaonkar
- Division of Pharmacology and Toxicology, Indian Veterinary Research Institute, Izatnagar, 243122 Uttar Pradesh, India
| | | | | | | | | |
Collapse
|
15
|
Niederberger E, Schmidtko A, Gao W, Kühlein H, Ehnert C, Geisslinger G. Impaired acute and inflammatory nociception in mice lacking the p50 subunit of NF-κB. Eur J Pharmacol 2007; 559:55-60. [PMID: 17217946 DOI: 10.1016/j.ejphar.2006.11.074] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2006] [Revised: 11/27/2006] [Accepted: 11/29/2006] [Indexed: 01/04/2023]
Abstract
The transcription factor NF-kappaB is thought to play an essential role in inflammatory processes and pain. However, the in vivo function of individual NF-kappaB subunits in the development and processing of nociceptive responses is not clarified. In this study we investigated the role of the p50 subunit of NF-kappaB in models of acute and persistent nociception using NF-kappaB p50(-/-) mice. We found that these mice showed impaired basal responses to mechanical as well as thermal noxious stimulation in the dynamic plantar as well as the hot plate test, respectively, in comparison with wild-type mice. In the formalin test we observed a decreased nociceptive behavior in the first and the second phase in NF-kappaB p50(-/-) mice. In a model of persistent inflammatory hyperalgesia these mice also showed a reduced hyperalgesia to a thermal stimulus, which was in accordance with a lower cyclooxygenase-2 expression in the spinal cord after peripheral inflammatory stimulation. Taken together, our data indicate that the p50 subunit of NF-kappaB is of importance in acute and persistent inflammatory pain. The participation to persistent pain might rely on activation of NF-kappaB by inflammatory stimuli while the contribution to acute pain responses might be related to constitutive NF-kappaB activity in neurons of the nociceptive system.
Collapse
Affiliation(s)
- Ellen Niederberger
- Pharmazentrum Frankfurt/ZAFES, Klinikum der Johann Wolfgang Goethe-Universität Frankfurt, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany.
| | | | | | | | | | | |
Collapse
|
16
|
Zemskova M, Wechter W, Bashkirova S, Chen CS, Reiter R, Lilly MB. Gene expression profiling in R-flurbiprofen-treated prostate cancer: R-Flurbiprofen regulates prostate stem cell antigen through activation of AKT kinase. Biochem Pharmacol 2006; 72:1257-67. [PMID: 16949054 DOI: 10.1016/j.bcp.2006.07.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2006] [Revised: 07/26/2006] [Accepted: 07/27/2006] [Indexed: 12/15/2022]
Abstract
We have used gene expression profiling to characterize genes regulated by the anti-tumor non-steroidal anti-inflammatory drug (NSAID)-like agent R-flurbiprofen (RFB) in murine TRAMP prostate cancer. Mice with spontaneous, palpable tumors were treated with RFB 25 mg/(kgd) x 7d orally, or vehicle only. RNA was then extracted from tumor tissue and used for microarray analysis with Affymetrix chips. Fifty-eight genes were reproducibly regulated by RFB treatment. One of the most highly up-regulated genes was prostate stem cell antigen (psca). We used TRAMP C1 murine prostate cancer cells to examine potential mechanisms through which RFB could regulate psca. RFB induced dose-dependent expression of PSCA protein, and activity of the psca promoter, in TRAMP C1 cells in culture. Increased psca promoter activity was also seen following treatment of cells with sulindac sulfone, another NSAID-like agent, but not with celecoxib treatment. RFB activation of the psca promoter could be attenuated by co-transfection of dominant-negative akt and h-ras constructs, but not by dominant-negative mek1 plasmids. Immunoblotting revealed that RFB increased expression of phosphorylated AKT at concentrations that stimulated psca promoter activity, and that increased PSCA protein expression. In addition, RFB-dependent up-regulation of PSCA protein expression could be blocked by AKT inhibitors. These data demonstrate that RFB, and possibly other NSAID-like analogs, can increase expression of the psca gene both in vivo and in culture. They further suggest the utility of combining RFB with AKT inhibitors or with monoclonal antibodies targeting PSCA protein, for treatment or prevention of prostate cancer.
Collapse
Affiliation(s)
- Marina Zemskova
- Center for Molecular Biology and Gene Therapy, Loma Linda University, Loma Linda, CA 92354, USA
| | | | | | | | | | | |
Collapse
|
17
|
Grösch S, Maier TJ, Schiffmann S, Geisslinger G. Cyclooxygenase-2 (COX-2)-independent anticarcinogenic effects of selective COX-2 inhibitors. J Natl Cancer Inst 2006; 98:736-47. [PMID: 16757698 DOI: 10.1093/jnci/djj206] [Citation(s) in RCA: 353] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Nonsteroidal antiinflammatory drugs (NSAIDs) appear to reduce the risk of developing cancer. One mechanism through which NSAIDs act to reduce carcinogenesis is to inhibit the activity of cyclooxygenase-2 (COX-2), an enzyme that is overexpressed in various cancer tissues. Overexpression of COX-2 increases cell proliferation and inhibits apoptosis. However, selective COX-2 inhibitors can also act through COX-independent mechanisms. In this review, we describe the COX-2-independent molecular targets of these COX-2 inhibitors and discuss how these targets may be involved in the anticarcinogenic activities of these selective COX-2 inhibitors. We also compare the concentrations of these inhibitors used in in vitro and in vivo experiments and discuss the implications of the in vitro studies for clinical management of cancer with these drugs.
Collapse
Affiliation(s)
- Sabine Grösch
- Pharmazentrum Frankfurt, ZAFES, Institut für klinische Pharmakologie, Klinikum der Johann Wolfgang Goethe, Universität Frankfurt, Theodor Stern Kai 7, Frankfurt/Main, Germany.
| | | | | | | |
Collapse
|
18
|
Tegeder I, Geisslinger G. Cardiovascular risk with cyclooxygenase inhibitors: general problem with substance specific differences? Naunyn Schmiedebergs Arch Pharmacol 2006; 373:1-17. [PMID: 16586083 DOI: 10.1007/s00210-006-0044-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2005] [Accepted: 02/01/2006] [Indexed: 02/07/2023]
Abstract
Randomised clinical trials and observational studies have shown an increased risk of myocardial infarction, stroke, hypertension and heart failure during treatment with cyclooxygenase inhibitors. Adverse cardiovascular effects occurred mainly, but not exclusively, in patients with concomitant risk factors. Cyclooxygenase inhibitors cause complex changes in renal, vascular and cardiac prostanoid profiles thereby increasing vascular resistance and fluid retention. The incidence of cardiovascular adverse events tends to increase with the daily dose and total exposure time. A comparison of individual selective and unselective cyclooxygenase inhibitors suggests substance-specific differences, which may depend on differences in pharmacokinetic parameters or inhibitory potency and may be contributed by prostaglandin-independent effects. Diagnostic markers such as N-terminal pro brain natriuretic peptide (NT-proBNP) or high-sensitive C-reactive protein might help in the early identification of patients at risk, thus avoiding the occurrence of serious cardiovascular toxicity.
Collapse
Affiliation(s)
- Irmgard Tegeder
- Pharmazentrum Frankfurt/ZAFES, Institut für Klinische Pharmakologie, Klinikum der Johann Wolfgang Goethe-Universität Frankfurt, Theodor Stern Kai 7, 60590, Frankfurt am Main, Germany.
| | | |
Collapse
|
19
|
Niederberger E, Manderscheid C, Geisslinger G. Different COX-independent effects of the COX-2 inhibitors etoricoxib and lumiracoxib. Biochem Biophys Res Commun 2006; 342:940-8. [PMID: 16598848 DOI: 10.1016/j.bbrc.2006.02.040] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Etoricoxib and lumiracoxib are both highly selective COX-2 inhibitors. This drug class has recently been linked to severe side effects in particular within the cardiovascular system. The underlying signal transduction pathway is not clarified at the moment but different COX-independent mechanisms might contribute to wanted and unwanted effects of these drugs. Here, we investigated COX-2-independent effects of etoricoxib and lumiracoxib. Both inhibited the activation of the transcription factor NF-kappaB, but had no effects on activation of the AP-1 subunits c-jun and c-fos. On the other hand, activation of the transcription factor CREB was dose-dependently inhibited only by etoricoxib. Together with NF-kappaB-inhibition this might contribute to the reduced protein expression of the pro-inflammatory proteins COX-2 and iNOS. In contrast, lumiracoxib did not influence CREB activation and showed no effect on iNOS and COX-2 protein expression. In conclusion, we showed that etoricoxib and lumiracoxib have different COX-independent mechanisms which may be of clinical relevance.
Collapse
Affiliation(s)
- Ellen Niederberger
- pharmazentrum frankfurt/ZAFES, Klinikum der Johann Wolfgang Goethe-Universität Frankfurt, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany.
| | | | | |
Collapse
|
20
|
Hofacker A, Coste O, Nguyen HV, Marian C, Scholich K, Geisslinger G. Downregulation of cytosolic prostaglandin E2 synthase results in decreased nociceptive behavior in rats. J Neurosci 2006; 25:9005-9. [PMID: 16192391 PMCID: PMC6725604 DOI: 10.1523/jneurosci.2190-05.2005] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Nociception-evoked prostaglandin E2 (PGE2) release in the spinal cord contributes considerably to the development of hyperalgesia and allodynia. Biosynthesis of PGE2 involves the conversion of arachidonic acid to PGH2 by cyclooxygenases (COXs), followed by an isomerization of PGH2 to PGE2 by PGE2 synthases (PGESs). The roles of COX-1, COX-2, and the inducible microsomal PGES-1 have been studied in models of pain and inflammation. In contrast, in nociceptive processes, very little is known about the role of cytosolic PGES (cPGES), which has been described as being functionally coupled to COX-1. Here we show by in situ hybridization and immunohistological analysis that COX-1 and cPGES are constitutively expressed in neuronal and non-neuronal cells of the dorsal and ventral horns in the spinal cord of adult rats. The protein levels of both enzymes were not regulated by nociceptive stimuli; however, reduction of cPGES in rat spinal cord with intrathecal application of cPGES antisense oligonucleotides reduced the nociceptive behavior in zymosan-evoked thermal hyperalgesia and in the formalin assay. The data indicate that cPGES plays an important role in mediating early responses during spinal nociceptive processing.
Collapse
Affiliation(s)
- Annette Hofacker
- Pharmazentrum Frankfurt, Zentrum für Arzneimittelforschung, Entwicklung, und Sicherheit, Klinikum der Johann Wolfgang Goethe-Universität Frankfurt, 60590 Frankfurt, Germany
| | | | | | | | | | | |
Collapse
|
21
|
Brown RE. The NF-kappaB pathway and the successful application of anti-inflammatory and angiostatic therapy in Langerhans' cell histiocytosis. Br J Haematol 2005; 130:147-8. [PMID: 15982359 DOI: 10.1111/j.1365-2141.2005.05575.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
22
|
Abstract
Since the establishment of the WHO three-step ladder for management of cancer pain, several controversies have arisen, which are partly due to new drug development, reformulations of older analgesics, and technological advancements. As a result, clinicians need clarification of several questions. Is morphine the opioid of choice for moderate to severe pain in cancer? Should combinations of opioids be used? When should spinal opioids be used to treat pain in cancer? What are the appropriate opioid doses for breakthrough pain? Should selective cyclo-oxygenase (COX) 2 inhibitors be used? What is the best tactic to treat neuropathic pain, and what first-line adjuvant analgesic should be used? And do bisphosphonates relieve bone pain in cancers other than breast cancer and myeloma? This review addresses these questions.
Collapse
Affiliation(s)
- Mellar P Davis
- Harry R Horvitz Center for Palliative Medicine, Cleveland Clinic Taussig Cancer Center, 9500 Euclid Avenue, R35, Cleveland, OH 44195, USA.
| | | | | | | |
Collapse
|
23
|
Lavagno L, Gunella G, Bardelli C, Spina S, Fresu LG, Viano I, Brunelleschi S. Anti-inflammatory drugs and tumor necrosis factor-alpha production from monocytes: role of transcription factor NF-kappa B and implication for rheumatoid arthritis therapy. Eur J Pharmacol 2005; 501:199-208. [PMID: 15464079 DOI: 10.1016/j.ejphar.2004.07.101] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2004] [Revised: 05/19/2004] [Accepted: 07/23/2004] [Indexed: 01/04/2023]
Abstract
Inhibition of tumor necrosis factor-alpha (TNF-alpha) represents a relevant target in rheumatoid arthritis therapy. Besides inhibiting cyclooxygenase, anti-inflammatory drugs can affect the activation of transcription factors. We investigated the ability of dexamethasone, indomethacin, and rofecoxib to modulate nuclear factor-kappaB (NF-kappaB) activation and TNF-alpha release from human monocytes challenged with lipopolysaccharide (LPS) or phorbol 12-myristate 13-acetate (PMA). Both stimuli induced NF-kappaB nuclear translocation and TNF-alpha secretion. Dexamethasone potently inhibited TNF-alpha release, indomethacin inhibited only PMA-evoked release, while rofecoxib had no effect. In the electrophoretic mobility shift assay, dexamethasone and rofecoxib dose-dependently inhibited the DNA binding activity of NF-kappaB in stimulated monocytes, whereas indomethacin failed to inhibit the LPS-evoked one. These results were further confirmed by evaluating the drugs' ability to reduce nuclear NF-kappaB subunits, as well as the amount of phosphorylated IkappaBalpha in cytosolic fractions. In conclusion, these results indicate that anti-inflammatory drugs differ largely in their ability to inhibit NF-kappaB activity and/or TNF-alpha release from human monocytes. These effects can be relevant to rheumatoid arthritis therapy.
Collapse
Affiliation(s)
- Luisa Lavagno
- Department of Medical Sciences, University of Piemonte Orientale "A. Avogadro," Via Solaroli, 17, Novara 28100, Italy
| | | | | | | | | | | | | |
Collapse
|
24
|
Karamouzis MV, Papavassiliou AG. COX-2 inhibition in cancer therapeutics: a field of controversy or a magic bullet? Expert Opin Investig Drugs 2005; 13:359-72. [PMID: 15102586 DOI: 10.1517/13543784.13.4.359] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Carcinogenesis is a multistep process of long-term accumulation of genetic and epigenetic aberrations at the molecular level. Understanding the mechanisms underlying carcinogenesis could further provide insights for rationally designed new therapeutic strategies for cancer prevention and treatment. Epidemiological and experimental evidence supports the preventative effect of non-steroidal anti-inflammatory drugs (NSAIDs) regarding cancer development. NSAIDs inhibit cyclooxygenase (COX) activity, thus blocking the endogenous prostaglandin production. COX-2 is a key isoenzyme in this biochemical cascade and is inducible by various oncogenic stimuli. A large volume of research data has shown that COX-2 is often upregulated in many malignant tumours, rendering it an attractive candidate target for cancer therapeutics. Various possible direct mechanisms for COX-2 implication in carcinogenesis have been suggested, whilst intense interest has recently been focused on COX-2-independent effects of NSAIDs. Several COX-2-selective inhibitors are currently under evaluation in preclinical and clinical studies, either as single agents or in combination with conventional chemotherapy, radiotherapy and other new molecularly-targeted compounds, with promising results. This article critically reviews already published data on COX-2-selective inhibitors that have been tested in cancer clinical trials, highlights ongoing research and considers the future perspectives of this novel class of agents.
Collapse
|
25
|
Oh HM, Kang YJ, Kim SH, Lee YS, Park MK, Heo JM, Sun JJ, Kim HJ, Kang ES, Kim HJ, Seo HG, Lee JH, Yun-Choi HS, Chang KC. Agastache rugosa leaf extract inhibits the iNOS expression in ROS 17/2.8 cells activated with TNF-α and IL-1β. Arch Pharm Res 2005; 28:305-10. [PMID: 15832818 DOI: 10.1007/bf02977797] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
It has been suggested that nitric oxide (NO) derived from inducible nitric oxide synthase (iNOS) may act as a mediator of cytokine-induced effects on bone turn-over. NO is also recognized as an important factor in bone remodeling, i.e., participating in osteoblast apoptosis in an arthritic joint. The components of Agastache rugosa are known to have many pharmacological activities. In the present study, we investigated the effects of Agastache rugosa leaf extract (ELAR) on NO production and the iNOS expression in ROS 17/2.8 cells activated by a mixture of inflammatory cytokines including TNF-alpha and IL-1beta. A preincubation with ELAR significantly and concentration-dependently reduced the expression of iNOS protein in ROS 17/2.8 cells activated with the cytokine mixture. Consequently, the NO production was also significantly reduced by ELAR with an IC50 of 0.75 mg/mL. The inhibitory mechanism of iNOS induction by ELAR prevented the activation and translocation of NF-kappaB (p65) to the nucleus from the cytosol fraction. Furthermore, ELAR concentration-dependently reduced the cellular toxicity induced by sodium nitroprusside, an NO-donor. These results suggest that ELAR may be beneficial in NO-mediated inflammatory conditions such as osteoporosis.
Collapse
Affiliation(s)
- Hwa Min Oh
- Department of Pharmacology, College of Medicine, and Institute of Health Sciences, Gyeongsang National University, Jinju 660-751, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Puhlmann U, Ziemann C, Ruedell G, Vorwerk H, Schaefer D, Langebrake C, Schuermann P, Creutzig U, Reinhardt D. Impact of the cyclooxygenase system on doxorubicin-induced functional multidrug resistance 1 overexpression and doxorubicin sensitivity in acute myeloid leukemic HL-60 cells. J Pharmacol Exp Ther 2005; 312:346-54. [PMID: 15501994 DOI: 10.1124/jpet.104.071571] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Multidrug resistance (MDR), a challenge in treating childhood acute myeloid leukemia (AML), is frequently associated with decreased drug accumulation caused by multidrug transporter MDR1. Doxorubicin, an important anti-AML drug, is a known MDR1 substrate and inducer. Its cytostatic efficacy is thus limited by MDR1 overexpression. A recent study demonstrated cyclooxygenase-2-dependent, prostaglandin E(2) (PGE(2))-mediated regulation of mdr1b expression in primary rat hepatocyte cultures. Cyclooxygenase-2 expression is increased in several malignancies and considered a negative prognostic factor. Our study focused on cyclooxygenase system's impact on drug-induced MDR1 overexpression in AML cells. As a prerequisite, coexpression of MDR1 and cyclooxygenase-2 mRNA in HL-60 cells and primary AML blasts was demonstrated by Northern blot. Interestingly, incubation of AML cells with doxorubicin not only induced functionally active MDR1 overexpression but also mediated increased cyclooxygenase-2 mRNA and protein expressions with subsequent PGE(2) release (determined by flow cytometry, rhodamine123 efflux assay, reverse transcription-polymerase chain reaction, and enzyme-linked immunosorbent assay). After preincubation and subsequent parallel treatment with the cyclooxygenase-2-preferential inhibitor meloxicam, doxorubicin-induced MDR1 overexpression and function were reduced (maximally at 0.1-0.5 microM meloxicam), whereas cytostatic efficacy of doxorubicin in 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide assays was significantly increased by up to 78 (HL-60) and 30% (AML blasts) after 72 h of doxorubicin treatment. In HL-60 cells, meloxicam-dependent effect on doxorubicin cytotoxicity was neutralized by PGE(2) preincubation. In conclusion, the cyclooxygenase system, especially the cyclooxygenase-2 isoform, might be involved in regulating doxorubicin-induced MDR1 overexpression in AML cells, with PGE(2) seeming to be a mediating factor. Cyclooxygenase inhibitors thus bear promise to overcome MDR in AML and improve therapy.
Collapse
Affiliation(s)
- Ulrike Puhlmann
- AML-BFM Study, Department of Pediatric Hematology and Oncology, University Children's Hospital Muenster, Albert-Schweitzer-Str. 33, 48129 Muenster, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
PURPOSE OF REVIEW The pathophysiology of osteoarthritis is the result of an imbalance between anabolic and catabolic pathways. This imbalance is the result of the activation of joint cells by inflammatory mediators, matrix components, and mechanical stress. All these mediators act through specific receptors that transmit the signals to the nucleus to activate the transcription of matrix metalloproteinases and inflammatory genes. Targeting these signaling pathways in osteoarthritis is considered a novel approach to modulate this imbalance. RECENT FINDINGS Although many signaling pathways are necessary for physiologic cell life, it is now well established that a few are more specifically induced in an inflammatory environment. In osteoarthritis, the nuclear factor-kappaB and mitogen-activated protein kinase pathways have been shown to play a predominant role in the expression of metalloproteinases and inflammatory genes and proteins. Also involved in the activation of osteoarthritic cells are other molecules interacting with one or several signaling pathways, such as nitric oxide, peroxisome proliferator-activated receptor-gamma ligands, or C/EBP transcriptional factors. Based on this knowledge, specific inhibitors for some of these signaling pathways have been designed and include p38 mitogen-activated protein kinase or nuclear factor-kappaB inhibitors. Experimental studies evaluating cartilage degradation in arthritis models are promising, although fewer have been done specifically in osteoarthritis models. SUMMARY Targeting signaling pathways in osteoarthritis did not seem feasible a few years ago because of the complexity of the multiple intracellular pathways, mainly physiologic, defined by a high degree of redundancy and cross-talk. However, important advances in the knowledge of chondrocyte and synoviocyte signaling in osteoarthritis have been achieved in recent years and suggest that inhibitors of specific signaling pathways could shortly provide effective treatments for this disease.
Collapse
Affiliation(s)
- Francis Berenbaum
- University Pierre & Marie Curie and Department of Rheumatology, UFR Saint-Antoine, AP-HP, Paris, France.
| |
Collapse
|
28
|
Niederberger E, Manderscheid C, Grösch S, Schmidt H, Ehnert C, Geisslinger G. Effects of the selective COX-2 inhibitors celecoxib and rofecoxib on human vascular cells. Biochem Pharmacol 2004; 68:341-50. [PMID: 15194006 DOI: 10.1016/j.bcp.2004.03.029] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2004] [Accepted: 03/30/2004] [Indexed: 01/28/2023]
Abstract
Rheumatoid arthritis (RA) is associated with a reduced life expectancy considered to be partly caused by cardiovascular events. A growing concern is that accelerated atherosclerosis is driven by inflammatory mechanisms similar to those responsible for RA. Therefore, selective COX-2 inhibitors, which are widely used for the symptomatic treatment of pain and inflammation in RA, may have an impact on atherosclerotic processes. Their anti-inflammatory properties might provoke anti-atherogenic effects but on the other hand, selective inhibition of anti-thrombotic prostacyclin and COX-2 independent effects might promote the risk of increased prothrombotic activity. In the current study, the effects of the presently marketed selective COX-2 inhibitors celecoxib and rofecoxib on vascular cells have been investigated. Celecoxib inhibited the proliferation of human umbilical vein endothelial cells (HUVECs) in a concentration-dependent manner. At high concentrations, it induced apoptosis and the modulation of inhibitory cell cycle proteins. In contrast rofecoxib-even at high concentrations-had no effect on cell proliferation, apoptosis or cell cycle distribution indicating that celecoxib and rofecoxib do not affect the same signal transduction pathways in endothelial cells. Both drugs did not affect apoptosis induction or cell cycle proliferation in human vascular smooth muscle cells. The observed effects on endothelial cells appear to be COX-independent since both drugs selectively inhibited COX-2-activity and the applied concentrations lay beyond the IC(50) for inhibition of prostacyclin production. Regarding endothelial apoptosis as a relevant event in the initiation and progression of atherosclerosis the present data put forward the hypothesis that the presently marketed COX-2 inhibitors have a different impact on atherosclerotic processes.
Collapse
Affiliation(s)
- Ellen Niederberger
- Pharmazentrum frankfurt, Klinikum der Johann Wolfgang Goethe-Universität Frankfurt, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany.
| | | | | | | | | | | |
Collapse
|
29
|
Schmidt H, Woodcock BG, Geisslinger G. Benefit-risk assessment of rofecoxib in the treatment of osteoarthritis. Drug Saf 2004; 27:185-96. [PMID: 14756580 DOI: 10.2165/00002018-200427030-00003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
NSAIDs are widely used to treat pain and inflammation in osteoarthritis. Their use in this indication is generally intermittent and fluctuates with the intensity of the disease. Nonetheless, success of the therapy is frequently limited by injury to the gastrointestinal mucosa and complications such as bleeding, ulceration and perforation. A careful and detailed evaluation of these aspects in regard to the newly introduced NSAIDs is of considerable clinical importance. This review focuses on the NSAID rofecoxib, one of the selective cyclo-oxygenase (COX)-2 inhibitors, which are claimed to be as effective as nonselective NSAIDs with better gastrointestinal tolerability. Indeed, phase II, phase III and epidemiological studies have revealed that the efficacy of rofecoxib is comparable to that of conventional NSAIDs but with lower gastrointestinal toxicity, although this advantage may not be demonstrable in every patient. In patients treated with low-dose aspirin (acetylsalicylic acid) for cardiovascular prophylaxis, celecoxib (another selective COX-2 inhibitor) seems to have no obvious advantages over conventional NSAIDs, and similar conclusions may be applied to rofecoxib. A comparison of NSAID therapy +/- concomitant low-dose aspirin was not a primary outcome in this trial with celecoxib and there is thus a need for further studies which compare the gastrointestinal risk of a selective COX-2 inhibitor plus aspirin versus a conventional NSAID. Recent debate has emerged regarding the cardiovascular safety of rofecoxib. Although there is evidence both for and against higher cardiovascular risk with rofecoxib, a retrospective cohort study recently published suggested that there is no increased risk of acute myocardial infarction in the short-term when compared with non-selective NSAIDs. The renal toxicity of rofecoxib has been thoroughly investigated. Clinical studies revealed renal effects of rofecoxib similar to those of conventional NSAIDs. Since adverse effects increase with the degree of renal impairment, monitoring of renal function should be carried out in patients at risk. Although there are still insufficient data concerning certain important adverse effects of rofecoxib, this drug is becoming an important alternative in the therapy of osteoarthritis, especially in high-risk patients. Clinicians need to weigh up the benefits and risks of rofecoxib on a case-by-base basis.
Collapse
Affiliation(s)
- Helmut Schmidt
- pharmazentrum frankfurt, Institute of Clinical Pharmacology, Johann Wolfgang Goethe-University, Frankfurt/Main, Germany
| | | | | |
Collapse
|
30
|
Broom DC, Samad TA, Kohno T, Tegeder I, Geisslinger G, Woolf CJ. Cyclooxygenase 2 expression in the spared nerve injury model of neuropathic pain. Neuroscience 2004; 124:891-900. [PMID: 15026129 DOI: 10.1016/j.neuroscience.2004.01.003] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/05/2004] [Indexed: 11/29/2022]
Abstract
Cyclooxygenase-2 (COX-2) after induction peripherally, and within the CNS, plays an important role in producing inflammatory pain. However, its role in neuropathic pain models is controversial. Recently a robust and persistent model of partial nerve injury pain, the spared nerve injury (SNI) model, has been developed. The aim of the present study was to examine the regulation of COX-2 in the rat SNI model and to evaluate the effectiveness of the selective COX-2 inhibitor rofecoxib in preventing neuropathic allodynia and hyperalgesia. RNase protection assays revealed only a very small and transient increase in COX-2 mRNA in the dorsal horn of the spinal cord in the SNI model with a maximum change at 24 h. Immunohistochemical analysis showed a small increase in COX-2 protein in the deep layers of the dorsal horn 10 h following SNI surgery. Rofecoxib (100 microM) did not affect spontaneous excitatory postsynaptic currents or alpha-amino-3-hydroxy-5-methyl-4-isoxazole propanoic acid (AMPA) and N-methyl-d-aspartate (NMDA) responses in lamina II neurons from spinal cords of animals with SNI indicating no detectable action on transmitter release or postsynaptic activity. Furthermore, rofecoxib treatment (1 and 3.2 mg/kg for 5 and 3 days respectively starting on the day of surgery) failed to modify the development of allodynia and hyperalgesia in the SNI model. However, rofecoxib significantly reduced inflammatory hypersensitivity evoked by injection of complete Freund's adjuvant into one hindpaw, indicating that the doses used were pharmacologically active. The pain hypersensitivity produced by the SNI model is not COX-2-dependent.
Collapse
Affiliation(s)
- D C Broom
- Department of Anesthesia and Critical Care, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | | | | | | | | | | |
Collapse
|
31
|
Garg AK, Hortobagyi GN, Aggarwal BB, Sahin AA, Buchholz TA. Nuclear factor-κB as a predictor of treatment response in breast cancer. Curr Opin Oncol 2003; 15:405-11. [PMID: 14624221 DOI: 10.1097/00001622-200311000-00001] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW To examine the links of nuclear factor-kappa B (NF-kappa B) to treatment-induced signaling in breast cancer and to propose further studies to elucidate the role of NF-kappa B in breast cancer response to chemotherapy and radiation. RECENT FINDINGS The authors' group and others have investigated the clinical relevance of ubiquitously expressed NF-kappa B in breast cancer. Possibly through its effects on apoptosis, NF-kappa B has been implicated in tumor resistance to chemotherapy and radiation in many types of tumors. Furthermore, both in vitro and in vivo studies have shown that targeted inhibition of NF-kappa B can sensitize tumor cells to chemotherapy and radiation. SUMMARY The molecular mechanisms involved in chemotherapy-induced and radiation-induced cell death in breast cancer are not fully known, nor are the mechanisms of treatment resistance. NF-kappa B is a transcription factor for a number of genes involved in tumor progression and resistance to systemic therapies and is a major regulator of the apoptotic pathway. Gaining further insights into molecular factors such as NF-kappa B as biomarkers for treatment response may help clinicians predict treatment outcome and lead to the development of targeted therapeutics.
Collapse
Affiliation(s)
- Amit K Garg
- Department of Radiation Oncology, University of Texas M. D. Anderson Cancer Center, Houston, 77030, USA
| | | | | | | | | |
Collapse
|
32
|
Praveen Rao PN, Amini M, Li H, Habeeb AG, Knaus EE. Design, Synthesis, and Biological Evaluation of 6-Substituted-3-(4-methanesulfonylphenyl)-4-phenylpyran-2-ones: A Novel Class of Diarylheterocyclic Selective Cyclooxygenase-2 Inhibitors. J Med Chem 2003; 46:4872-82. [PMID: 14584938 DOI: 10.1021/jm0302391] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A group of 6-alkyl (alkoxy or alkylthio)-4-aryl-3-(4-methanesulfonylphenyl)pyran-2-ones (14a-v), possessing either a H or F substituent at the para-position of the C-4 phenyl ring, were designed for evaluation as selective cyclooxygenase-2 (COX-2) inhibitors with in vivo antiinflammatory-analgesic activities. Although 6-ethylthio-3-(4-methanesulfonylphenyl)-4-phenylpyran-2-one (14s) exhibited a very high in vitro COX-2 inhibitory potency (IC(50) = 0.0032 muM) and COX-2 selectivity (SI > 120 000), 14s exhibited moderate antiinflammatory activity compared to celecoxib in a carrageenan-induced rat paw edema assay. In contrast, the less potent (IC(50) = 0.10 muM), and less selective (SI = 2880) COX-2 inhibitor 6-ethoxy-3-(4-methanesulfonylphenyl)-4-phenylpyran-2-one (14i) exhibited good antiinflammatory activity where a 1 mg/kg oral dose reduced inflammation 32 and 67% at 3 and 5 h postdrug administration relative to the reference drug celecoxib where a 50 mg/kg oral dose reduced inflammation by 79 and 58% at the respective 3 and 5 h time periods. Molecular modeling studies, where 14i was docked in the active site of both COX-1 and COX-2, reveals that the C-6 ethoxy substituent orients the pyran-2-one ring to position the SO(2)Me pharmacophore in the vicinity of the secondary pocket in COX-2. The absence of this COX-2 secondary pocket in the COX-1 binding site is due to the presence of the bulky Ile(523) in COX-1 such that access to the amino acid residues (Ile(517), Phe(518), Gln(192), and His(90)), which line the COX-2 secondary pocket with which the SO(2)Me pharmacophore could interact, is hindered. The six-membered pyran-2-one ring system is a suitable central template to design selective COX-2 inhibitors.
Collapse
Affiliation(s)
- P N Praveen Rao
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, T6G 2N8, Canada
| | | | | | | | | |
Collapse
|