1
|
Wongsuwanlert M, Teanpaisan R, Ruangsri P, Kaewdech A, Sunpaweravong S, Pahumunto N. Effect of mouthwash containing poly l-Lysine and glycerol monolaurate on oral Helicobacter pylori relating to biofilm eradication, anti-adhesion, and pro-inflammatory cytokine suppression. J Dent Sci 2024; 19:1748-1757. [PMID: 39035281 PMCID: PMC11259724 DOI: 10.1016/j.jds.2023.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/10/2023] [Indexed: 11/01/2023] Open
Abstract
Background/purpose Helicobacter pylori has been found to be related to periodontitis, and the oral cavity has been considered a reservoir for H. pylori gastritis infection. Thus, this study evaluated the effect of mouthwash containing poly l-Lysine and glycerol monolaurate on inhibiting H. pylori growth, biofilm formation, cell cytotoxicity, adhesion ability, cagA mRNA expression, and pro-inflammatory cytokines stimulated by H. pylori. Materials and methods Nineteen H. pylori strains were isolated from the oral cavity. The effectiveness of mouthwash containing poly l-Lysine and glycerol monolaurate was examined for its ability to inhibit H. pylori growth and biofilm formation and was tested for cell viability in oral epithelial cells (H357), gastric adenocarcinoma cells (AGS), and periodontal ligament cells (PDL). Additionally, the mouthwash was tested for reducing cagA mRNA expression, adhesion ability to H357 and AGS cells, and pro-inflammatory cytokines stimulated with H. pylori in AGS and PDL cells. Results The mouthwash containing poly l-Lysine and glycerol monolaurate could eradicate the biofilm by 14.9-19.9% after incubation at 5 min, and cell viability revealed 77.2, 79.8, and 100.0% for AGS, H357, and PDL cells, respectively. Moreover, the mouthwash containing poly l-Lysine and glycerol monolaurate could down-regulate cagA mRNA expression, reduce adhesion of H. pylori by approximately 9.5-47.8% for H357 cells and 24.5-62.9% for AGS cells, and decrease pro-inflammatory cytokines, especially interleukin-8, stimulated with H. pylori. Conclusion Mouthwash containing poly l-Lysine and glycerol monolaurate could inhibit H. pylori growth and reduce their virulence expression. The mouthwash also revealed low cytotoxicity to oral and gastric cells.
Collapse
Affiliation(s)
- Mutita Wongsuwanlert
- Research Center of Excellence for Oral Health, Faculty of Dentistry, Prince of Songkla University, Songkhla, Thailand
- Department of Conservative Dentistry, Faculty of Dentistry, Prince of Songkla University, Songkhla, Thailand
| | - Rawee Teanpaisan
- Research Center of Excellence for Oral Health, Faculty of Dentistry, Prince of Songkla University, Songkhla, Thailand
| | - Praphansri Ruangsri
- Research Center of Excellence for Oral Health, Faculty of Dentistry, Prince of Songkla University, Songkhla, Thailand
- Department of Conservative Dentistry, Faculty of Dentistry, Prince of Songkla University, Songkhla, Thailand
| | - Apichat Kaewdech
- Gastroenterology and Hepatology Unit, Division of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
| | - Somkiat Sunpaweravong
- Department of Surgery, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
| | - Nuntiya Pahumunto
- Research Center of Excellence for Oral Health, Faculty of Dentistry, Prince of Songkla University, Songkhla, Thailand
- Department of Oral Diagnostic Sciences, Faculty of Dentistry, Prince of Songkla University, Songkhla, Thailand
| |
Collapse
|
2
|
Glucosinolates and Omega-3 Fatty Acids from Mustard Seeds: Phytochemistry and Pharmacology. PLANTS 2022; 11:plants11172290. [PMID: 36079672 PMCID: PMC9459965 DOI: 10.3390/plants11172290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 11/22/2022]
Abstract
Seeds from mustard (genera Brassica spp. and Sinapsis spp.), are known as a rich source of glucosinolates and omega-3 fatty acids. These compounds are widely known for their health benefits that include reducing inflammation and lowering the risk of cardiovascular diseases and cancer. This review presented a synthesis of published literature from Google Scholar, PubMed, Scopus, Sci Finder, and Web of Science regarding the different glucosinolates and omega-3 fatty acids isolated from mustard seeds. We presented an overview of extraction, isolation, purification, and structure elucidation of glucosinolates from the seeds of mustard plants. Moreover, we presented a compilation of in vitro, in vivo, and clinical studies showing the potential health benefits of glucosinolates and omega-3 fatty acids. Previous studies showed that glucosinolates have antimicrobial, antipain, and anticancer properties while omega-3 fatty acids are useful for their pharmacologic effects against sleep disorders, anxiety, cerebrovascular disease, neurodegenerative disease, hypercholesterolemia, and diabetes. Further studies are needed to investigate other naturally occurring glucosinolates and omega-3 fatty acids, improve and standardize the extraction and isolation methods from mustard seeds, and obtain more clinical evidence on the pharmacological applications of glucosinolates and omega-3 fatty acids from mustard seeds.
Collapse
|
3
|
Escudero-Casao M, Cardona A, Beltrán-Debón R, Díaz Y, Matheu MI, Castillón S. Fluorinated triazole-containing sphingosine analogues. Syntheses and in vitro evaluation as SPHK inhibitors. Org Biomol Chem 2019; 16:7230-7235. [PMID: 30255187 DOI: 10.1039/c8ob01867g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Sphingosine analogues with a rigid triazole moiety in the aliphatic chain and systematic modifications in the polar head and different degrees of fluorination at the terminus of the alkylic chain were synthesized from a common alkynyl aziridine key synthon. This key synthon was obtained by enantioselective organocatalyzed aziridination and it was subsequently ring opened in a regioselective manner in acidic medium. Up to 16 sphingosine analogues were prepared in a straightforward manner. The in vitro activity of the obtained products as SPHK1 and SPHK2 inhibitors was evaluated, displaying comparable activity to that of DMS.
Collapse
Affiliation(s)
- Margarita Escudero-Casao
- Departament de Química Analítica i Química Orgànica, Universitat Rovira i Virgili, C/Marcel lí Domingo n° 1, 43007, Tarragona, Spain.
| | - Adrià Cardona
- Departament de Química Analítica i Química Orgànica, Universitat Rovira i Virgili, C/Marcel lí Domingo n° 1, 43007, Tarragona, Spain.
| | - Raúl Beltrán-Debón
- Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, C/Marcel lí Domingo n° 1, 43007 Tarragona, Spain
| | - Yolanda Díaz
- Departament de Química Analítica i Química Orgànica, Universitat Rovira i Virgili, C/Marcel lí Domingo n° 1, 43007, Tarragona, Spain.
| | - M Isabel Matheu
- Departament de Química Analítica i Química Orgànica, Universitat Rovira i Virgili, C/Marcel lí Domingo n° 1, 43007, Tarragona, Spain.
| | - Sergio Castillón
- Departament de Química Analítica i Química Orgànica, Universitat Rovira i Virgili, C/Marcel lí Domingo n° 1, 43007, Tarragona, Spain.
| |
Collapse
|
4
|
Puangkam K, Muanghorm W, Konsue N. Stability of Bioactive Compounds and Antioxidant Activity of Thai Cruciferous Vegetables during In Vitro Digestion. CURRENT RESEARCH IN NUTRITION AND FOOD SCIENCE 2017. [DOI: 10.12944/crnfsj.5.2.06] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Raphanus sativus (L.) var. caudatus Alef (Thai rat-tailed radish), Brassica juncea (L.) Czern. (leaf mustard) and Brassica juncea (L.) Coss. var. sareptana Sinskaja (mustard green) are cruciferous vegetable commonly consumed in Thailand and Asian countries. The vegetables were extracted with different solvents namely methanol, hexane and water prior to total phenolic content (TPC), phenethyl isothiocyanate (PEITC) content and antioxidant activity by ferric reducing antioxidant power (FRAP) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay were determined. Effects of gastrointestinal digestion on stability of these characteristics were investigated. It was found that the order of extraction efficiency for high bioactive compounds and antioxidant activity was water> methanol> hexane. Among vegetables, mustard green showed the highest TPC, PEITC, FRAP and DPPH values being 19.78±0.01 g GAE, 9.65 ± 1.08 µmol, 8.18±0.01 µM FeSO4 and 7.75±0.31 µM TE per 100g, respectively. Decreases in DPPH (30.6-53.5%), FRAP (49.0-88.0%) and PEITC (27.2-56.7%) values were slightly higher than TPC (27.9-41.6%) after in vitro digestion. It can be said that Thai cruciferous vegetables contain substantial chemical property and this may promote their health protection but the stability through digestive system should be warranted.
Collapse
Affiliation(s)
- Kunyarut Puangkam
- Food Science and Technology Program, School of Agro-Industry, Mae Fah Luang University, Chiang Rai, Thailand, 57100
| | - Wipawan Muanghorm
- Food Science and Technology Program, School of Agro-Industry, Mae Fah Luang University, Chiang Rai, Thailand, 57100
| | - Nattaya Konsue
- Food Science and Technology Program, School of Agro-Industry, Mae Fah Luang University, Chiang Rai, Thailand, 57100
| |
Collapse
|
5
|
Barba FJ, Nikmaram N, Roohinejad S, Khelfa A, Zhu Z, Koubaa M. Bioavailability of Glucosinolates and Their Breakdown Products: Impact of Processing. Front Nutr 2016; 3:24. [PMID: 27579302 PMCID: PMC4985713 DOI: 10.3389/fnut.2016.00024] [Citation(s) in RCA: 131] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 07/21/2016] [Indexed: 02/03/2023] Open
Abstract
Glucosinolates are a large group of plant secondary metabolites with nutritional effects, and are mainly found in cruciferous plants. After ingestion, glucosinolates could be partially absorbed in their intact form through the gastrointestinal mucosa. However, the largest fraction is metabolized in the gut lumen. When cruciferous are consumed without processing, myrosinase enzyme present in these plants hydrolyzes the glucosinolates in the proximal part of the gastrointestinal tract to various metabolites, such as isothiocyanates, nitriles, oxazolidine-2-thiones, and indole-3-carbinols. When cruciferous are cooked before consumption, myrosinase is inactivated and glucosinolates transit to the colon where they are hydrolyzed by the intestinal microbiota. Numerous factors, such as storage time, temperature, and atmosphere packaging, along with inactivation processes of myrosinase are influencing the bioavailability of glucosinolates and their breakdown products. This review paper summarizes the assimilation, absorption, and elimination of these molecules, as well as the impact of processing on their bioavailability.
Collapse
Affiliation(s)
- Francisco J. Barba
- Department of Food Science, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
- Nutrition and Food Science Area, Faculty of Pharmacy, Universitat de València, València, Spain
| | - Nooshin Nikmaram
- Department of Food Science and Technology, Faculty of Agricultural Engineering, Islamic Azad University of Sabzevar, Sabzevar, Iran
| | - Shahin Roohinejad
- Burn and Wound Healing Research Center, Division of Food and Nutrition, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Anissa Khelfa
- Sorbonne Universités, Université de Technologie de Compiègne, Laboratoire Transformations Intégrées de la Matière Renouvelable (UTC/ESCOM, EA 4297 TIMR), Centre de Recherche de Royallieu, Compiègne Cedex, France
| | - Zhenzhou Zhu
- School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Mohamed Koubaa
- Sorbonne Universités, Université de Technologie de Compiègne, Laboratoire Transformations Intégrées de la Matière Renouvelable (UTC/ESCOM, EA 4297 TIMR), Centre de Recherche de Royallieu, Compiègne Cedex, France
| |
Collapse
|
6
|
A reflection of the lasting contributions from Dr. Robert Bittman to sterol trafficking, sphingolipid and phospholipid research. Prog Lipid Res 2015; 61:19-29. [PMID: 26584871 DOI: 10.1016/j.plipres.2015.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 10/21/2015] [Accepted: 10/28/2015] [Indexed: 10/22/2022]
Abstract
With the passing of Dr. Robert Bittman from pancreatic cancer on the 1st October 2014, the lipid research field lost one of the most influential and significant personalities. Robert Bittman's genius was in chemical design and his contribution to the lipid research field was truly immense. The reagents and chemicals he designed and synthesised allowed interrogation of the role of lipids in constituting complex biophysical membranes, sterol transfer and in cellular communication networks. Here we provide a review of these works which serve as a lasting memory to his life.
Collapse
|
7
|
Poulsen C, Mehalick LA, Fischer CL, Lanzel EA, Bates AM, Walters KS, Cavanaugh JE, Guthmiller JM, Johnson GK, Wertz PW, Brogden KA. Differential cytotoxicity of long-chain bases for human oral gingival epithelial keratinocytes, oral fibroblasts, and dendritic cells. Toxicol Lett 2015; 237:21-9. [PMID: 26005054 DOI: 10.1016/j.toxlet.2015.05.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 05/15/2015] [Accepted: 05/17/2015] [Indexed: 01/25/2023]
Abstract
Long-chain bases are present in the oral cavity. Previously we determined that sphingosine, dihydrosphingosine, and phytosphingosine have potent antimicrobial activity against oral pathogens. Here, we determined the cytotoxicities of long-chain bases for oral cells, an important step in considering their potential as antimicrobial agents for oral infections. This information would clearly help in establishing prophylactic or therapeutic doses. To assess this, human oral gingival epithelial (GE) keratinocytes, oral gingival fibroblasts (GF), and dendritic cells (DC) were exposed to 10.0-640.0 μM long-chain bases and glycerol monolaurate (GML). The effects of long-chain bases on cell metabolism (conversion of resazurin to resorufin), membrane permeability (uptake of propidium iodide or SYTOX-Green), release of cellular contents (LDH), and cell morphology (confocal microscopy) were all determined. GE keratinocytes were more resistant to long-chain bases as compared to GF and DC, which were more susceptible. For DC, 0.2-10.0 μM long-chain bases and GML were not cytotoxic; 40.0-80.0 μM long-chain bases, but not GML, were cytotoxic; and 80.0 μM long-chain bases induced cellular damage and death in less than 20 min. The LD50 of long-chain bases for GE keratinocytes, GF, and DC were considerably higher than their minimal inhibitory concentrations for oral pathogens, a finding important to pursuing their future potential in treating periodontal and oral infections.
Collapse
Affiliation(s)
- Christopher Poulsen
- Department of Periodontics, College of Dentistry, The University of Iowa, Iowa City, IA 52242, USA
| | - Leslie A Mehalick
- Department of Periodontics, College of Dentistry, The University of Iowa, Iowa City, IA 52242, USA
| | - Carol L Fischer
- Dows Institute for Dental Research, College of Dentistry, The University of Iowa, Iowa City, IA 52242, USA
| | - Emily A Lanzel
- Department of Oral Pathology, Radiology and Medicine, College of Dentistry, The University of Iowa, Iowa City, IA 52242, USA
| | - Amber M Bates
- Dows Institute for Dental Research, College of Dentistry, The University of Iowa, Iowa City, IA 52242, USA
| | - Katherine S Walters
- Central Microscopy Research Facility, The University of Iowa, Iowa City, IA 52242, USA
| | - Joseph E Cavanaugh
- Department of Biostatistics, College of Public Health, The University of Iowa, Iowa City, IA 52242, USA
| | - Janet M Guthmiller
- College of Dentistry, University of Nebraska Medical Center, 40th and Holdrege, Lincoln, NE 68583, USA
| | - Georgia K Johnson
- Department of Periodontics, College of Dentistry, The University of Iowa, Iowa City, IA 52242, USA
| | - Philip W Wertz
- Dows Institute for Dental Research, College of Dentistry, The University of Iowa, Iowa City, IA 52242, USA; Department of Oral Pathology, Radiology and Medicine, College of Dentistry, The University of Iowa, Iowa City, IA 52242, USA
| | - Kim A Brogden
- Department of Periodontics, College of Dentistry, The University of Iowa, Iowa City, IA 52242, USA; Dows Institute for Dental Research, College of Dentistry, The University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
8
|
Abstract
Ceramide serves as a central mediator in sphingolipid metabolism and signaling pathways, regulating many fundamental cellular responses. It is referred to as a 'tumor suppressor lipid', since it powerfully potentiates signaling events that drive apoptosis, cell cycle arrest, and autophagic responses. In the typical cancer cell, ceramide levels and signaling are usually suppressed by overexpression of ceramide-metabolizing enzymes or downregulation of ceramide-generating enzymes. However, chemotherapeutic drugs as well as radiotherapy increase intracellular ceramide levels, while exogenously treating cancer cells with short-chain ceramides leads to anticancer effects. All evidence currently points to the fact that the upregulation of ceramide levels is a promising anticancer strategy. In this review, we exhibit many anticancer ceramide analogs as downstream receptor agonists and ceramide-metabolizing enzyme inhibitors.
Collapse
|
9
|
Plano D, Amin S, Sharma AK. Importance of sphingosine kinase (SphK) as a target in developing cancer therapeutics and recent developments in the synthesis of novel SphK inhibitors. J Med Chem 2014; 57:5509-24. [PMID: 24471412 DOI: 10.1021/jm4011687] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Sphingosine kinase (SphK) is an oncogenic lipid kinase that regulates the sphingolipid metabolic pathway that has been shown to play a role in numerous hyperproliferative/inflammatory diseases. The SphK isoforms (SphK1 and SphK2) catalyze the conversion of the proapoptotic substrate d-erythrosphingosine to the promitogenic/migratory product sphingosine 1-phosphate (S1P). Accumulation of S1P has been linked to the development/progression of cancer and various other diseases including, but not limited to, asthma, inflammatory bowel disease, rheumatoid arthritis, and diabetic nephropathy. SphK therefore represents a potential new target for developing novel therapeutics for cancer and other diseases. This finding has stimulated the development and evaluation of numerous SphK inhibitors over the past decade or so. In this review, we highlight the recent advancement in the field of SphK inhibitors including SphK1 and SphK2 specific inhibitors. Both sphingolipid based and nolipidic small molecule inhibitors and their importance in treatment of cancer and other diseases are discussed.
Collapse
Affiliation(s)
- Daniel Plano
- Department of Pharmacology, Penn State Hershey Cancer Institute, CH72, Penn State College of Medicine , 500 University Drive, Hershey, Pennsylvania 17033, United States
| | | | | |
Collapse
|
10
|
Irwin ME, Rivera-Del Valle N, Chandra J. Redox control of leukemia: from molecular mechanisms to therapeutic opportunities. Antioxid Redox Signal 2013; 18:1349-83. [PMID: 22900756 PMCID: PMC3584825 DOI: 10.1089/ars.2011.4258] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Reactive oxygen species (ROS) play both positive and negative roles in the proliferation and survival of a cell. This dual nature has been exploited by leukemia cells to promote growth, survival, and genomic instability-some of the hallmarks of the cancer phenotype. In addition to altered ROS levels, many antioxidants are dysregulated in leukemia cells. Together, the production of ROS and the expression and activity of antioxidant enzymes make up the primary redox control of leukemia cells. By manipulating this system, leukemia cells gain proliferative and survival advantages, even in the face of therapeutic insults. Standard treatment options have improved leukemia patient survival rates in recent years, although relapse and the development of resistance are persistent challenges. Therapies targeting the redox environment show promise for these cases. This review highlights the molecular mechanisms that control the redox milieu of leukemia cells. In particular, ROS production by the mitochondrial electron transport chain, NADPH oxidase, xanthine oxidoreductase, and cytochrome P450 will be addressed. Expression and activation of antioxidant enzymes such as superoxide dismutase, catalase, heme oxygenase, glutathione, thioredoxin, and peroxiredoxin are perturbed in leukemia cells, and the functional consequences of these molecular alterations will be described. Lastly, we delve into how these pathways can be potentially exploited therapeutically to improve treatment regimens and promote better outcomes for leukemia patients.
Collapse
Affiliation(s)
- Mary E Irwin
- Department of Pediatrics Research, Children's Cancer Hospital, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | |
Collapse
|
11
|
Byun HS, Pyne S, Macritchie N, Pyne NJ, Bittman R. Novel sphingosine-containing analogues selectively inhibit sphingosine kinase (SK) isozymes, induce SK1 proteasomal degradation and reduce DNA synthesis in human pulmonary arterial smooth muscle cells. MEDCHEMCOMM 2013; 4. [PMID: 24396570 DOI: 10.1039/c3md00201b] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Sphingosine 1-phosphate (S1P) is involved in hyper-proliferative diseases such as cancer and pulmonary arterial hypertension. We have synthesized inhibitors that are selective for the two isoforms of sphingosine kinase (SK1 and SK2) that catalyze the synthesis of S1P. A thiourea adduct of sphinganine (F02) is selective for SK2 whereas the 1-deoxysphinganines 55-21 and 77-7 are selective for SK1. (2S,3R)-1-Deoxysphinganine (55-21) induced the proteasomal degradation of SK1 in human pulmonary arterial smooth muscle cells and inhibited DNA synthesis, while the more potent SK1 inhibitors PF-543 and VPC96091 failed to inhibit DNA synthesis. These findings indicate that moderate potency inhibitors such as 55-21 are likely to have utility in unraveling the functions of SK1 in inflammatory and hyperproliferative disorders.
Collapse
Affiliation(s)
- Hoe-Sup Byun
- Department of Chemistry and Biochemistry, Queens College, The City University of New York, Flushing, NY 11367-1597, USA. Tel: +1 718-997-3279
| | - Susan Pyne
- Cell Biology Group, Strathclyde Institute of Pharmacy and Biomedical Science, University of Strathclyde, Glasgow G4 0RE, UK
| | - Neil Macritchie
- Cell Biology Group, Strathclyde Institute of Pharmacy and Biomedical Science, University of Strathclyde, Glasgow G4 0RE, UK
| | - Nigel J Pyne
- Cell Biology Group, Strathclyde Institute of Pharmacy and Biomedical Science, University of Strathclyde, Glasgow G4 0RE, UK
| | - Robert Bittman
- Department of Chemistry and Biochemistry, Queens College, The City University of New York, Flushing, NY 11367-1597, USA. Tel: +1 718-997-3279
| |
Collapse
|
12
|
Prashar A, Siddiqui F, Singh AK. Synthetic and green vegetable isothiocyanates target red blood leukemia cancers. Fitoterapia 2011; 83:255-65. [PMID: 22120500 DOI: 10.1016/j.fitote.2011.11.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Revised: 11/09/2011] [Accepted: 11/13/2011] [Indexed: 01/05/2023]
Abstract
Isothiocyanates (ITCs), the breakdown products of glucosinolates found primarily in species of Brassicaceae (Cruciferae), are potential anti-cancer compounds. This review compiles data on how through different modes of action ITCs and their synthetic counterparts target leukemia.
Collapse
Affiliation(s)
- Anjali Prashar
- Lifezone Biotech Private Limited, B-102, Phase III, KSSIDC, Electronic City, Bangalore, India.
| | | | | |
Collapse
|
13
|
Mi L, Gan N, Chung FL. Isothiocyanates inhibit proteasome activity and proliferation of multiple myeloma cells. Carcinogenesis 2010; 32:216-23. [PMID: 21109604 DOI: 10.1093/carcin/bgq242] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Isothiocyanates (ITCs), including benzyl isothiocyanate (BITC), phenethyl isothiocyanate (PEITC) and sulforaphane, compounds found in cruciferous vegetable, are highly effective in inducing cell cycle arrest and apoptosis in a variety of cancer cells and animal models. Although some studies indicate that ITC-induced reactive oxygen species (ROS) generation may underlie apoptosis induction, our recent studies show that covalent binding to target proteins may be an important event triggering apoptosis. In this study, we report that BITC and PEITC significantly inhibit proteasome activity in a variety of cell types. Further studies show that ITCs inhibit both the 26S and 20S proteasomes, presumably through direct binding, and that this inhibition is unrelated to either ROS generation or ITC-induced protein aggregation. The potency of ITC-induced proteasome inhibition correlates with the rapid accumulation of p53 (tumor suppressor) and IκB nuclear factor-kappaB (nuclear factor-kappaB inhibitor). Finally, our results demonstrate that BITC and PEITC, the two strongest proteasome inhibitors, significantly suppress growth of multiple myeloma (MM) cells through induction of cell cycle arrest at G₂/M phase and apoptosis. This study suggests that proteasome, like tubulin, is a potential molecular target of ITCs, thus providing a novel mechanism by which ITCs strongly inhibit growth of MM cells and new leads in identifying compounds with therapeutic and preventative efficacies for MM. It also supports the future studies of ITCs as therapeutic and preventive agents for MM.
Collapse
Affiliation(s)
- Lixin Mi
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA.
| | | | | |
Collapse
|
14
|
Vig AP, Rampal G, Thind TS, Arora S. Bio-protective effects of glucosinolates – A review. Lebensm Wiss Technol 2009. [DOI: 10.1016/j.lwt.2009.05.023] [Citation(s) in RCA: 180] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
15
|
Isothiocyanates sensitize the effect of chemotherapeutic drugs via modulation of protein kinase C and telomerase in cervical cancer cells. Mol Cell Biochem 2009; 330:9-22. [DOI: 10.1007/s11010-009-0095-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2009] [Accepted: 03/30/2009] [Indexed: 10/20/2022]
|
16
|
A selective sphingosine kinase 1 inhibitor integrates multiple molecular therapeutic targets in human leukemia. Blood 2008; 112:1382-91. [PMID: 18511810 DOI: 10.1182/blood-2008-02-138958] [Citation(s) in RCA: 193] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The potent bioactive sphingolipid mediator, sphingosine-1-phosphate (S1P), is produced by 2 sphingosine kinase isoenzymes, SphK1 and SphK2. Expression of SphK1 is up-regulated in cancers, including leukemia, and associated with cancer progression. A screen of sphingosine analogs identified (2R,3S,4E)-N-methyl-5-(4'-pentylphenyl)-2-aminopent-4-ene-1,3-diol, designated SK1-I (BML-258), as a potent, water-soluble, isoenzyme-specific inhibitor of SphK1. In contrast to pan-SphK inhibitors, SK1-I did not inhibit SphK2, PKC, or numerous other protein kinases. SK1-I decreased growth and survival of human leukemia U937 and Jurkat cells, and enhanced apoptosis and cleavage of Bcl-2. Lethality of SK1-I was reversed by caspase inhibitors and by expression of Bcl-2. SK1-I not only decreased S1P levels but concomitantly increased levels of its proapoptotic precursor ceramide. Conversely, S1P protected against SK1-I-induced apoptosis. SK1-I also induced multiple perturbations in activation of signaling and survival-related proteins, including diminished phosphorylation of ERK1/2 and Akt. Expression of constitutively active Akt protected against SK1-I-induced apoptosis. Notably, SK1-I potently induced apoptosis in leukemic blasts isolated from patients with acute myelogenous leukemia but was relatively sparing of normal peripheral blood mononuclear leukocytes. Moreover, SK1-I markedly reduced growth of AML xenograft tumors. Our results suggest that specific inhibitors of SphK1 warrant attention as potential additions to the therapeutic armamentarium in leukemia.
Collapse
|
17
|
Singh RK, Lange TS, Kim KK, Zou Y, Lieb C, Sholler GL, Brard L. Effect of indole ethyl isothiocyanates on proliferation, apoptosis, and MAPK signaling in neuroblastoma cell lines. Bioorg Med Chem Lett 2007; 17:5846-52. [PMID: 17855093 PMCID: PMC2093989 DOI: 10.1016/j.bmcl.2007.08.032] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2007] [Revised: 08/11/2007] [Accepted: 08/14/2007] [Indexed: 12/16/2022]
Abstract
Several indole ethyl isothiocyanate (IEITC) analogs were designed, synthesized, and screened to evaluate their cytotoxicity against neuroblastoma (NB) cells in-vitro. In NB, predominantly a tumor of early childhood, survival remains low despite aggressive treatments. Therefore, novel treatment strategies are greatly needed. The objective of the present study was to study the therapeutic potential of IEITC by analyzing the cytotoxic, anti-proliferative, and apoptotic effects on NB cell lines. 7-Methyl-indole-3-ethyl isothiocyanate (7Me-IEITC) proved to be cytotoxic to various NB cell lines (SMS-KCNR, SK-N-SH, SH-SY5Y, and IMR-32) with an IC(50) at 2.5-5.0 microM, while primary control cells (lung fibroblasts) were not affected. 7Me-IEITC led to the activation of apoptotic markers caspase-3, -8, and -9, caused activation of pro-apoptotic p38 MAPK and SAP/JNK, and down-regulated pro-survival factor AKT in SMS-KCNR cells. Moreover, 7Me-IEITC displayed anti-proliferative effects (IC(50) at 600 nM) and caused an arrest in cell cycle progression. This wide effect of 7Me-IEITC on NB cell signaling and survival suggests that it could be developed as a therapeutic agent against neuroblastoma.
Collapse
Affiliation(s)
- Rakesh K. Singh
- Molecular Therapeutics Laboratory, Program in Women’s Oncology, Department of Obstetrics and Gynecology, Women and Infants’ Hospital, Brown University, Providence, RI 02905
| | - Thilo S. Lange
- Molecular Therapeutics Laboratory, Program in Women’s Oncology, Department of Obstetrics and Gynecology, Women and Infants’ Hospital, Brown University, Providence, RI 02905
- Division of Biology and Medicine, Brown University, Providence, RI 02912
| | - Kyu Kwang Kim
- Molecular Therapeutics Laboratory, Program in Women’s Oncology, Department of Obstetrics and Gynecology, Women and Infants’ Hospital, Brown University, Providence, RI 02905
| | - Yongping Zou
- Molecular Therapeutics Laboratory, Program in Women’s Oncology, Department of Obstetrics and Gynecology, Women and Infants’ Hospital, Brown University, Providence, RI 02905
| | - Casey Lieb
- Molecular Therapeutics Laboratory, Program in Women’s Oncology, Department of Obstetrics and Gynecology, Women and Infants’ Hospital, Brown University, Providence, RI 02905
| | - Giselle L. Sholler
- Department of Pediatrics, University of Vermont College of Medicine, VT 05401
| | - Laurent Brard
- Molecular Therapeutics Laboratory, Program in Women’s Oncology, Department of Obstetrics and Gynecology, Women and Infants’ Hospital, Brown University, Providence, RI 02905
| |
Collapse
|
18
|
Ricci C, Onida F, Ghidoni R. Sphingolipid players in the leukemia arena. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2006; 1758:2121-32. [PMID: 16904628 DOI: 10.1016/j.bbamem.2006.06.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2005] [Revised: 06/12/2006] [Accepted: 06/19/2006] [Indexed: 01/21/2023]
Abstract
Sphingolipids function as bioactive mediators of different cellular processes, mostly proliferation, survival, differentiation and apoptosis, besides being structural components of cellular membranes. Involvement of sphingolipid metabolism in cancerogenesis was demonstrated in solid tumors as well as in hematological malignancies. Herein, we describe the main biological and clinical aspects of leukemias and summarize data regarding sphingolipids as mediators of apoptosis triggered in response to anti-leukemic agents and synthetic analogs as inducers of cell death as well. We also report the contribution of molecules that modulate sphingolipid metabolism to development of encouraging strategies for leukemia treatment. Finally we address how deregulation of sphingolipid metabolism is associated to occurrence of therapy resistance both in vitro and in vivo. Sphingolipids can be considered promising therapeutic tools alone or in combination with other compounds, as well as valid targets in the attempt to eradicate leukemia and overcome drug resistance.
Collapse
Affiliation(s)
- Clara Ricci
- Laboratory of Biochemistry and Molecular Biology, San Paolo University Hospital, Medical School, University of Milan, 20142 via A. di Rudinì, 8-Milan, Italy
| | | | | |
Collapse
|
19
|
Ségui B, Andrieu-Abadie N, Jaffrézou JP, Benoist H, Levade T. Sphingolipids as modulators of cancer cell death: potential therapeutic targets. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2006; 1758:2104-20. [PMID: 16925980 DOI: 10.1016/j.bbamem.2006.05.024] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2006] [Revised: 05/04/2006] [Accepted: 05/06/2006] [Indexed: 02/07/2023]
Abstract
Through modifications in the fine membrane structure, cell-cell or cell-matrix interactions, and/or modulation of intracellular signaling pathways, sphingolipids can affect the tumorigenic potential of numerous cell types. Whereas ceramide and its metabolites have been described as regulators of cell growth and apoptosis, these lipids as well as other sphingolipid molecules can modulate the ability of malignant cells to grow and resist anticancer treatments, and their susceptibility to non-apoptotic cell deaths. This review summarizes our current knowledge on the properties of sphingolipids in the regulation of cancer cell death and tumor development. It also provides an update on the potential perspectives of manipulating sphingolipid metabolism and using sphingolipid analogues in anticancer therapy.
Collapse
Affiliation(s)
- Bruno Ségui
- INSERM U.466, Laboratoire de Biochimie, Institut Louis Bugnard, Centre Hospitalier Universitaire de Rangueil, BP 84225, 31432 Toulouse Cedex 4, France
| | | | | | | | | |
Collapse
|
20
|
Hudson TS, Stoner GD, Morse MA, Young H, Mallery SR. Comparison of phenethyl and 6-phenylhexyl isothiocyanate-induced toxicity in rat esophageal cell lines with and without glutathione depletion. Toxicol Lett 2005; 155:427-36. [PMID: 15649627 DOI: 10.1016/j.toxlet.2004.11.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2004] [Revised: 11/23/2004] [Accepted: 11/23/2004] [Indexed: 12/18/2022]
Abstract
Phenethyl isothiocyanate (PEITC) and its synthetic homolog, 6-phenylhexyl isothiocyanate (PHITC), are both potent inhibitors of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK)-induced lung mice tumorigenesis. However, unlike PEITC, PHITC enhanced N-nitrosomethylbenzylamine (NMBA)-induced rat esophageal tumorigenesis. These findings imply that due to its unique chemical properties, PHITC's effects on esophageal cells are procarcinogenic rather than chemopreventive. Relative to PEITC, PHITC is more lipophilic and less reactive, which could result in higher PHITC intracellular levels. Due to ITCs' inherently high level of thiol reactivity, increased intracellular levels of PHITC have the potential to deplete intracellular glutathione (GSH) reserves. Since GSH is a primary intracellular antioxidant and cytoprotective enzyme cofactor, preservation of intracellular GSH status is crucial for cytoprotection. Despite the recognized importance of isothiocyanate structure with the potential for toxicity, no studies have yet investigated the association between the primary intracellular free thiol, GSH, and isothiocyanate-induced toxicity in this target cell population. The present study investigated whether PEITC and PHITC display unique cytotoxic profiles in cultured rat esophageal cells, and also monitored the effects of ITC challenge on cellular GSH status. A final series of experiments investigated the converse i.e., affects of modulation of intracellular GSH status on ITC-mediated toxicity. Dose-response curves revealed that PEITC was significantly more toxic in tumorigenic and non-tumorigenic cells relative to PHITC. The ITC-GSH interaction studies demonstrated comparable GSH levels following either PEITC or PHITC challenge, and also showed that GSH depletion did not augment ITC-mediated cellular toxicity. While our data demonstrate structure related differences in ITC-mediated cytotoxicities, these differences do not appear to be directly attributable to cellular GSH pools.
Collapse
Affiliation(s)
- Tamaro S Hudson
- Division of Cancer Prevention, Cancer Prevention Fellowship Program, National Cancer Institute, National Institute of Health, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|