1
|
Yang L, Xu T, Zhang K, Wei Z, Li X, Huang M, Rose GM, Cai X. The essential role of hippocampal alpha6 subunit-containing GABAA receptors in maternal separation stress-induced adolescent depressive behaviors. Behav Brain Res 2016; 313:135-143. [DOI: 10.1016/j.bbr.2016.07.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 06/29/2016] [Accepted: 07/02/2016] [Indexed: 12/14/2022]
|
2
|
Snell HD, Gonzales EB. Amiloride and GMQ Allosteric Modulation of the GABA-A ρ1 Receptor: Influences of the Intersubunit Site. J Pharmacol Exp Ther 2015; 353:551-9. [PMID: 25829529 DOI: 10.1124/jpet.115.222802] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 03/31/2015] [Indexed: 11/22/2022] Open
Abstract
Amiloride, a diuretic used in the treatment of hypertension and congestive heart failure, and 2-guanidine-4-methylquinazoline (GMQ) are guanidine compounds that modulate acid-sensing ion channels. Both compounds have demonstrated affinity for a variety of membrane proteins, including members of the Cys-loop family of ligand-gated ion channels, such as the heteromeric GABA-A αβγ receptors. The actions of these guanidine compounds on the homomeric GABA-A ρ1 receptor remains unclear, especially in light of how many GABA-A αβγ receptor modulators have different effects in the GABA-A ρ1 receptors. We sought to characterize the influence of amiloride and GMQ on the human GABA-A ρ1 receptors using whole-cell patch-clamp electrophysiology. The diuretic amiloride potentiated the human GABA-A ρ1 GABA-mediated current, whereas GMQ antagonized the receptor. Furthermore, a GABA-A second transmembrane domain site, the intersubunit site, responsible for allosteric modulation in the heteromeric GABA-A receptors mediated amiloride's positive allosteric actions. In contrast, the mutation did not remove GMQ antagonism but only changed the guanidine compound's potency within the human GABA-A ρ1 receptor. Through modeling and introduction of point mutations, we propose that the GABA-A ρ1 intersubunit site plays a role in mediating the allosteric effects of amiloride and GMQ.
Collapse
Affiliation(s)
- Heather D Snell
- Department of Pharmacology and Neuroscience (H.D.S., E.B.G.), Institute for Aging and Alzheimer's Disease Research (E.B.G.), and Cardiovascular Research Institute (E.B.G.), University of North Texas Health Science Center, Fort Worth, Texas
| | - Eric B Gonzales
- Department of Pharmacology and Neuroscience (H.D.S., E.B.G.), Institute for Aging and Alzheimer's Disease Research (E.B.G.), and Cardiovascular Research Institute (E.B.G.), University of North Texas Health Science Center, Fort Worth, Texas
| |
Collapse
|
3
|
2-Guanidine-4-methylquinazoline acts as a novel competitive antagonist of A type γ-aminobutyric acid receptors. Neuropharmacology 2013; 75:126-37. [PMID: 23916476 DOI: 10.1016/j.neuropharm.2013.07.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 06/13/2013] [Accepted: 07/16/2013] [Indexed: 11/18/2022]
Abstract
The pentameric A type γ-aminobutyric acid receptors (GABAARs) are the major inhibitory neurotransmitter receptors in the nervous system and have long been considered as important pharmaceutical targets for the treatment of multiple neurological or psychological disorders. Here, we show that 2-guanidine-4-methylquinazoline (GMQ), a recently identified acid-sensing ion channel (ASIC) modulator, strongly and preferentially inhibits GABAAR among the major neurotransmitter-gated ion channels in cultured rat hippocampal neurons. GMQ inhibited GABA (1 μM)-induced currents in a competitive manner, with an IC50 (0.39±0.05 μM) comparable to that of bicuculline. Schild analysis revealed a slope of 1.04±0.06 for GMQ on α1β2 GABAARs expressed in HEK293T cells. Single-channel analysis showed that GMQ decreased open probability of GABAARs without affecting conductance. Moreover, GMQ inhibited GABAergic neurotransmission in hippocampal neurons, while having no significant effect on the basal field excitatory postsynaptic potentials (fEPSPs) and the intrinsic excitability of neurons. Using site-directed mutagenesis, we further demonstrated that mutations at Glu155 of β2 subunit and Phe64 of α1 subunit, both located inside the GABA binding pocket, profoundly decreased the sensitivity of the receptor to both GABA and GMQ. Interestingly, these mutations did not significantly affect the inhibition by amiloride, a diuretic structurally similar to GMQ and a known GABAAR inhibitor. We conclude that GMQ represents a novel chemical structure that acts, possibly, by competing with GABA binding to GABAARs. It is anticipated that GMQ and its analogs will facilitate the development of new chemical probes for GABAARs.
Collapse
|
4
|
Heidelberg LS, Warren JW, Fisher JL. SB-205384 is a positive allosteric modulator of recombinant GABAA receptors containing rat α3, α5, or α6 subunit subtypes coexpressed with β3 and γ2 subunits. J Pharmacol Exp Ther 2013; 347:235-41. [PMID: 23902941 DOI: 10.1124/jpet.113.207324] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Many drugs used to treat anxiety are positive modulators of GABAA receptors, which mediate fast inhibitory neurotransmission. The GABAA receptors can be assembled from a combination of at least 16 different subunits. The receptor's subunit composition determines its pharmacologic and functional properties, and subunit expression varies throughout the brain. A primary goal for new treatments targeting GABAA receptors is the production of subunit-selective modulators acting upon a discrete population of receptors. The anxiolytic 4-amino-7-hydroxy-2-methyl-5,6,7,8,-tetrahydrobenzo[b]thieno[2,3-b]pyridine-3-carboxylic acid, but-2-ynyl ester (SB-205384) is widely considered to be selective for α3-containing GABAA receptors. However, it has been tested only on α1-, α2-, and α3-containing receptors. We examined the activity of SB-205384 at recombinant receptors containing the six different α subunits and found that receptors containing the α3, α5, and α6 subunits were potentiated by SB-205384, with the α6 subunit conferring the greatest responsiveness. Properties associated with chimeric α1/α6 subunits suggested that multiple structural domains influence sensitivity to SB-205384. Point mutations of residues within the extracellular N-terminal domain identified a leucine residue located in loop E of the agonist binding site as an important determinant of high sensitivity to modulation. In the α6 subunit the identity of this residue is species-dependent, with the leucine found in rat subunits but not in human. Our results indicate that SB-205384 is not an α3-selective modulator, and instead acts at several GABAA receptor isoforms. These findings have implications for the side-effect profile of this anxiolytic as well as for its use in neuronal and animal studies as a marker for contribution from α3-containing receptors.
Collapse
Affiliation(s)
- Laura S Heidelberg
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine Columbia, South Carolina (J.W.W., J.L.F.); and Honors College, University of South Carolina-Columbia, Columbia, South Carolina (L.S.H.)
| | | | | |
Collapse
|
5
|
Yuan WX, Chen SR, Chen H, Pan HL. Stimulation of alpha(1)-adrenoceptors reduces glutamatergic synaptic input from primary afferents through GABA(A) receptors and T-type Ca(2+) channels. Neuroscience 2008; 158:1616-24. [PMID: 19068225 DOI: 10.1016/j.neuroscience.2008.11.022] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2008] [Revised: 11/07/2008] [Accepted: 11/11/2008] [Indexed: 11/20/2022]
Abstract
Activation of the descending noradrenergic system inhibits nociceptive transmission in the spinal cord. Although both alpha(1)- and alpha(2)-adrenoceptors in the spinal cord are involved in the modulation of nociceptive transmission, it is not clear how alpha(1)-adrenoceptors regulate excitatory and inhibitory synaptic transmission at the spinal level. In this study, inhibitory and excitatory postsynaptic currents (IPSCs and EPSCs, respectively) were recorded from lamina II neurons in rat spinal cord slices. The specific alpha(1)-adrenoceptor agonist phenylephrine significantly increased the frequency of GABAergic spontaneous IPSCs in a concentration dependent manner, and this effect was abolished by the alpha(1)-adrenoceptor antagonist 2-(2,6-dimethoxyphenoxy)ethylaminomethyl-1,4-benzodioxane (WB4101). Phenylephrine also significantly reduced the amplitude of monosynaptic and polysynaptic EPSCs evoked from primary afferents. The inhibitory effect of phenylephrine on evoked monosynaptic glutamatergic EPSCs was largely blocked by the GABA(A) receptor antagonist picrotoxin and, to a lesser extent, by the GABA(B) receptor antagonist CGP55845. Furthermore, blocking T-type Ca(2+) channels with amiloride or mibefradil diminished the inhibitory effect produced by phenylephrine or the GABA(A) receptor agonist muscimol on monosynaptic EPSCs evoked from primary afferents. Collectively, these findings suggest that activation of alpha(1)-adrenoceptors in the spinal cord increases synaptic GABA release, which attenuates glutamatergic input from primary afferents mainly through GABA(A) receptors and T-type Ca(2+) channels. This mechanism of presynaptic inhibition in the spinal cord may be involved in the regulation of nociception by the descending noradrenergic system.
Collapse
Affiliation(s)
- W-X Yuan
- Department of Anesthesiology and Pain Medicine, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
6
|
RNA editing regulates insect gamma-aminobutyric acid receptor function and insecticide sensitivity. Neuroreport 2008; 19:939-43. [PMID: 18520997 DOI: 10.1097/wnr.0b013e32830216c7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
A-to-I pre-mRNA editing by adenosine deaminase enzymes has been reported to enhance protein diversity in the nervous system. In Drosophila, the resistance to dieldrin (RDL) gamma-aminobutyric acid (GABA) receptor subunit displays an editing site (R122) that is close to the putative GABA-binding site. We assessed the functional effects of editing at this site by expressing homomeric RDL receptors in Xenopus oocytes. After replacement of arginine 122 with a glycine, both agonist and fipronil potencies were shifted to the right in either fipronil-sensitive receptors or mutated resistant receptors (A301G/T350M). These data provide the first insight on the influence of RNA editing on GABA receptor function.
Collapse
|
7
|
Ci S, Ren T, Su Z. Investigating the putative binding-mode of GABA and diazepam within GABA A receptor using molecular modeling. Protein J 2008; 27:71-8. [PMID: 17805947 DOI: 10.1007/s10930-007-9109-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The three-dimensional structure of the GABA A receptor that included the ligand/agonist binding site was constructed and validated by using molecular modeling technology. Moreover, the putative binding-mode of GABA and diazepam with GABAA receptor were investigated by means of docking studies. Based on an rmsd-tolerance of 1.0 angstroms, the docking of GABA to alpha1/beta2 interface resulted in three multi-member conformational clusters and model 2 was supported by homologous sequence alignment data and experimental evidence. On the other hand, the docking of diazepam to alpha1/gamma2 interface revealed five multi-member conformational clusters in the binding site and model 1 seemed to represent the correct orientation of diazepam in the binding site.
Collapse
Affiliation(s)
- Suqin Ci
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100080, P.R. China
| | | | | |
Collapse
|
8
|
Picton AJ, Fisher JL. Effect of the alpha subunit subtype on the macroscopic kinetic properties of recombinant GABA(A) receptors. Brain Res 2007; 1165:40-9. [PMID: 17658489 PMCID: PMC2084258 DOI: 10.1016/j.brainres.2007.06.050] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2007] [Revised: 06/12/2007] [Accepted: 06/20/2007] [Indexed: 12/26/2022]
Abstract
The GABA(A) receptors (GABARs) are chloride-permeable ligand-gated ion channels responsible for fast inhibitory neurotransmission. These receptors are structurally heterogeneous, and in mammals can be formed from a combination of sixteen different subunit subtypes. Much of this variety comes from the six different alpha subunit subtypes. All neuronal GABARs contain an alpha subunit, and the identity of the alpha subtype affects the pharmacological properties of the receptors. The expression of each of the different alpha subtypes is regulated developmentally and regionally and changes with both normal physiological processes such development and synaptic plasticity, and pathological conditions such as epilepsy. In order to understand the functional significance of this structural heterogeneity, we examined the effect of the alpha subtype on the receptor's response to GABA. Each of the six alpha subtypes was transiently co-expressed with the beta3 and gamma2L subunits in mammalian cells. The sensitivity to GABA was measured with whole-cell recordings. We also determined the activation, deactivation, desensitization, and recovery kinetics for the six isoforms using rapid application recordings from excised macropatches. We found unique characteristics associated with each alpha subunit subtype. These properties would be expected to influence the post-synaptic response to GABA, creating functional diversity among neurons expressing different alpha subunits.
Collapse
Affiliation(s)
- Amber J Picton
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, South Carolina 29208, USA
| | | |
Collapse
|
9
|
Derry JMC, Paulsen IM, Davies M, Dunn SMJ. A single point mutation of the GABAA receptor α5-subunit confers fluoxetine sensitivity. Neuropharmacology 2007; 52:497-505. [PMID: 17045313 DOI: 10.1016/j.neuropharm.2006.07.036] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2005] [Revised: 06/26/2006] [Accepted: 07/19/2006] [Indexed: 01/05/2023]
Abstract
Fluoxetine has been reported to be a novel allosteric modulator of GABA(A) receptors with the notable exception of receptors that contain the alpha5-subunit isoform [Robinson, R.T., Drafts, B.C., Fisher, J.L., 2003. Fluoxetine increases GABA(A) receptor activity through a novel modulatory site. J. Pharmacol. Exp. Ther. 304, 978-984]. A mutagenic strategy has been used to investigate the structural basis for the insensitivity of this subunit. An alpha1/alpha5-subunit chimeragenesis approach first demonstrated the importance of the alpha1-subunit N-terminal sequence E165-D183 (corresponding to alpha5 E169-D187) in fluoxetine modulation. Specific amino acid substitutions in this domain subsequently revealed that a single mutation in the alpha5-subunit to the equivalent residue in alpha1 (T179A) was sufficient to confer fluoxetine sensitivity to the alpha5-containing receptor. However, the reciprocal mutation in the alpha1-subunit (A175T) did not result in a loss in sensitivity, suggesting the involvement of additional determinants for fluoxetine modulation. A comparative modeling approach was used to probe amino acids that may lie in close proximity to alpha1A175. This led serendipitously to the identification of a specific residue, alpha1F45, which, when mutated to an alanine, resulted in a significant decrease in potency for activation of the receptor by GABA and also reduced the efficacies of the partial agonists, THIP and P4S.
Collapse
Affiliation(s)
- Jason M C Derry
- Department of Pharmacology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada T6G 2H7.
| | | | | | | |
Collapse
|
10
|
Drafts BC, Fisher JL. Identification of structures within GABAA receptor alpha subunits that regulate the agonist action of pentobarbital. J Pharmacol Exp Ther 2006; 318:1094-101. [PMID: 16728592 DOI: 10.1124/jpet.106.104844] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Barbiturates act on GABA(A) receptors (GABARs) through three distinct mechanisms, resulting in positive allosteric modulation, direct activation, and inhibition. These effects are observed at different concentrations and are differentially affected by some mutations and by the receptor's subunit composition. Mammalian GABARs can be formed from a combination of 16 different subunit subtypes. Although the effect of barbiturates depends largely on the beta subunit, their agonist activity is substantially influenced by the alpha subunit subtype. Pentobarbital is a more effective agonist than GABA only when receptors contain an alpha6 subunit. Results from chimeric alpha1/alpha6 subunits suggested that structural differences within the extracellular N-terminal domain were responsible for this characteristic. Within this domain, we examined 15 amino acid residues unique to the alpha6 subtype. Each of these sites was individually mutated in the alpha6 subunit to the corresponding residue of the alpha1 subunit. The effect of the mutation on direct activation by pentobarbital was determined with whole-cell electrophysiological recordings. Our results indicate that only one of these mutations, alpha6(T69K), altered pentobarbital efficacy. This single mutation reduced the response to pentobarbital to a level intermediate to the wild-type alpha1beta1gamma2L and alpha6beta1gamma2L isoforms. The mutation did not affect the sensitivity of the receptor to GABA but did reduce the efficacy of etomidate, another i.v. anesthetic with activity similar to pentobarbital. The reverse mutation in the alpha1 subunit (K70T) did not alter the response to pentobarbital. This is the first identification of a structural difference in GABAR alpha subtypes that regulates direct activation by barbiturates.
Collapse
Affiliation(s)
- Brandon C Drafts
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, SC 29208, USA
| | | |
Collapse
|