1
|
Santino F, Gentilucci L. Design of κ-Opioid Receptor Agonists for the Development of Potential Treatments of Pain with Reduced Side Effects. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28010346. [PMID: 36615540 PMCID: PMC9822356 DOI: 10.3390/molecules28010346] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/13/2022] [Accepted: 12/25/2022] [Indexed: 01/04/2023]
Abstract
The κ-opioid receptor (KOR) has recently emerged as an alternative therapeutic target for the development of pain medications, without deleterious side effects associated with the μ-opioid receptor (MOR). However, modulation of KOR is currently under investigation for the treatment of depression, mood disorders, psychiatric comorbidity, and specific drug addictions. However, KOR agonists also trigger adverse effects including sedation, dysphoria, and hallucinations. In this respect, there is currently much debate on alternative paradigms. Recent effort has been devoted in search of biased ligands capable of selectively activating favorable signaling over signaling associated with unwanted side effects. On the other hand, the use of partial agonists is expected to allow the analgesia to be produced at dosages lower than those required to produce the adverse effects. More empirically, the unwanted central effects can be also avoided by using peripherally restricted agonists. In this review, we discuss the more recent trends in the design of KOR-selective, biased or partial, and finally, peripherally acting agonists. Special emphasis is given on the discussion of the most recent approaches for controlling functional selectivity of KOR-specific ligands.
Collapse
|
2
|
Stefanucci A, Della Valle A, Scioli G, Marinaccio L, Pieretti S, Minosi P, Szucs E, Benyhe S, Masci D, Tanguturi P, Chou K, Barlow D, Houseknecht K, Streicher JM, Mollica A. Discovery of κ Opioid Receptor (KOR)-Selective d-Tetrapeptides with Improved In Vivo Antinociceptive Effect after Peripheral Administration. ACS Med Chem Lett 2022; 13:1707-1714. [PMID: 36385929 PMCID: PMC9661715 DOI: 10.1021/acsmedchemlett.2c00237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 10/13/2022] [Indexed: 11/29/2022] Open
Abstract
Peripherally active tetrapeptides as selective κ opioid receptor (KOR) agonists have been prepared in good overall yields and high purity following solid-phase peptide synthesis via Fmoc protection strategy. Structural modifications at the first and second position of the lead compound FF(d-Nle)R-NH2 (FE200041) were contemplated with aromatic side chains containing d-amino acids, such as (d)-pF-Phe, (d)-mF-Phe, (d)-oF-Phe, which led to highly selective and efficacious KOR agonists endowed with strong antinociceptive activity in vivo following intravenous (i.v.) and subcutaneous (s.c.) administration in the tail flick and formalin tests. These results suggest potential clinical applications in the treatment of neuropathic and inflammatory pain.
Collapse
Affiliation(s)
- Azzurra Stefanucci
- Dipartimento
di Farmacia, Università di Chieti-Pescara
“G. d’Annunzio”, Via dei Vestini 31, 66100 Chieti, Italy
| | - Alice Della Valle
- Dipartimento
di Farmacia, Università di Chieti-Pescara
“G. d’Annunzio”, Via dei Vestini 31, 66100 Chieti, Italy
| | - Giuseppe Scioli
- Dipartimento
di Farmacia, Università di Chieti-Pescara
“G. d’Annunzio”, Via dei Vestini 31, 66100 Chieti, Italy
| | - Lorenza Marinaccio
- Dipartimento
di Farmacia, Università di Chieti-Pescara
“G. d’Annunzio”, Via dei Vestini 31, 66100 Chieti, Italy
| | - Stefano Pieretti
- Istituto
Superiore di Sanità, Centro Nazionale Ricerca e Valutazione Preclinica e Clinica dei farmaci, Viale Regina Elena 299, 00161 Rome, Italy
| | - Paola Minosi
- Istituto
Superiore di Sanità, Centro Nazionale Ricerca e Valutazione Preclinica e Clinica dei farmaci, Viale Regina Elena 299, 00161 Rome, Italy
| | - Edina Szucs
- Institute
of Biochemistry, Biological Research Centre, 6726 Szeged, Hungary
| | - Sandor Benyhe
- Institute
of Biochemistry, Biological Research Centre, 6726 Szeged, Hungary
| | - Domiziana Masci
- Department
of Basic Biotechnological Sciences, Intensivological and Perioperative
Clinics, Catholic University of Sacred Heart, Largo Francesco Vito 1, 00168 Rome, Italy
| | | | - Kerry Chou
- Department
of Pharmacology, College of Medicine, University
of Arizona, Tucson, Arizona 85724, United States
| | - Deborah Barlow
- Department
of Biomedical Sciences, College of Osteopathic Medicine, University of New England, Biddeford, Maine 04005, United States
| | - Karen Houseknecht
- Department
of Biomedical Sciences, College of Osteopathic Medicine, University of New England, Biddeford, Maine 04005, United States
| | - John M. Streicher
- Department
of Pharmacology, College of Medicine, University
of Arizona, Tucson, Arizona 85724, United States
| | - Adriano Mollica
- Dipartimento
di Farmacia, Università di Chieti-Pescara
“G. d’Annunzio”, Via dei Vestini 31, 66100 Chieti, Italy
| |
Collapse
|
3
|
Khan MIH, Sawyer BJ, Akins NS, Le HV. A systematic review on the kappa opioid receptor and its ligands: New directions for the treatment of pain, anxiety, depression, and drug abuse. Eur J Med Chem 2022; 243:114785. [PMID: 36179400 DOI: 10.1016/j.ejmech.2022.114785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/16/2022] [Accepted: 09/16/2022] [Indexed: 11/29/2022]
Abstract
Kappa opioid receptor (KOR) is a member of the opioid receptor system, the G protein-coupled receptors that are expressed throughout the peripheral and central nervous systems and play crucial roles in the modulation of antinociception and a variety of behavioral states like anxiety, depression, and drug abuse. KOR agonists are known to produce potent analgesic effects and have been used clinically for the treatment of pain, while KOR antagonists have shown efficacy in the treatment of anxiety and depression. This review summarizes the history, design strategy, discovery, and development of KOR ligands. KOR agonists are classified as non-biased, G protein-biased, and β-arrestin recruitment-biased, according to their degrees of bias. The mechanisms and associated effects of the G protein signaling pathway and β-arrestin recruitment signaling pathway are also discussed. Meanwhile, KOR antagonists are classified as long-acting and short-acting, based on their half-lives. In addition, we have special sections for mixed KOR agonists and selective peripheral KOR agonists. The mechanisms of action and pharmacokinetic, pharmacodynamic, and behavioral studies for each of these categories are also discussed in this review.
Collapse
Affiliation(s)
- Md Imdadul H Khan
- Department of BioMolecular Sciences and Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, University, MS, 38677, USA
| | - Benjamin J Sawyer
- Department of BioMolecular Sciences and Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, University, MS, 38677, USA
| | - Nicholas S Akins
- Department of BioMolecular Sciences and Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, University, MS, 38677, USA
| | - Hoang V Le
- Department of BioMolecular Sciences and Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, University, MS, 38677, USA.
| |
Collapse
|
4
|
Jain MR, Patel RB, Prajapati KD, Vyas P, Bandyopadhyay D, Prajapati V, Bahekar R, Patel PN, Kawade HM, Kokare DM, Pawar V, Desai R. ZYKR1, a novel, potent, and peripherally selective kappa opioid receptor agonist reduces visceral pain and pruritus in animal models. Eur J Pharmacol 2022; 924:174961. [PMID: 35443192 DOI: 10.1016/j.ejphar.2022.174961] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 04/12/2022] [Accepted: 04/13/2022] [Indexed: 02/08/2023]
Abstract
Opioid receptor agonists are effective analgesic agents. Central activation of the mu and/or kappa opioid receptors (KOR) is associated with CNS side effects, which limits their effectiveness. Recent studies indicated that peripherally restricted, selective KOR agonists were potent analgesics and devoid of CNS-related side effects. To confirm this hypothesis, we designed a novel, potent, and peripherally restricted KOR-selective agonist, ZYKR1. The analgesic efficacy, brain penetration and safety of ZYKR1 were assessed in pre-clinical models. ZYKR1 showed KOR agonistic activity in the cAMP assay, with an EC50 of 0.061 nM and more than 105-fold selectivity over the mu and delta opioid receptors (EC50 > 10 μM). ZYKR1 was not found to bind mu, delta opioid, and NOP receptors in radioligand binding assays. ZYKR1 produced concentration-dependent inhibition of electrically evoked contractions in isolated mouse vas deferens with an IC50 of 1.6 nM ZYKR1 showed peripheral restriction and potent analgesic efficacy in various in-vivo animal models (acetic acid induced visceral pain mouse model, ED50: 0.025 mg/kg, IV; ovariohysterectomy induced postoperative pain rat model, ED50: 0.023 mg/kg, IV; and C48/80 induced pruritus mouse model, ED50: 0.063 mg/kg, IV). In addition, ZYKR1 was devoid of motor coordination, physical dependence, dysphoria, and respiratory depression at 30, 400, 10 and 10-fold of efficacy dose, respectively. In conclusion, ZYKR1 has potent antinociceptive action in visceral pain and pruritus with limited CNS side effects in preclinical models owing to its peripheral restriction.
Collapse
Affiliation(s)
- Mukul R Jain
- Department of Pharmacology, Cadila Healthcare Ltd., Sarkhej-Bavla N.H. No. 8A, Moraiya, Ahmedabad, 382 213, Gujarat, India.
| | - Rakesh B Patel
- Department of Pharmacology, Cadila Healthcare Ltd., Sarkhej-Bavla N.H. No. 8A, Moraiya, Ahmedabad, 382 213, Gujarat, India; Department of Internal Medicine, University of Iowa, USA
| | - Kanaiyalal D Prajapati
- Department of Pharmacology, Cadila Healthcare Ltd., Sarkhej-Bavla N.H. No. 8A, Moraiya, Ahmedabad, 382 213, Gujarat, India
| | - Purvi Vyas
- Department of Cell Biology, Cadila Healthcare Ltd., Sarkhej-Bavla N.H. No. 8A, Moraiya, Ahmedabad, 382 213, Gujarat, India
| | - Debdutta Bandyopadhyay
- Department of Cell Biology, Cadila Healthcare Ltd., Sarkhej-Bavla N.H. No. 8A, Moraiya, Ahmedabad, 382 213, Gujarat, India
| | - Vijay Prajapati
- Department of Medicinal Chemistry, Cadila Healthcare Ltd., Sarkhej-Bavla N.H. No. 8A, Moraiya, Ahmedabad, 382 213, Gujarat, India
| | - Rajesh Bahekar
- Department of Medicinal Chemistry, Cadila Healthcare Ltd., Sarkhej-Bavla N.H. No. 8A, Moraiya, Ahmedabad, 382 213, Gujarat, India
| | - Prakash N Patel
- Department of Pharmacokinetics, Zydus Research Centre, Cadila Healthcare Ltd., Sarkhej-Bavla N.H. No. 8A, Moraiya, Ahmedabad, 382 213, Gujarat, India
| | - Harish M Kawade
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, 440 033, MS, India
| | - Dadasaheb M Kokare
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, 440 033, MS, India
| | - Vishwanath Pawar
- Department of Pharmacology, Cadila Healthcare Ltd., Sarkhej-Bavla N.H. No. 8A, Moraiya, Ahmedabad, 382 213, Gujarat, India
| | - Ranjit Desai
- Department of Medicinal Chemistry, Cadila Healthcare Ltd., Sarkhej-Bavla N.H. No. 8A, Moraiya, Ahmedabad, 382 213, Gujarat, India
| |
Collapse
|
5
|
French AR, van Rijn RM. An updated assessment of the translational promise of G-protein-biased kappa opioid receptor agonists to treat pain and other indications without debilitating adverse effects. Pharmacol Res 2022; 177:106091. [PMID: 35101565 PMCID: PMC8923989 DOI: 10.1016/j.phrs.2022.106091] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/14/2022] [Accepted: 01/18/2022] [Indexed: 01/22/2023]
Abstract
Kappa opioid receptor (κOR) agonists lack the abuse liability and respiratory depression effects of clinically used mu opioid receptor (μOR) analgesics and are hypothesized to be safer alternatives. However, κOR agonists have limiting adverse effects of their own, including aversion, sedation, and mood effects, that have hampered their clinical translation. Studies performed over the last 15 years have suggested that these adverse effects could result from activation of distinct intracellular signaling pathways that are dependent on β-arrestin, whereas signaling downstream of G protein activation produces antinociception. This led to the hypothesis that agonists biased away from β-arrestin signaling would have improved therapeutic windows over traditional unbiased agonists and allow for clinical development of analgesic G-protein-biased κOR agonists. Given a recent controversy regarding the benefits of G-protein-biased μOR agonists, it is timely to reassess the therapeutic promise of G-protein-biased κOR agonists. Here we review recent discoveries from preclinical κOR studies and critically evaluate the therapeutic windows of G-protein-biased κOR agonists in each of the adverse effects above. Overall, we find that G-protein-biased κOR agonists generally have improved therapeutic window relative to unbiased agonists, although frequently study design limits strong conclusions in this regard. However, a steady flow of newly developed biased κOR agonists paired with recently engineered behavioral and molecular tools puts the κOR field in a prime position to make major advances in our understanding of κOR function and fulfill the promise of translating a new generation of biased κOR agonists to the clinic.
Collapse
Affiliation(s)
- Alexander R French
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA; Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47907, USA
| | - Richard M van Rijn
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA; Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47907, USA; Purdue Institute for Drug Discovery, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
6
|
Massaly N, Markovic T, Creed M, Al-Hasani R, Cahill CM, Moron JA. Pain, negative affective states and opioid-based analgesics: Safer pain therapies to dampen addiction. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2022; 157:31-68. [PMID: 33648672 DOI: 10.1016/bs.irn.2020.09.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Across centuries and civilizations opioids have been used to relieve pain. In our modern societies, opioid-based analgesics remain one of the most efficient treatments for acute pain. However, the long-term use of opioids can lead to the development of analgesic tolerance, opioid-induced hyperalgesia, opioid use disorders, and overdose, which can ultimately produce respiratory depressant effects with fatal consequences. In addition to the nociceptive sensory component of pain, negative affective states arising from persistent pain represent a risk factor for developing an opioid use disorder. Several studies have indicated that the increase in prescribed opioid analgesics since the 1990s represents the root of our current opioid epidemic. In this review, we will present our current knowledge on the endogenous opioid system within the pain neuroaxis and the plastic changes occurring in this system that may underlie the occurrence of pain-induced negative affect leading to misuse and abuse of opioid medications. Dissecting the allostatic neuronal changes occurring during pain is the most promising avenue to uncover novel targets for the development of safer pain medications. We will discuss this along with current and potential approaches to treat pain-induced negative affective states that lead to drug misuse. Moreover, this chapter will provide a discussion on potential avenues to reduce the abuse potential of new analgesic drugs and highlight a basis for future research and drug development based on recent advances in this field.
Collapse
Affiliation(s)
- Nicolas Massaly
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, United States; Washington University in St Louis, Pain Center, St. Louis, MO, United States; Washington University in St Louis, School of Medicine, St. Louis, MO, United States.
| | - Tamara Markovic
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, United States; Washington University in St Louis, Pain Center, St. Louis, MO, United States; Washington University in St Louis, School of Medicine, St. Louis, MO, United States
| | - Meaghan Creed
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, United States; Washington University in St Louis, Pain Center, St. Louis, MO, United States; Washington University in St Louis, School of Medicine, St. Louis, MO, United States; Department of Neuroscience, Washington University in St. Louis, St. Louis, MO, United States; Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, United States; Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, United States
| | - Ream Al-Hasani
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, United States; Washington University in St Louis, Pain Center, St. Louis, MO, United States; Washington University in St Louis, School of Medicine, St. Louis, MO, United States; Department of Pharmaceutical and Administrative Sciences, St. Louis College of Pharmacy, St. Louis, MO, United States; Center for Clinical Pharmacology, St. Louis College of Pharmacy and Washington University in St. Louis School of Medicine, St. Louis, MO, United States
| | - Catherine M Cahill
- Department of Psychiatry and Biobehavioural Sciences, University of California, Los Angeles, CA, United States; Shirley and Stefan Hatos Center for Neuropharmacology, University of California Los Angeles, Los Angeles, CA, United States; Jane & Terry Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA, United States
| | - Jose A Moron
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, United States; Washington University in St Louis, Pain Center, St. Louis, MO, United States; Washington University in St Louis, School of Medicine, St. Louis, MO, United States; Department of Neuroscience, Washington University in St. Louis, St. Louis, MO, United States; Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, United States
| |
Collapse
|
7
|
Aldrich JV, McLaughlin JP. Peptide Kappa Opioid Receptor Ligands and Their Potential for Drug Development. Handb Exp Pharmacol 2022; 271:197-220. [PMID: 34463847 DOI: 10.1007/164_2021_519] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Ligands for kappa opioid receptors (KOR) have potential uses as non-addictive analgesics and for the treatment of pruritus, mood disorders, and substance abuse. These areas continue to have major unmet medical needs. Significant advances have been made in recent years in the preclinical development of novel opioid peptides, notably ones with structural features that inherently impart stability to proteases. Following a brief discussion of the potential therapeutic applications of KOR agonists and antagonists, this review focuses on two series of novel opioid peptides, all-D-amino acid tetrapeptides as peripherally selective KOR agonists for the treatment of pain and pruritus without centrally mediated side effects, and macrocyclic tetrapeptides based on CJ-15,208 that can exhibit different opioid profiles with potential applications such as analgesics and treatments for substance abuse.
Collapse
Affiliation(s)
- Jane V Aldrich
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL, USA.
| | - Jay P McLaughlin
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
8
|
McCarthy EA, Dischino D, Maguire C, Leon S, Talbi R, Cheung E, Schteingart CD, Rivière PJM, Reed SD, Steiner RA, Navarro VM. Inhibiting Kiss1 Neurons With Kappa Opioid Receptor Agonists to Treat Polycystic Ovary Syndrome and Vasomotor Symptoms. J Clin Endocrinol Metab 2022; 107:e328-e347. [PMID: 34387319 PMCID: PMC8684497 DOI: 10.1210/clinem/dgab602] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Indexed: 11/19/2022]
Abstract
CONTEXT Recent evidence suggests that vasomotor symptoms (VMS) or hot flashes in the postmenopausal reproductive state and polycystic ovary syndrome (PCOS) in the premenopausal reproductive state emanate from the hyperactivity of Kiss1 neurons in the hypothalamic infundibular/arcuate nucleus (KNDy neurons). OBJECTIVE We demonstrate in 2 murine models simulating menopause and PCOS that a peripherally restricted kappa receptor agonist (PRKA) inhibits hyperactive KNDy neurons (accessible from outside the blood-brain barrier) and impedes their downstream effects. DESIGN Case/control. SETTING Academic medical center. PARTICIPANTS Mice. INTERVENTIONS Administration of peripherally restricted kappa receptor agonists and frequent blood sampling to determine hormone release and body temperature. MAIN OUTCOME MEASURES LH pulse parameters and body temperature. RESULTS First, chronic administration of a PRKA to bilaterally ovariectomized mice with experimentally induced hyperactivity of KNDy neurons reduces the animals' elevated body temperature, mean plasma LH level, and mean peak LH per pulse. Second, chronic administration of a PRKA to a murine model of PCOS, having elevated plasma testosterone levels and irregular ovarian cycles, suppresses circulating levels of LH and testosterone and restores normal ovarian cyclicity. CONCLUSION The inhibition of kisspeptin neuronal activity by activation of kappa receptors shows promise as a novel therapeutic approach to treat both VMS and PCOS in humans.
Collapse
Affiliation(s)
- Elizabeth A McCarthy
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
- Department of Medicine, Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Daniel Dischino
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Caroline Maguire
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Silvia Leon
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
- Department of Medicine, Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Rajae Talbi
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
- Department of Medicine, Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Eugene Cheung
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
- Department of Medicine, Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | | | | | - Susan D Reed
- Department of Obstetrics & Gynecology, University of Washington, Seattle, WA 98195, USA
| | - Robert A Steiner
- Department of Obstetrics & Gynecology, University of Washington, Seattle, WA 98195, USA
- Department of Physiology & Biophysics, University of Washington, Seattle, WA 98195, USA
| | - Victor M Navarro
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
- Department of Medicine, Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Harvard Program in Neuroscience, Boston, MA 02115, USA
- Correspondence: Victor M. Navarro PhD, Brigham and Women’s Hospital, Division of Endocrinology, Diabetes and Hypertension, 221 Longwood Ave, Boston, MA 02115, USA.
| |
Collapse
|
9
|
Wang X, Gou X, Yu X, Bai D, Tan B, Cao P, Qian M, Zheng X, Wang H, Tang P, Zhang C, Ye F, Ni J. Antinociceptive and Antipruritic Effects of HSK21542, a Peripherally-Restricted Kappa Opioid Receptor Agonist, in Animal Models of Pain and Itch. Front Pharmacol 2021; 12:773204. [PMID: 34867403 PMCID: PMC8635029 DOI: 10.3389/fphar.2021.773204] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 10/28/2021] [Indexed: 11/13/2022] Open
Abstract
Kappa opioid receptor (KOR) agonists have been promising therapeutic candidates, owing to their potential for relieving pain and treating intractable pruritus. Although lacking morphine-like central nervous system (CNS) effects, KOR agonists do elicit sedation, dysphoria and diuresis which seriously impede their development. Peripherally-restricted KOR agonists have a poor ability to penetrate into the CNS system, so that CNS-related adverse effects can be ameliorated or even abolished. However, the only approved peripherally-restricted KOR agonist CR845 remains some frequent CNS adverse events. In the present study, we aim to address pharmacological profiles of HSK21542, with an expectation to provide a safe and effective alternative for patients who are suffering from pain and pruritus. The in vitro experimental results showed that HSK21542 was a selective and potent KOR agonist with higher potency than CR845, and had a brain/plasma concentration ratio of 0.001, indicating its peripheral selectivity. In animal models of pain, HSK21542 significantly inhibited acetic acid-, hindpaw incision- or chronic constriction injury-induced pain-related behaviors, and the efficacy was comparable to CR845 at 15 min post-dosing. HSK21542 had a long-lasting analgesic potency with a median effective dose of 1.48 mg/kg at 24 h post-drug in writhing test. Meanwhile, the antinociceptive activity of HSK21542 was effectively reversed by a KOR antagonist nor-binaltorphimine. In addition, HSK21542 had powerful antipruritic activities in compound 48/80-induced itch model. On the other hand, HSK21542 had a weak ability to produce central antinociceptive effects in a hot-plate test and fewer effects on the locomotor activity of mice. HSK21542 didn't affect the respiratory rate of mice. Therefore, HSK21542 might be a safe and effective KOR agonist and promising candidate for treating pain and pruritus.
Collapse
Affiliation(s)
- Xin Wang
- Intensive Care Unit, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Xiaoli Gou
- Center for Drug Research and Development, Haisco Pharmaceutical Group Co., Ltd., Chegdu, China
| | - Xiaojuan Yu
- Center for Drug Research and Development, Haisco Pharmaceutical Group Co., Ltd., Chegdu, China
| | - Dongdong Bai
- Center for Drug Research and Development, Haisco Pharmaceutical Group Co., Ltd., Chegdu, China
| | - Bowei Tan
- Center for Drug Research and Development, Haisco Pharmaceutical Group Co., Ltd., Chegdu, China
| | - Pingfeng Cao
- Center for Drug Research and Development, Haisco Pharmaceutical Group Co., Ltd., Chegdu, China
| | - Meilin Qian
- Center for Drug Research and Development, Haisco Pharmaceutical Group Co., Ltd., Chegdu, China
| | - Xiaoxiao Zheng
- Center for Drug Research and Development, Haisco Pharmaceutical Group Co., Ltd., Chegdu, China
| | - Hairong Wang
- Center for Drug Research and Development, Haisco Pharmaceutical Group Co., Ltd., Chegdu, China
| | - Pingming Tang
- Center for Drug Research and Development, Haisco Pharmaceutical Group Co., Ltd., Chegdu, China
| | - Chen Zhang
- Center for Drug Research and Development, Haisco Pharmaceutical Group Co., Ltd., Chegdu, China
| | - Fei Ye
- Center for Drug Research and Development, Haisco Pharmaceutical Group Co., Ltd., Chegdu, China
| | - Jia Ni
- Center for Drug Research and Development, Haisco Pharmaceutical Group Co., Ltd., Chegdu, China
| |
Collapse
|
10
|
Ghoghari A, Bhatt C, Patel K, Jha A, Patel H, Jain M, Momin T, Parmar D, Patel P. Estimation of ZYKR1 in human urine and plasma utilizing LC-MS/MS positive electrospray ionization; a kappa opioid receptor (KOR) agonist. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1185:122982. [PMID: 34731743 DOI: 10.1016/j.jchromb.2021.122982] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 09/30/2021] [Accepted: 10/02/2021] [Indexed: 10/20/2022]
Abstract
ZYKR1, a short chain novel peptide with selective kappa opioid receptor agonist activity used as analgesics for the treatment of pain management. A sensitive and selective LC-MS/MS assay was developed and validated for estimation of ZYKR1 in human urine and plasma. ZY17258, an analogue compound was used as an internal standard. ZYKR1 was quantified using a selective reaction monitoring in electrospray ionization positive mode. The chromatographic separation was performed using mobile phase consisted of 0.05% v/v formic acid in water and methanol in gradient elution by analytical column Kinetex C8, 100 A°, 5 µm, 100 × 4.6 mm with 8.0 min analytical run time. Solid Phase extraction technique was used for purification of ZYKR1 and IS from human urine and plasma. The calibration curves were linear over range of 0.300 ng/mL to 300 ng/mL and 0.500 ng/mL to 500 ng/mL for human urine and plasma, respectively. No matrix effect and no significant carryover were observed. The extraction recovery was consistent and ranged from about 85% to 93% in human urine and in plasma respectively. Inter-day and intra-day accuracy (bias, %) and precision (CV, %) was -11.11 to 5.91 % and -2.25 to 6.65 % in human urine and -2.74 to 7.17 % and 2.24 to 15.18 % in plasma respectively were well within the acceptance criteria. Both the assays were devoid of endogenous matrix interference and commonly used concomitant drug interference. The validated assays were used for estimation of ZYKR1 from clinical pharmacokinetic study sample bioanalysis in healthy human subjects.
Collapse
Affiliation(s)
- Ashok Ghoghari
- Bioanalytical Laboratory, Zydus Research Centre, Ahmedabad 382 210, India.
| | - Chandrakant Bhatt
- Bioanalytical Laboratory, Zydus Research Centre, Ahmedabad 382 210, India
| | - Kuldip Patel
- Bioanalytical Laboratory, Zydus Research Centre, Ahmedabad 382 210, India
| | - Anil Jha
- Bioanalytical Laboratory, Zydus Research Centre, Ahmedabad 382 210, India
| | - Harilal Patel
- Bioanalytical Laboratory, Zydus Research Centre, Ahmedabad 382 210, India
| | - Mukul Jain
- Bioanalytical Laboratory, Zydus Research Centre, Ahmedabad 382 210, India
| | - Taufik Momin
- Clinical Research, Zydus Research Centre, Ahmedabad 382 210, India
| | - Deven Parmar
- Clinical Research, Zydus Research Centre, Ahmedabad 382 210, India
| | | |
Collapse
|
11
|
Shram MJ, Spencer RH, Qian J, Munera CL, Lewis ME, Henningfield JE, Webster L, Menzaghi F. Evaluation of the abuse potential of difelikefalin, a selective kappa-opioid receptor agonist, in recreational polydrug users. Clin Transl Sci 2021; 15:535-547. [PMID: 34708917 PMCID: PMC8841457 DOI: 10.1111/cts.13173] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/10/2021] [Accepted: 09/09/2021] [Indexed: 01/23/2023] Open
Abstract
Difelikefalin, a selective kappa‐opioid receptor agonist with limited central nervous system penetration, is being developed for the treatment of chronic pruritic conditions. This randomized, double‐blind, active‐ and placebo‐controlled, four‐way crossover study was designed to evaluate the abuse potential of difelikefalin in healthy recreational polydrug users. Using a 4 × 4 Williams design, nondependent adult users of opioids and hallucinogens (N = 44) were randomized to receive single intravenous (i.v.) injections of difelikefalin at supratherapeutic doses (5 and 15 mcg/kg); pentazocine (0.5 mg/kg), a schedule IV mu‐opioid partial agonist and kappa‐opioid receptor agonist; and placebo. The abuse potential of difelikefalin was compared with pentazocine and placebo using the maximal score (maximum effect [Emax]) of the Drug Liking visual analog scale (VAS; primary end point), along with multiple secondary end points of subject‐rated measures and pupillometry. Difelikefalin produced significantly lower Drug Liking VAS Emax, and lower peak positive, sedative, and perceptual effects compared with pentazocine. These effects of difelikefalin were small, brief, and not dose‐dependent, although marginally greater than those observed with placebo. Neither dose of difelikefalin elicited significant negative or hallucinogenic effects. On end‐of‐session measures of overall drug liking and willingness to take the drug again, difelikefalin did not differ from placebo, indicating subjects neither liked nor disliked the effects overall and did not feel motivated to take the drug again. Consistent with its lack of mu agonist activity, difelikefalin did not induce miosis compared with pentazocine. All treatments were generally well‐tolerated. This study indicates that difelikefalin presents a low potential for abuse.
Collapse
Affiliation(s)
- Megan J Shram
- Altreos Research Partners, Inc., Toronto, ON, Canada
| | | | - Jenny Qian
- Cara Therapeutics, Inc., Stamford, Connecticut, USA
| | | | - Michael E Lewis
- BioDiligence Partners, Inc., Kennett Square, Pennsylvania, USA
| | | | | | | |
Collapse
|
12
|
Muratspahić E, Tomašević N, Koehbach J, Duerrauer L, Hadžić S, Castro J, Schober G, Sideromenos S, Clark RJ, Brierley SM, Craik DJ, Gruber CW. Design of a Stable Cyclic Peptide Analgesic Derived from Sunflower Seeds that Targets the κ-Opioid Receptor for the Treatment of Chronic Abdominal Pain. J Med Chem 2021; 64:9042-9055. [PMID: 34162205 PMCID: PMC8273886 DOI: 10.1021/acs.jmedchem.1c00158] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Indexed: 02/01/2023]
Abstract
The rising opioid crisis has become a worldwide societal and public health burden, resulting from the abuse of prescription opioids. Targeting the κ-opioid receptor (KOR) in the periphery has emerged as a powerful approach to develop novel pain medications without central side effects. Inspired by the traditional use of sunflower (Helianthus annuus) preparations for analgesic purposes, we developed novel stabilized KOR ligands (termed as helianorphins) by incorporating different dynorphin A sequence fragments into a cyclic sunflower peptide scaffold. As a result, helianorphin-19 selectively bound to and fully activated the KOR with nanomolar potency. Importantly, helianorphin-19 exhibited strong KOR-specific peripheral analgesic activity in a mouse model of chronic visceral pain, without inducing unwanted central effects on motor coordination/sedation. Our study provides a proof of principle that cyclic peptides from plants may be used as templates to develop potent and stable peptide analgesics applicable via enteric administration by targeting the peripheral KOR for the treatment of chronic abdominal pain.
Collapse
MESH Headings
- Abdominal Pain/drug therapy
- Analgesics/chemical synthesis
- Analgesics/chemistry
- Analgesics/pharmacology
- Animals
- Cells, Cultured
- Chronic Disease
- Dose-Response Relationship, Drug
- Drug Design
- HEK293 Cells
- Helianthus/chemistry
- Humans
- Male
- Mice
- Mice, Inbred C57BL
- Molecular Structure
- Peptides, Cyclic/chemical synthesis
- Peptides, Cyclic/chemistry
- Peptides, Cyclic/pharmacology
- Plant Extracts/chemical synthesis
- Plant Extracts/chemistry
- Plant Extracts/pharmacology
- Receptors, Opioid, kappa/antagonists & inhibitors
- Receptors, Opioid, kappa/metabolism
- Seeds/chemistry
- Structure-Activity Relationship
Collapse
Affiliation(s)
- Edin Muratspahić
- Center
for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, 1090 Vienna, Austria
| | - Nataša Tomašević
- Center
for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, 1090 Vienna, Austria
| | - Johannes Koehbach
- Institute
for Molecular Bioscience, Australian Research Council Centre of Excellence
for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Leopold Duerrauer
- Center
for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, 1090 Vienna, Austria
- School
of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Seid Hadžić
- Center
for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, 1090 Vienna, Austria
| | - Joel Castro
- Visceral
Pain Research Group, College of Medicine and Public Health, Flinders
Health and Medical Research Institute (FHMRI), Flinders University, Bedford
Park, South Australia 5042, Australia
- Hopwood
Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), North Terrace, Adelaide, South Australia 5000, Australia
| | - Gudrun Schober
- Visceral
Pain Research Group, College of Medicine and Public Health, Flinders
Health and Medical Research Institute (FHMRI), Flinders University, Bedford
Park, South Australia 5042, Australia
- Hopwood
Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), North Terrace, Adelaide, South Australia 5000, Australia
| | - Spyridon Sideromenos
- Center for
Physiology and Pharmacology, Department of Neurophysiology and Neuropharmacology, Medical University of Vienna, 1090 Vienna, Austria
| | - Richard J. Clark
- School
of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Stuart M. Brierley
- Visceral
Pain Research Group, College of Medicine and Public Health, Flinders
Health and Medical Research Institute (FHMRI), Flinders University, Bedford
Park, South Australia 5042, Australia
- Hopwood
Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), North Terrace, Adelaide, South Australia 5000, Australia
- Discipline
of Medicine, University of Adelaide, North Terrace, Adelaide, South Australia 5000, Australia
| | - David J. Craik
- Institute
for Molecular Bioscience, Australian Research Council Centre of Excellence
for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Christian W. Gruber
- Center
for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
13
|
Uncovering the analgesic effects of a pH-dependent mu-opioid receptor agonist using a model of nonevoked ongoing pain. Pain 2021; 161:2798-2804. [PMID: 32639370 DOI: 10.1097/j.pain.0000000000001968] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Currently, opioids targeting mu-opioid receptors are the most potent drugs for acute and cancer pain. However, opioids produce adverse side effects such as constipation, respiratory depression, or addiction potential. We recently developed (±)-N-(3-fluoro-1-phenethylpiperidine-4-yl)-N-phenyl propionamide (NFEPP), a compound that does not evoke central or intestinal side effects due to its selective activation of mu-opioid receptors at low pH in peripheral injured tissues. Although we demonstrated that NFEPP effectively abolishes injury-induced pain, hyperalgesia, and allodynia in rodents, the efficacy of NFEPP in nonevoked ongoing pain remains to be established. Here, we examined reward, locomotor activity, and defecation in rats with complete Freund's adjuvant-induced paw inflammation to compare fentanyl's and NFEPP's potentials to induce side effects and to inhibit spontaneous pain. We demonstrate that low, but not higher, doses of NFEPP produce conditioned place preference but not constipation or motor disturbance, in contrast to fentanyl. Using a peripherally restricted antagonist, we provide evidence that NFEPP-induced place preference is mediated by peripheral opioid receptors. Our results indicate that a low dose of NFEPP produces reward by abolishing spontaneous inflammatory pain.
Collapse
|
14
|
Yadav VD, Kumar L, Kumari P, Kumar S, Singh M, Siddiqi MI, Yadav PN, Batra S. Synthesis and Assessment of Fused β-Carboline Derivatives as Kappa Opioid Receptor Agonists. ChemMedChem 2021; 16:1917-1926. [PMID: 33599108 DOI: 10.1002/cmdc.202100029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/17/2021] [Indexed: 12/17/2022]
Abstract
The synthesis of 5-formyl-6-aryl-6H-indolo[3,2,1-de][1,5] naphthyridine-2-carboxylates by reaction between 1-formyl-9H-β-carbolines and cinnamaldehydes in the presence of pyrrolidine in water with microwave irradiation is described. Pharmacophoric modification of the formyl group offered several new fused β-carboline derivatives, which were investigated for their κ-opioid receptor (KOR) agonistic activity. Two compounds 4 a and 4 c produced appreciable agonist activity on KOR with EC50 values of 46±19 and 134±9 nM, respectively. Moreover, compound-induced KOR signaling studies suggested both compounds to be extremely G-protein-biased agonists. The analgesic effect of 4 a was validated by the increase in tail flick latency in mice in a time-dependent manner, which was completely blocked by the KOR-selective antagonist norBNI. Moreover, unlike U50488, an unbiased full KOR agonist, 4 a did not induce sedation. The docking of 4 a with the human KOR was studied to rationalize the result.
Collapse
Affiliation(s)
- Veena D Yadav
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, Uttar Pradesh, India
| | - Lalan Kumar
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, Uttar Pradesh, India
| | - Poonam Kumari
- Neuroscience and Ageing Biology Division, CSIR-Central Drug Research Institute Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, Uttar Pradesh, India
| | - Sakesh Kumar
- Neuroscience and Ageing Biology Division, CSIR-Central Drug Research Institute Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, Uttar Pradesh, India.,Academy of Scientific and Innovative Research, CSIR-Human Resource Development Centre, CSIR-HRDC) Campus Sector 19, Kamla Nehru Nagar, Ghaziabad, 201002, Uttar Pradesh, India
| | - Maninder Singh
- Molecular and Structural Biology Division, CSIR-Central Drug Research Institute Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, Uttar Pradesh, India
| | - Mohammad I Siddiqi
- Molecular and Structural Biology Division, CSIR-Central Drug Research Institute Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, Uttar Pradesh, India.,Academy of Scientific and Innovative Research, CSIR-Human Resource Development Centre, CSIR-HRDC) Campus Sector 19, Kamla Nehru Nagar, Ghaziabad, 201002, Uttar Pradesh, India
| | - Prem N Yadav
- Neuroscience and Ageing Biology Division, CSIR-Central Drug Research Institute Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, Uttar Pradesh, India.,Academy of Scientific and Innovative Research, CSIR-Human Resource Development Centre, CSIR-HRDC) Campus Sector 19, Kamla Nehru Nagar, Ghaziabad, 201002, Uttar Pradesh, India
| | - Sanjay Batra
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, Uttar Pradesh, India.,Academy of Scientific and Innovative Research, CSIR-Human Resource Development Centre, CSIR-HRDC) Campus Sector 19, Kamla Nehru Nagar, Ghaziabad, 201002, Uttar Pradesh, India
| |
Collapse
|
15
|
Abstract
Preclinical models that assess "pain" in rodents typically measure increases in behaviors produced by a "pain stimulus." A large literature exists showing that kappa opioid receptor (KOR) agonists can decrease these "pain-stimulated behaviors" following many different pain stimuli. Despite showing apparent antinociceptive properties in these preclinical models, KOR agonists failed as analgesics in clinical trials. Recent studies that assessed decreases in behavior due to a pain stimulus show that KOR agonists are not effective in restoring these "pain-depressed behaviors" to normal levels, which agrees with the lack of effectiveness for KOR agonists in clinical trials. One current explanation for the failure of previous KOR agonists in clinical trials is that those agonists activated beta-arrestin signaling and that KOR agonists with a greater bias for G protein signaling will be more successful. However, neither G protein-biased agonists nor beta-arrestin-biased agonists are very effective in assays of pain-depressed behavior, which suggests that novel biased agonists may still not be effective analgesics. This review provides a concise account of the effectiveness of KOR agonists in preclinical models of pain-stimulated and pain-depressed behaviors following the administration of different pain stimuli. Based on the previous results, it may be appropriate to include both behaviors when testing the analgesic potential of KOR agonists.
Collapse
Affiliation(s)
- Matthew F Lazenka
- Department of Biology and Chemistry, Liberty University, Lynchburg, VA, USA.
| |
Collapse
|
16
|
Li X, Wan H, Dong P, Wang B, Zhang L, Hu Q, Zhang T, Feng J, He F, Bai C, Zhang L, Tao W. Discovery of SHR0687, a Highly Potent and Peripheral Nervous System-Restricted KOR Agonist. ACS Med Chem Lett 2020; 11:2151-2155. [PMID: 33214823 DOI: 10.1021/acsmedchemlett.0c00287] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 09/14/2020] [Indexed: 12/19/2022] Open
Abstract
Analgesics with no abuse liability are highly demanded in the market. KOR agonists have been proved to be strong analgesics without MOR agonist-related side effects, such as respiratory depression, tolerance, and dependence liability; however, activation of KOR in the central nervous system (CNS) may cause sedation and anxiety. It has been reported that peripheral KOR activation produces comparable bioactivity without CNS-related side effects. Herein, we designed and synthesized a novel tetrapeptide (SHR0687), which was shown to be a highly potent KOR agonist with excellent selectivity over other opioid receptors, such as MOR and DOR. In addition, SHR0687 displayed favorable PK profiles across species, as well as robust in vivo efficacy in a rat carrageenan-induced pain model. Notably, SHR0687 exhibited negligible blood-brain barrier penetration, which was meaningful in minimizing CNS-related side effects.
Collapse
Affiliation(s)
- Xin Li
- Shanghai Hengrui Pharmaceutical CO., LTD., 279 Wenjing Road, Shanghai 200245, China
| | - Hong Wan
- Shanghai Hengrui Pharmaceutical CO., LTD., 279 Wenjing Road, Shanghai 200245, China
| | - Ping Dong
- Shanghai Hengrui Pharmaceutical CO., LTD., 279 Wenjing Road, Shanghai 200245, China
| | - Bin Wang
- Shanghai Hengrui Pharmaceutical CO., LTD., 279 Wenjing Road, Shanghai 200245, China
| | - Lei Zhang
- Shanghai Hengrui Pharmaceutical CO., LTD., 279 Wenjing Road, Shanghai 200245, China
| | - Qiyue Hu
- Shanghai Hengrui Pharmaceutical CO., LTD., 279 Wenjing Road, Shanghai 200245, China
| | - Ting Zhang
- Shanghai Hengrui Pharmaceutical CO., LTD., 279 Wenjing Road, Shanghai 200245, China
| | - Jun Feng
- Shanghai Hengrui Pharmaceutical CO., LTD., 279 Wenjing Road, Shanghai 200245, China
| | - Feng He
- Shanghai Hengrui Pharmaceutical CO., LTD., 279 Wenjing Road, Shanghai 200245, China
- Chengdu Suncadia Medicine CO., LTD., 88 South Keyuan Road, Chengdu, Si Chuan 610000, China
| | - Chang Bai
- Shanghai Hengrui Pharmaceutical CO., LTD., 279 Wenjing Road, Shanghai 200245, China
| | - Lianshan Zhang
- Jiangsu Hengrui Medicine CO., LTD., Lianyungang, Jiangsu 222047, China
| | - Weikang Tao
- Shanghai Hengrui Pharmaceutical CO., LTD., 279 Wenjing Road, Shanghai 200245, China
- Chengdu Suncadia Medicine CO., LTD., 88 South Keyuan Road, Chengdu, Si Chuan 610000, China
| |
Collapse
|
17
|
Zhao L, Luo K, Wang Z, Wang Y, Zhang X, Yang D, Ma M, Zhou J, Cui J, Wang J, Han CZY, Liu X, Wang R. Design, synthesis, and biological activity of new endomorphin analogs with multi-site modifications. Bioorg Med Chem 2020; 28:115438. [PMID: 32199689 DOI: 10.1016/j.bmc.2020.115438] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 03/04/2020] [Accepted: 03/10/2020] [Indexed: 12/18/2022]
Abstract
Endomorphin (EM)-1 and EM-2 are the most effective endogenous analgesics with efficient separation of analgesia from the risk of adverse effects. Poor metabolic stability and ineffective analgesia after peripheral administration were detrimental for the use of EMs as novel clinical analgesics. Therefore, here, we aimed to establish new EM analogs via introducing different bifunctional d-amino acids at position 2 of [(2-furyl)Map4]EMs. The combination of [(2-furyl)Map4]EMs with D-Arg2 or D-Cit2 yielded analogs with enhanced binding affinity to the μ-opioid receptor (MOR) and increased stability against enzymatic degradation (t1/2 > 300 min). However, the agonistic activities of these analogs toward MOR were slightly reduced. Similar to morphine, peripheral administration of the analog [D-Cit2, (2-furyl)Map4]EM-1 (10) significantly inhibited the pain behavior of mice in multiple pain models. In addition, this EM-1 analog was associated with reduced tolerance, less effect on gastrointestinal mobility, and no significant motor impairment. Compared to natural EMs, the EM analogs synthesized herein had enhanced metabolic stability, bioavailability, and analgesic properties.
Collapse
Affiliation(s)
- Long Zhao
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Biochemistry and Molecular Biology, Department of Pharmacology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, PR China
| | - Keyao Luo
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Biochemistry and Molecular Biology, Department of Pharmacology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, PR China
| | - Zhaojuan Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Biochemistry and Molecular Biology, Department of Pharmacology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, PR China
| | - Yuan Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Biochemistry and Molecular Biology, Department of Pharmacology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, PR China.
| | - Xianghui Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Biochemistry and Molecular Biology, Department of Pharmacology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, PR China
| | - Dongxu Yang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Biochemistry and Molecular Biology, Department of Pharmacology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, PR China
| | - Mengtao Ma
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Biochemistry and Molecular Biology, Department of Pharmacology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, PR China
| | - Jingjing Zhou
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Biochemistry and Molecular Biology, Department of Pharmacology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, PR China
| | - Jiaming Cui
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Biochemistry and Molecular Biology, Department of Pharmacology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, PR China
| | - Jing Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Biochemistry and Molecular Biology, Department of Pharmacology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, PR China
| | - Chao-Zhen-Yi Han
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Biochemistry and Molecular Biology, Department of Pharmacology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, PR China
| | - Xin Liu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Biochemistry and Molecular Biology, Department of Pharmacology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, PR China.
| | - Rui Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Biochemistry and Molecular Biology, Department of Pharmacology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, PR China.
| |
Collapse
|
18
|
Meyer J, Del Vecchio G, Seitz V, Massaly N, Stein C. Modulation of μ-opioid receptor activation by acidic pH is dependent on ligand structure and an ionizable amino acid residue. Br J Pharmacol 2019; 176:4510-4520. [PMID: 31355457 PMCID: PMC6932940 DOI: 10.1111/bph.14810] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 07/12/2019] [Accepted: 07/14/2019] [Indexed: 12/22/2022] Open
Abstract
Background and Purpose Adverse side effects of conventional opioids can be avoided if ligands selectively activate peripheral opioid receptors in injured tissue. Injury and inflammation are typically accompanied by acidification. In this study, we examined influences of low pH and mutation of the ionizable amino acid residue H2976.52 on μ‐opioid receptor binding and signalling induced by the μ‐opioid receptor ligands fentanyl, DAMGO, and naloxone. Experimental Approach HEK 293 cells stably transfected with μ‐opioid receptors were used to study opioid ligand binding, [35S]‐GTPγS binding, and cAMP reduction at physiological and acidic pH. We used μ‐opioid receptors mutated at H2976.52 to A (MOR‐H2976.52A) to delineate ligand‐specific interactions with H2976.52. Key Results Low pH and the mutant receptor MOR‐H2976.52A impaired naloxone binding and antagonism of cAMP reduction. In addition, DAMGO binding and G‐protein activation were decreased under these conditions. Fentanyl‐induced signalling was not influenced by pH and largely independent of H2976.52. Conclusions and Implications Our investigations indicate that low pH selectively impairs μ‐opioid receptor signalling modulated by ligands capable of forming hydrogen bonds with H2976.52. We propose that protonation of H2976.52 at acidic pH reduces binding and subsequent signalling of such ligands. Novel agonists targeting opioid receptors in injured tissue might benefit from lack of hydrogen bond formation with H2976.52.
Collapse
Affiliation(s)
- Johanna Meyer
- Department of Experimental Anesthesiology, Campus Benjamin Franklin, Charité-Universitätsmedizin Berlin, Germany
| | - Giovanna Del Vecchio
- Department of Experimental Anesthesiology, Campus Benjamin Franklin, Charité-Universitätsmedizin Berlin, Germany
| | - Viola Seitz
- Department of Experimental Anesthesiology, Campus Benjamin Franklin, Charité-Universitätsmedizin Berlin, Germany
| | - Nicolas Massaly
- Department of Experimental Anesthesiology, Campus Benjamin Franklin, Charité-Universitätsmedizin Berlin, Germany
| | - Christoph Stein
- Department of Experimental Anesthesiology, Campus Benjamin Franklin, Charité-Universitätsmedizin Berlin, Germany
| |
Collapse
|
19
|
Diuretic Activity of a Novel Peripherally-Restricted Orally-Active Kappa Opioid Receptor Agonist. Med Sci (Basel) 2019; 7:medsci7090093. [PMID: 31480425 PMCID: PMC6780874 DOI: 10.3390/medsci7090093] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 08/27/2019] [Accepted: 08/30/2019] [Indexed: 12/03/2022] Open
Abstract
Kappa-opioid agonists (KOAs) enhance cardiac performance, as well as reduce infarct size and prevent deleterious cardiac remodeling following myocardial infarction. Additionally, KOAs promote diuresis; however, there has been limited development of KOAs as a class due to the promotion of untoward central nervous system (CNS)-mediated side effects. Our laboratory has developed a peripherally-restricted, orally-active, KOA (JT09) for the treatment of pain and cardiovascular disease. Peripherally-restricted KOAs possess a limited side-effect profile and demonstrate potential in preventing heart failure. The aim of this study was to assess the diuretic activity of lead compound JT09 relative to vehicle control and Tolvaptan through single oral administration to adult male Sprague–Dawley rats. JT09-administered rats demonstrated significantly increased urine output relative to vehicle control. However, the effect persisted for 8 h, whereas Tolvaptan-administered rats demonstrated diuretic activity for 24 h. Relative to Tolvaptan, urine output was significantly reduced in JT09 administered animals at all-time points, suggesting that the overall diuretic effect of JT09 is less profound than Tolvaptan. Additionally, JT09-administered rats demonstrated alterations in clinical chemistry; reduced urine specific gravity; and increased urine pH relative to vehicle control. The following study establishes a preliminary diuretic profile for JT09.
Collapse
|
20
|
Beck TC, Reichel CM, Helke KL, Bhadsavle SS, Dix TA. Non-addictive orally-active kappa opioid agonists for the treatment of peripheral pain in rats. Eur J Pharmacol 2019; 856:172396. [PMID: 31103632 PMCID: PMC6696947 DOI: 10.1016/j.ejphar.2019.05.025] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 05/10/2019] [Accepted: 05/13/2019] [Indexed: 11/15/2022]
Abstract
Addiction to conventional opioid pain analgesics is a major societal problem that is increasing at an alarming rate. New drugs to combat the effects of opioid abuse are desperately needed. Kappa-opioid agonists are efficacious in peripheral pain models but suffer from centrally-mediated effects. In this article, we discuss our efforts in developing peripheral kappa-based opioid receptor agonists that have the potential analgesic activity of opioids but do not manifest the negative side-effects of opioid use and abuse. Further, derivatives of the tetra-peptide D-Phe-D-Phe-D-Nle-D-Arg-NH2, such as CR665, exhibit high peripheral to central selectivity in analgesic models when administered intravenously (i.v.); however, they are inactive when administered orally. Application of our laboratory's proprietary non-natural amino acid technology to CR665 produced derivatives that exhibit peripheral analgesic activity when dosed orally but do not promote CNS-based effects. Lead compound JT09 activates the kappa-opioid receptor with EC50s in the low nM range, while agonist selectivity for kappa over other peripheral opioid receptors was >33,400 fold. Results indicate that JT09 is approximately as efficacious as morphine in alleviating peripheral pain, while failing to produce undesired CNS-mediated activity. Additionally, JT09 did not promote other CNS-mediated effects associated with morphine (addiction, sedation, dysphoria, tolerance, addiction). Thus, we propose that JT09 has potential for development as a novel analgesic. PERSPECTIVE: This article presents data supporting the analgesic properties of an orally available, peripherally-restricted, kappa-opioid agonist for peripheral pain. A potential out-patient pharmaceutical that acts as efficacious as morphine in alleviating peripheral pain, while failing to produce undesired CNS-mediated effects, could help reduce the current health care burden associated with prescription opioids.
Collapse
Affiliation(s)
- Tyler C. Beck
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina Campus, 280 Calhoun Street, P.O. Box 250140, Charleston, SC 29424-2303
| | - Carmela M. Reichel
- Department of Neurosciences, Medical University of South Carolina, 173 Ashley Ave., Room 416A BSB, Charleston, SC 29424-2303
| | - Kristi L. Helke
- Department of Comparative Medicine, Medical University of South Carolina, 11 Doughty St., Room 640, Charleston, SC 29424-2303
| | - Sanat S. Bhadsavle
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina Campus, 280 Calhoun Street, P.O. Box 250140, Charleston, SC 29424-2303
| | - Thomas A. Dix
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina Campus, 280 Calhoun Street, P.O. Box 250140, Charleston, SC 29424-2303
- JT Pharmaceuticals, Inc., 300 West Coleman Blvd., Suite 203, Mount Pleasant, SC 29,,,,464-2303
| |
Collapse
|
21
|
Raffa RB, Taylor R, Pergolizzi JV. Treating opioid‐induced constipation in patients taking other medications: Avoiding CYP450 drug interactions. J Clin Pharm Ther 2019; 44:361-371. [DOI: 10.1111/jcpt.12812] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 01/15/2019] [Accepted: 01/18/2019] [Indexed: 02/06/2023]
Affiliation(s)
- Robert B. Raffa
- University of Arizona College of Pharmacy Tucson Arizona
- Temple University School of Pharmacy Philadelphia Pennsylvania
- Neumentum Inc Palo Alto California
- The NEMA Research Group Naples Florida
| | | | | |
Collapse
|
22
|
Guo KK, Deng CQ, Lu GJ, Zhao GL. Comparison of analgesic effect of oxycodone and morphine on patients with moderate and advanced cancer pain: a meta-analysis. BMC Anesthesiol 2018; 18:132. [PMID: 30249205 PMCID: PMC6154420 DOI: 10.1186/s12871-018-0583-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Accepted: 08/21/2018] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Morphine and oxycodone are considered as wide-spreadly used opioids for moderate/severe cancer pain. However, debate exists about the evidence regarding their relative tolerability and underlying results. METHODS A systematic search of online electronic databases, including PubMed, Embase, Cochrane library updated on October 2017 were conducted. The meta-analysis was performed including the studies that were designed as randomized controlled trials. RESULTS In total, seven randomized clinical trials met our inclusion criteria. No statistical differences in analgesic effect between oxycodone and morphine were observed. Both the pooled analysis of API (MD =0.01, 95% CI -0.22 - 0.23; p = 0.96) and WPI (MD = - 0.05, 95% CI -0.21 - 0.30; p = 0.72) demonstrated clinical non-inferiority of the efficacy of morphine compared with oxycodone, respectively. Additionally, no significant difference in PRR response was observed in either oxycodone or morphine that were used in patients (MD =0.99, 95% CI -0.88 - 1.11; p = 0.87). With the pooled result of AEs indicating the comparable safety profiles between the 2 treatment groups, the meta-analysis on the nausea (OR = 1.20, 95% CI 0.90-1.59; p = 0.22), vomiting (OR = 1.33, 95% CI 0.75-2.38; p = 0.33), somnolence (OR = 1.35, 95% CI 0.95-1.93; p = 0.10), diarrhea (OR = 1.01, 95% CI 0.60-1,67; p = 0.98), and constipation (OR = 1.04, 95% CI 0.77-1.41; p = 0.79) was conducted, respectively. CONCLUSIONS In the current study, no remarkable difference was identified either in analgesic efficacy or in tolerability of oxycodone and morphine as the first-line therapy for patients with moderate to severe cancer pain. Thus, no sufficient clinical evidence on the superior effects of oxycodone to morphine was provided in this experimental hypothesis.
Collapse
Affiliation(s)
- Kai-Kai Guo
- Department of Pain Management, The Center of Anaesthetized Operation, Chinese PLA General Hospital, No. 28 Fuxing Road, Beijing, 100853, China
| | - Cheng-Qi Deng
- Department of Anesthesiology, First Affiliated Hospital of General Hospital of PLA, Beijing, 100048, China
| | - Gui-Jun Lu
- Department of Pain Management, The Center of Anaesthetized Operation, Chinese PLA General Hospital, No. 28 Fuxing Road, Beijing, 100853, China.
| | - Guo-Li Zhao
- Department of Pain Management, The Center of Anaesthetized Operation, Chinese PLA General Hospital, No. 28 Fuxing Road, Beijing, 100853, China
| |
Collapse
|
23
|
Snyder LM, Chiang MC, Loeza-Alcocer E, Omori Y, Hachisuka J, Sheahan TD, Gale JR, Adelman PC, Sypek EI, Fulton SA, Friedman RL, Wright MC, Duque MG, Lee YS, Hu Z, Huang H, Cai X, Meerschaert KA, Nagarajan V, Hirai T, Scherrer G, Kaplan DH, Porreca F, Davis BM, Gold MS, Koerber HR, Ross SE. Kappa Opioid Receptor Distribution and Function in Primary Afferents. Neuron 2018; 99:1274-1288.e6. [PMID: 30236284 PMCID: PMC6300132 DOI: 10.1016/j.neuron.2018.08.044] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 07/06/2018] [Accepted: 08/21/2018] [Indexed: 02/02/2023]
Abstract
Primary afferents are known to be inhibited by kappa opioid receptor (KOR) signaling. However, the specific types of somatosensory neurons that express KOR remain unclear. Here, using a newly developed KOR-cre knockin allele, viral tracing, single-cell RT-PCR, and ex vivo recordings, we show that KOR is expressed in several populations of primary afferents: a subset of peptidergic sensory neurons, as well as low-threshold mechanoreceptors that form lanceolate or circumferential endings around hair follicles. We find that KOR acts centrally to inhibit excitatory neurotransmission from KOR-cre afferents in laminae I and III, and this effect is likely due to KOR-mediated inhibition of Ca2+ influx, which we observed in sensory neurons from both mouse and human. In the periphery, KOR signaling inhibits neurogenic inflammation and nociceptor sensitization by inflammatory mediators. Finally, peripherally restricted KOR agonists selectively reduce pain and itch behaviors, as well as mechanical hypersensitivity associated with a surgical incision. These experiments provide a rationale for the use of peripherally restricted KOR agonists for therapeutic treatment.
Collapse
Affiliation(s)
- Lindsey M Snyder
- Department of Neurobiology and the Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Michael C Chiang
- Department of Neurobiology and the Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Emanuel Loeza-Alcocer
- Department of Neurobiology and the Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Yu Omori
- Department of Neurobiology and the Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Junichi Hachisuka
- Department of Neurobiology and the Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Tayler D Sheahan
- Department of Neurobiology and the Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Jenna R Gale
- Department of Neurobiology and the Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Peter C Adelman
- Department of Neurobiology and the Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Elizabeth I Sypek
- Department of Anesthesiology, Perioperative, and Pain Medicine, Department of Molecular and Cellular Physiology, and Department of Neurosurgery, Stanford Neurosciences Institute, Stanford University, Stanford, CA 94305, USA
| | - Stephanie A Fulton
- Department of Neurobiology and the Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Robert L Friedman
- Department of Neurobiology and the Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Margaret C Wright
- Department of Neurobiology and the Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Melissa Giraldo Duque
- Department of Neurobiology and the Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Yeon Sun Lee
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, USA
| | - Zeyu Hu
- Department of Neurobiology and the Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Huizhen Huang
- Department of Neurobiology and the Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, PA 15213, USA; Tsinghua University School of Medicine Beijing, Beijing 100084, China
| | - Xiaoyun Cai
- Department of Neurobiology and the Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Kimberly A Meerschaert
- Department of Neurobiology and the Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Vidhya Nagarajan
- Department of Neurobiology and the Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Toshiro Hirai
- Departments of Dermatology and Immunology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Gregory Scherrer
- Department of Anesthesiology, Perioperative, and Pain Medicine, Department of Molecular and Cellular Physiology, and Department of Neurosurgery, Stanford Neurosciences Institute, Stanford University, Stanford, CA 94305, USA; New York Stem Cell Foundation-Robertson Investigator, Stanford University, Palo Alto, CA 94304, USA
| | - Daniel H Kaplan
- Departments of Dermatology and Immunology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Frank Porreca
- Department of Pharmacology, University of Arizona, Tucson, AZ 85719, USA
| | - Brian M Davis
- Department of Neurobiology and the Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Michael S Gold
- Department of Neurobiology and the Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| | - H Richard Koerber
- Department of Neurobiology and the Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| | - Sarah E Ross
- Department of Neurobiology and the Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, PA 15213, USA; Department of Anesthesiology, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| |
Collapse
|
24
|
Edwards KA, Havelin JJ, Mcintosh MI, Ciccone HA, Pangilinan K, Imbert I, Largent-Milnes TM, King T, Vanderah TW, Streicher JM. A Kappa Opioid Receptor Agonist Blocks Bone Cancer Pain Without Altering Bone Loss, Tumor Size, or Cancer Cell Proliferation in a Mouse Model of Cancer-Induced Bone Pain. THE JOURNAL OF PAIN 2018; 19:612-625. [PMID: 29371114 DOI: 10.1016/j.jpain.2018.01.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 12/18/2017] [Accepted: 01/01/2018] [Indexed: 12/17/2022]
Abstract
Breast cancer metastasizes to bone, diminishing quality of life of patients because of pain, fracture, and limited mobility. Cancer-induced bone pain (CIBP) is characterized as moderate to severe ongoing pain, primarily managed by mu opioid agonists such as fentanyl. However, opioids are limited by escalating doses and serious side effects. One alternative may be kappa opioid receptor (KOR) agonists. There are few studies examining KOR efficacy on CIBP, whereas KOR agonists are efficacious in peripheral and inflammatory pain. We thus examined the effects of the KOR agonist U50,488 given twice daily across 7 days to block CIBP, tumor-induced bone loss, and tumor burden. U50,488 dose-dependently blocked tumor-induced spontaneous flinching and impaired limb use, without changing tactile hypersensitivity, and was fully reversed by the KOR antagonist nor-binaltorphimine. U50,488 treatment was higher in efficacy and duration of action at later time points. U50,488 blocked this pain without altering tumor-induced bone loss or tumor growth. Follow-up studies in human cancer cell lines confirmed that KOR agonists do not affect cancer cell proliferation. These studies suggest that KOR agonists could be a new target for cancer pain management that does not induce cancer cell proliferation or alter bone loss. PERSPECTIVE This study demonstrates the efficacy of KOR agonists in the treatment of bone cancer-induced pain in mice, without changing tumor size or proliferation in cancer cell lines. This suggests that KOR agonists could be used to manage cancer pain without the drawbacks of mu opioid agonists and without worsening disease progression.
Collapse
Affiliation(s)
- Katie A Edwards
- Department of Biomedical Sciences, College of Osteopathic Medicine, University of New England, Biddeford, Maine
| | - Joshua J Havelin
- Department of Biomedical Sciences, College of Osteopathic Medicine, University of New England, Biddeford, Maine
| | - Mary I Mcintosh
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona
| | - Haley A Ciccone
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona
| | - Kathlene Pangilinan
- Department of Biomedical Sciences, College of Osteopathic Medicine, University of New England, Biddeford, Maine
| | - Ian Imbert
- Department of Biomedical Sciences, College of Osteopathic Medicine, University of New England, Biddeford, Maine
| | | | - Tamara King
- Department of Biomedical Sciences, College of Osteopathic Medicine, University of New England, Biddeford, Maine
| | - Todd W Vanderah
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona
| | - John M Streicher
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona.
| |
Collapse
|
25
|
The contribution of activated peripheral kappa opioid receptors (kORs) in the inflamed knee joint to anti-nociception. Brain Res 2016; 1648:11-18. [DOI: 10.1016/j.brainres.2016.06.048] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 06/26/2016] [Accepted: 06/30/2016] [Indexed: 11/22/2022]
|
26
|
Lacko E, Riba P, Giricz Z, Varadi A, Cornic L, Balogh M, Kiraly K, Csek K, Mousa SA, Hosztafi S, Schafer M, Zadori ZS, Helyes Z, Ferdinandy P, Furst S, Al-Khrasani M. New Morphine Analogs Produce Peripheral Antinociception within a Certain Dose Range of Their Systemic Administration. ACTA ACUST UNITED AC 2016; 359:171-81. [DOI: 10.1124/jpet.116.233551] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 07/18/2016] [Indexed: 11/22/2022]
|
27
|
Albert-Vartanian A, Boyd MR, Hall AL, Morgado SJ, Nguyen E, Nguyen VPH, Patel SP, Russo LJ, Shao AJ, Raffa RB. Will peripherally restricted kappa-opioid receptor agonists (pKORAs) relieve pain with less opioid adverse effects and abuse potential? J Clin Pharm Ther 2016; 41:371-82. [DOI: 10.1111/jcpt.12404] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Accepted: 04/29/2016] [Indexed: 01/27/2023]
Affiliation(s)
| | - M. R. Boyd
- School of Pharmacy; Temple University; Philadelphia PA USA
| | - A. L. Hall
- School of Pharmacy; Temple University; Philadelphia PA USA
| | - S. J. Morgado
- School of Pharmacy; Temple University; Philadelphia PA USA
| | - E. Nguyen
- School of Pharmacy; Temple University; Philadelphia PA USA
| | | | - S. P. Patel
- School of Pharmacy; Temple University; Philadelphia PA USA
| | - L. J. Russo
- School of Pharmacy; Temple University; Philadelphia PA USA
| | - A. J. Shao
- School of Pharmacy; Temple University; Philadelphia PA USA
| | - R. B. Raffa
- School of Pharmacy; Temple University; Philadelphia PA USA
| |
Collapse
|
28
|
Li N, Han ZL, Wang ZL, Xing YH, Sun YL, Li XH, Song JJ, Zhang T, Zhang R, Zhang MN, Xu B, Fang Q, Wang R. BN-9, a chimeric peptide with mixed opioid and neuropeptide FF receptor agonistic properties, produces nontolerance-forming antinociception in mice. Br J Pharmacol 2016; 173:1864-80. [PMID: 27018797 DOI: 10.1111/bph.13489] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 03/16/2016] [Accepted: 03/22/2016] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND AND PURPOSE Neuropeptide FF (NPFF) behaves as an endogenous opioid-modulating peptide. In the present study, the opioid and NPFF pharmacophore-containing chimeric peptide BN-9 was synthesized and pharmacologically characterized. EXPERIMENTAL APPROACH Agonist activities of BN-9 at opioid and NPFF receptors were characterized in in vitro cAMP assays. Antinociceptive activities of BN-9 were evaluated in the mouse tail-flick and formalin tests. Furthermore, its side effects were investigated in rotarod, antinociceptive tolerance, reward and gastrointestinal transit tests. KEY RESULTS BN-9 acted as a novel multifunctional agonist at μ, δ, κ, NPFF1 and NPFF2 receptors in cAMP assays. In the tail-flick test, BN-9 produced dose-related antinociception and was approximately equipotent to morphine; this antinociception was blocked by μ and κ receptor antagonists, but not by the δ receptor antagonist. In the formalin test, supraspinal administration of BN-9 produced significant analgesia. Notably, repeated administration of BN-9 produced analgesia without loss of potency over 8 days. In contrast, repeated i.c.v. co-administration of BN-9 with the NPFF receptor antagonist RF9 produced significant antinociceptive tolerance. Furthermore, i.c.v. BN-9 induced conditioned place preference. When given by the same routes, BN-9 had a more than eightfold higher ED50 value for gastrointestinal transit inhibition compared with the ED50 values for antinociception. CONCLUSIONS AND IMPLICATIONS BN-9 produced a robust, nontolerance-forming analgesia with limited inhibition of gastrointestinal transit. As BN-9 is able to activate both opioid and NPFF systems, this provides an interesting approach for the development of novel analgesics with minimal side effects.
Collapse
Affiliation(s)
- Ning Li
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Zheng-Lan Han
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Zi-Long Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Yan-Hong Xing
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Yu-Long Sun
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Xu-Hui Li
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Jing-Jing Song
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Ting Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Run Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Meng-Na Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Biao Xu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Quan Fang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Rui Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| |
Collapse
|
29
|
Brust A, Croker DE, Colless B, Ragnarsson L, Andersson Å, Jain K, Garcia-Caraballo S, Castro J, Brierley SM, Alewood PF, Lewis RJ. Conopeptide-Derived κ-Opioid Agonists (Conorphins): Potent, Selective, and Metabolic Stable Dynorphin A Mimetics with Antinociceptive Properties. J Med Chem 2016; 59:2381-95. [PMID: 26859603 DOI: 10.1021/acs.jmedchem.5b00911] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Opioid receptor screening of a conopeptide library led to a novel selective κ-opioid agonist peptide (conorphin T). Intensive medicinal chemistry, guided by potency, selectivity, and stability assays generated a pharmacophore model supporting rational design of highly potent and selective κ-opioid receptor (KOR) agonists (conorphins) with exceptional plasma stability. Conorphins are defined by a hydrophobic benzoprolyl moiety, a double arginine sequence, a spacer amino acid followed by a hydrophobic residue and a C-terminal vicinal disulfide moiety. The pharmacophore model was supported by computational docking studies, revealing receptor-ligand interactions similar to KOR agonist dynorphin A (1-8). A conorphin agonist inhibited colonic nociceptors in a mouse tissue model of chronic visceral hypersensitivity, suggesting the potential of KOR agonists for the treatment of chronic abdominal pain. This new conorphine KOR agonist class and pharmacophore model provide opportunities for future rational drug development and probes for exploring the role of the κ-opioid receptor.
Collapse
Affiliation(s)
- Andreas Brust
- Xenome Limited , Brisbane, Queensland 4068, Australia.,Institute for Molecular Biosciences, The University of Queensland , Brisbane, Queensland, 4072, Australia
| | - Daniel E Croker
- Xenome Limited , Brisbane, Queensland 4068, Australia.,Institute for Molecular Biosciences, The University of Queensland , Brisbane, Queensland, 4072, Australia
| | - Barbara Colless
- Xenome Limited , Brisbane, Queensland 4068, Australia.,Institute for Molecular Biosciences, The University of Queensland , Brisbane, Queensland, 4072, Australia
| | - Lotten Ragnarsson
- Xenome Limited , Brisbane, Queensland 4068, Australia.,Institute for Molecular Biosciences, The University of Queensland , Brisbane, Queensland, 4072, Australia
| | - Åsa Andersson
- Xenome Limited , Brisbane, Queensland 4068, Australia.,Institute for Molecular Biosciences, The University of Queensland , Brisbane, Queensland, 4072, Australia
| | - Kapil Jain
- Institute for Molecular Biosciences, The University of Queensland , Brisbane, Queensland, 4072, Australia
| | - Sonia Garcia-Caraballo
- Visceral Pain Group, Centre for Nutrition and Gastrointestinal Disease, Discipline of Medicine, The University of Adelaide, South Australian Health and Medical Research Institute, SAHMRI , Adelaide, SA 5000, Australia
| | - Joel Castro
- Visceral Pain Group, Centre for Nutrition and Gastrointestinal Disease, Discipline of Medicine, The University of Adelaide, South Australian Health and Medical Research Institute, SAHMRI , Adelaide, SA 5000, Australia
| | - Stuart M Brierley
- Visceral Pain Group, Centre for Nutrition and Gastrointestinal Disease, Discipline of Medicine, The University of Adelaide, South Australian Health and Medical Research Institute, SAHMRI , Adelaide, SA 5000, Australia
| | - Paul F Alewood
- Institute for Molecular Biosciences, The University of Queensland , Brisbane, Queensland, 4072, Australia
| | - Richard J Lewis
- Xenome Limited , Brisbane, Queensland 4068, Australia.,Institute for Molecular Biosciences, The University of Queensland , Brisbane, Queensland, 4072, Australia
| |
Collapse
|
30
|
Wenker Y, Soeberdt M, Daniliuc C, Ständer S, Schepmann D, Wünsch B. Synthesis and pharmacological evaluation of conformationally restricted κ-opioid receptor agonists. MEDCHEMCOMM 2016. [DOI: 10.1039/c6md00441e] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Additional N- and O-atoms in the bicyclic scaffold increase polarity and allow fine tuning of pharmacodynamic and pharmacokinetic properties of novel κ agonists.
Collapse
Affiliation(s)
- Yvonne Wenker
- Institut für Pharmazeutische und Medizinische Chemie der Westfälischen Wilhelms-Universität Münster
- D-48149 Münster
- Germany
| | - Michael Soeberdt
- Dr. August Wolff GmbH & Co. KG Arzneimittel
- D-33611 Bielefeld
- Germany
| | - Constantin Daniliuc
- Organisch-Chemisches Institut der Westfälischen Wilhelms-Universität Münster
- D-48149 Münster
- Germany
| | - Sonja Ständer
- Center for Chronic Pruritus and Department of Dermatology
- University Hospital Münster
- D-48149 Münster
- Germany
| | - Dirk Schepmann
- Institut für Pharmazeutische und Medizinische Chemie der Westfälischen Wilhelms-Universität Münster
- D-48149 Münster
- Germany
| | - Bernhard Wünsch
- Institut für Pharmazeutische und Medizinische Chemie der Westfälischen Wilhelms-Universität Münster
- D-48149 Münster
- Germany
- Cells-in-Motion Cluster of Excellence (EXC 1003 – CiM)
- Westfälische Wilhelms-Universität Münster
| |
Collapse
|
31
|
Fröhlich J, Lehmkuhl K, Fröhlich R, Wünsch B. Diastereoselective Synthesis of Cyclic Five-Membered trans,trans-Configured Nitrodiols by Double Henry Reaction of 1,4-Dialdehydes. Arch Pharm (Weinheim) 2015; 348:589-94. [PMID: 26010372 DOI: 10.1002/ardp.201500114] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 04/17/2015] [Accepted: 04/24/2015] [Indexed: 11/10/2022]
Abstract
Conformationally constrained perhydroquinoxalines 4 show high κ receptor affinity, selectivity over related receptors and full agonistic activity. Since the κ affinity can be correlated with the dihedral angle of the ethylenediamine pharmacophore (4a: 55°/71°), the dihedral angles of the postulated cyclopentane derivative 5a (73°/84°) and indane derivative 6a (77°/81°) were calculated. The first step of the synthesis represents a double Henry reaction of 1,4-dialdehydes 8 and 10 with nitromethane, leading predominantly to the trans,trans-configured nitrodiols 9 and 11. X-ray crystal structure analyses of 9 and 11 led to dihedral angles O2 N−C−C−OH of 73.4 and 88.3°, respectively, which reflect the calculated dihedral angles of the hypothesized final products 5a and 6a.
Collapse
Affiliation(s)
- Janine Fröhlich
- Institut für Pharmazeutische und Medizinische Chemie der Westfälischen Wilhelms-Universität Münster, Münster, Germany
| | - Kirstin Lehmkuhl
- Institut für Pharmazeutische und Medizinische Chemie der Westfälischen Wilhelms-Universität Münster, Münster, Germany
| | - Roland Fröhlich
- Organisch-Chemisches Institut der Universität Münster, Münster, Germany
| | - Bernhard Wünsch
- Institut für Pharmazeutische und Medizinische Chemie der Westfälischen Wilhelms-Universität Münster, Münster, Germany.,Cells-in-Motion Cluster of Excellence (EXC 1003-CiM), Westfälische Wilhelms-Universität Münster, Münster, Germany
| |
Collapse
|
32
|
Zhang LS, Wang J, Chen JC, Tao YM, Wang YH, Xu XJ, Chen J, Xu YG, Xi T, Hu XW, Wang YJ, Liu JG. Novel κ-opioid receptor agonist MB-1C-OH produces potent analgesia with less depression and sedation. Acta Pharmacol Sin 2015; 36:565-71. [PMID: 25816912 DOI: 10.1038/aps.2014.145] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2014] [Accepted: 11/10/2014] [Indexed: 11/09/2022] Open
Abstract
AIM To characterize the pharmacological profiles of a novel κ-opioid receptor agonist MB-1C-OH. METHODS [(3)H]diprenorphine binding and [(35)S]GTPγS binding assays were performed to determine the agonistic properties of MB-1C-OH. Hot plate, tail flick, acetic acid-induced writhing, and formalin tests were conducted in mice to evaluate the antinociceptive actions. Forced swimming and rotarod tests of mice were used to assess the sedation and depression actions. RESULTS In [(3)H]diprenorphine binding assay, MB-1C-OH did not bind to μ- and δ-opioid receptors at the concentration of 100 μmol/L, but showed a high affinity for κ-opioid receptor (Ki=35 nmol/L). In [(35)S]GTPγS binding assay, the compound had an Emax of 98% and an EC50 of 16.7 nmol/L for κ-opioid receptor. Subcutaneous injection of MB-1C-OH had no effects in both hot plate and tail flick tests, but produced potent antinociception in the acetic acid-induced writhing test (ED50=0.39 mg/kg), which was antagonized by pretreatment with a selective κ-opioid receptor antagonist Nor-BNI. In the formalin test, subcutaneous injection of MB-1C-OH did not affect the flinching behavior in the first phase, but significantly inhibited that in the second phase (ED50=0.87 mg/kg). In addition, the sedation or depression actions of MB-1C-OH were about 3-fold weaker than those of the classical κ agonist (-)U50,488H. CONCLUSION MB-1C-OH is a novel κ-opioid receptor agonist that produces potent antinociception causing less sedation and depression.
Collapse
|
33
|
Bourgeois C, Werfel E, Galla F, Lehmkuhl K, Torres-Gómez H, Schepmann D, Kögel B, Christoph T, Straßburger W, Englberger W, Soeberdt M, Hüwel S, Galla HJ, Wünsch B. Synthesis and pharmacological evaluation of 5-pyrrolidinylquinoxalines as a novel class of peripherally restricted κ-opioid receptor agonists. J Med Chem 2014; 57:6845-60. [PMID: 25062506 DOI: 10.1021/jm500940q] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
5-Pyrrolidinyl substituted perhydroquinoxalines were designed as conformationally restricted κ-opioid receptor agonists restricted to the periphery. The additional N atom of the quinoxaline system located outside the ethylenediamine κ pharmacophore allows the fine-tuning of the pharmacodynamic and pharmacokinetic properties. The perhydroquinoxalines were synthesized stereoselectively using the concept of late stage diversification of the central building blocks 14. In addition to high κ-opioid receptor affinity they demonstrate high selectivity over μ, δ, σ1, σ2, and NMDA receptors. In the [35S]GTPγS assay full agonism was observed. Because of their high polarity, the secondary amines 14a (log D7.4=0.26) and 14b (log D7.4=0.21) did not penetrate an artificial blood-brain barrier. 14b was able to inhibit the spontaneous pain reaction after rectal mustard oil application to mice (ED50=2.35 mg/kg). This analgesic effect is attributed to activation of peripherally located κ receptors, since 14b did not affect centrally mediated referred allodynia and hyperalgesia.
Collapse
Affiliation(s)
- Christian Bourgeois
- Institut für Pharmazeutische und Medizinische Chemie, Westfälische Wilhelms-Universität Münster , Corrensstraße 48, D-48149 Münster, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Copp SW, Stone AJ, Yamauchi K, Kaufman MP. Effects of peripheral and spinal κ-opioid receptor stimulation on the exercise pressor reflex in decerebrate rats. Am J Physiol Regul Integr Comp Physiol 2014; 307:R281-9. [PMID: 24920732 DOI: 10.1152/ajpregu.00156.2014] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The exercise pressor reflex is greater in rats with ligated femoral arteries than it is in rats with freely perfused femoral arteries. The exaggerated reflex in rats with ligated arteries is attenuated by stimulation of μ-opioid and δ-opioid receptors on the peripheral endings of thin-fiber muscle afferents. The effect of stimulation of κ-opioid receptors on the exercise pressor reflex is unknown. We tested the hypothesis that stimulation of κ-opioid receptors attenuates the exercise pressor reflex in rats with ligated, but not freely perfused, femoral arteries. The pressor responses to static contraction were compared before and after femoral arterial or intrathecal injection of the κ-opioid receptor agonist U62066 (1, 10, and 100 μg). Femoral arterial injection of U62066 did not attenuate the pressor responses to contraction in either group of rats. Likewise, intrathecal injection of U62066 did not attenuate the pressor response to contraction in rats with freely perfused femoral arteries. In contrast, intrathecal injection of 10 and 100 μg of U62066 attenuated the pressor response to contraction in rats with ligated femoral arteries, an effect that was blocked by prior intrathecal injection of the κ-opioid receptor antagonist nor-binaltorphimine. In rats with ligated femoral arteries, the pressor response to stimulation of peripheral chemoreceptors by sodium cyanide was not changed by intrathecal U62066 injections, indicating that these injections had no direct effect on the sympathetic outflow. We conclude that stimulation of spinal, but not peripheral, κ-opioid receptors attenuates the exaggerated exercise pressor reflex in rats with ligated femoral arteries.
Collapse
Affiliation(s)
- Steven W Copp
- Heart and Vascular Institute, Penn State College of Medicine, Hershey, Pennsylvania
| | - Audrey J Stone
- Heart and Vascular Institute, Penn State College of Medicine, Hershey, Pennsylvania
| | - Katsuya Yamauchi
- Heart and Vascular Institute, Penn State College of Medicine, Hershey, Pennsylvania
| | - Marc P Kaufman
- Heart and Vascular Institute, Penn State College of Medicine, Hershey, Pennsylvania
| |
Collapse
|
35
|
Hughes FM, Shaner BE, Brower JO, Woods RJ, Dix TA. Development of a Peptide-derived orally-active kappa-opioid receptor agonist targeting peripheral pain. THE OPEN MEDICINAL CHEMISTRY JOURNAL 2013; 7:16-22. [PMID: 24222801 PMCID: PMC3821081 DOI: 10.2174/1874104501307010016] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 09/16/2013] [Accepted: 09/24/2013] [Indexed: 11/22/2022]
Abstract
Kappa-opioid agonists are particularly efficacious in the treatment of peripheral pain but suffer from central nervous system (CNS)-mediated effects that limit their development. One promising kappa-agonist is the peptidic compound CR665. Although not orally available, CR665 given i.v. exhibits high peripheral to CNS selectivity and benefits patients with visceral and neuropathic pain. In this study we have generated a series of derivatives of CR665 and screened them for oral activity in the acetic acid-induced rat writhing assay for peripheral pain. Five compounds were further screened for specificity of activation of kappa receptors as well as agonism and antagonism at mu and delta receptors, which can lead to off-target effects. All active derivatives engaged the kappa receptor with EC50s in the low nM range while agonist selectivity for kappa over mu or delta was >11,000-200,000-fold. No antagonist activity was detected. One compound was chosen for further analysis (Compound 9). An oral dose response of 9 in rats yielded an EC50 of 4.7 mg/kg, approaching a druggable level for an oral analgesic. To assess the peripheral selectivity of this compound an i.v. dose response in rats was assessed in the writhing assay and hotplate assay (an assay of CNS-mediated pain). The EC50 in the writhing assay was 0.032 mg/kg while no activity was detectable in the hotplate assay at doses as high as 30 mg/kg, indicating a peripheral selectivity of >900-fold. We propose that compound 9 is a candidate for development as an orally-available peripherally-restricted kappa agonist.
Collapse
Affiliation(s)
- Francis M Hughes
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, Medical University of South Carolina Campus, 280 Calhoun Street, P. O. Box 250140, Charleston, SC 29425-2303, USA; ; Argolyn Bioscience, Inc. 2530 Meridian Parkway, Suite 200, Durham, NC 27713, USA; ; Halimed Pharmaceuticals Inc.,300 West Coleman Blvd. Suite 203, Mt. Pleasant, SC 29464, USA
| | | | | | | | | |
Collapse
|
36
|
Trevisan G, Rossato MF, Walker CIB, Oliveira SM, Rosa F, Tonello R, Silva CR, Machado P, Boligon AA, Martins MAP, Zanatta N, Bonacorso HG, Athayde ML, Rubin MA, Calixto JB, Ferreira J. A novel, potent, oral active and safe antinociceptive pyrazole targeting kappa opioid receptors. Neuropharmacology 2013; 73:261-73. [PMID: 23791558 DOI: 10.1016/j.neuropharm.2013.06.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Revised: 05/28/2013] [Accepted: 06/06/2013] [Indexed: 11/26/2022]
Abstract
Pyrazole compounds are an intriguing class of compounds with potential analgesic activity; however, their mechanism of action remains unknown. Thus, the goal of this study was to explore the antinociceptive potential, safety and mechanism of action of novel 1-pyrazole methyl ester derivatives, which were designed by molecular simplification, using in vivo and in vitro methods in mice. First, tree 1-pyrazole methyl ester derivatives (DMPE, MPFE, and MPCIE) were tested in the capsaicin test and all presented antinociceptive effect; however the MPClE (methyl 5-trichloromethyl-3-methyl-1H-pyrazole-1-carboxylate) was the most effective. Thus, we selected this compound to assess the effects and mechanisms in subsequent pain models. MPCIE produced antinociception when administered by oral, intraperitoneal, intrathecal and intraplantar routes and was effective in the capsaicin and the acetic acid-induced nociception tests. Moreover, this compound reduced the hyperalgesia in diverse clinically-relevant pain models, including postoperative, inflammatory, and neuropathic nociception in mice. The antinociception produced by orally administered MPClE was mediated by κ-opioid receptors, since these effects were prevented by systemically pre-treatment with naloxone and the κ-opioid receptor antagonist nor-binaltorphimine. Moreover, MPCIE prevented binding of the κ-opioid ligand [(3)H]-CI-977 in vitro (IC₅₀ of 0.68 (0.32-1.4) μM), but not the TRPV1 ([(3)H]-resiniferatoxin) or the α₂-adrenoreceptor ([(3)H]-idazoxan) binding. Regarding the drug-induced side effects, oral administration of MPClE did not produce sedation, constipation or motor impairment at its active dose. In addition, MPCIE was readily absorbed after oral administration. Taken together, these results demonstrate that MPClE is a novel, potent, orally active and safe analgesic drug that targets κ-opioid receptors.
Collapse
Affiliation(s)
- Gabriela Trevisan
- Graduate Program in Biological Sciences - Toxicological Biochemistry, Department of Chemistry, Federal University of Santa Maria, 97105-900 Santa Maria, RS, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Auh QS, Ro JY. Effects of peripheral κ opioid receptor activation on inflammatory mechanical hyperalgesia in male and female rats. Neurosci Lett 2012; 524:111-5. [PMID: 22819973 DOI: 10.1016/j.neulet.2012.07.018] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Revised: 07/02/2012] [Accepted: 07/11/2012] [Indexed: 12/30/2022]
Abstract
Activation of peripheral κ opioid receptors (KOR) effectively relieves pain and hyperalgesia in preclinical and clinical models of pain. Although centrally located KOR activation results in sexually dimorphic effects, it is unclear whether peripheral KOR also produces sex dependent effects in persistent inflammatory pain conditions. In this study, we investigated whether local administration of a specific KOR agonist, U50, 488 relieve mechanical hyperalgesia induced by the injection of complete Freund's adjuvant (CFA) in the rat hindpaw, and whether there are sex differences. The effects of U50, 488 were assessed three days after the induction of CFA-induced inflammation, a time point at which mechanical hyperalgesia was most prominent. There were no sex differences in baseline and CFA-induced changes in mechanical thresholds between male and female rats. Local treatment of U50, 488 produced moderate, but significant, anti-hyperalgesia in both male and female rats. However, U50, 488 was significantly more effective in male rats at the highest dose of U50, 488. We confirmed that the highest dose of U50, 488 used in this study did not produce systemic effects, and that the drug effect is receptor specific. On the basis of these results, we suggest that local KOR agonists are effective in mitigating mechanical hyperalgesia under a persistent inflammatory pain condition and that sex differences in anti-hyperalgesic effects become more evident at high doses.
Collapse
Affiliation(s)
- Q-Schick Auh
- Kyung Hee University School of Dentistry, Department of Oral Medicine, Hoegi Dong, Dongdaemun Gu, Seoul, Republic of Korea
| | | |
Collapse
|
38
|
Aldrich JV, McLaughlin JP. Opioid Peptides: Potential for Drug Development. DRUG DISCOVERY TODAY. TECHNOLOGIES 2012; 9:e1-e70. [PMID: 23316256 DOI: 10.1016/j.ddtec.2011.07.007] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Opioid receptors are important targets for the treatment of pain and potentially for other disease states (e.g. mood disorders and drug abuse) as well. Significant recent advances have been made in identifying opioid peptide analogs that exhibit promising in vivo activity for treatment of these maladies. This review focuses on the development and evaluation of opioid peptide analogs demonstrating activity after systemic administration, and recent clinical evaluations of opioid peptides for possible therapeutic use.
Collapse
Affiliation(s)
- Jane V Aldrich
- Department of Medicinal Chemistry, The University of Kansas, Lawrence, KS 66045
| | | |
Collapse
|
39
|
Negus SS, O'Connell R, Morrissey E, Cheng K, Rice KC. Effects of peripherally restricted κ opioid receptor agonists on pain-related stimulation and depression of behavior in rats. J Pharmacol Exp Ther 2011; 340:501-9. [PMID: 22128346 DOI: 10.1124/jpet.111.186783] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
κ opioid receptor agonists that do not readily cross the blood-brain barrier are peripherally restricted and distribute poorly to the central nervous system after systemic administration. Peripherally restricted κ agonists have promise as candidate analgesics, because they may produce antinociception mediated by peripheral κ receptors more potently than they produce undesirable sedative and psychotomimetic effects mediated by central κ receptors. The present study used assays of pain-related stimulation and depression of behavior in rats to compare effects of 1) two peripherally restricted κ agonists [the tetrapeptide D-Phe-D-Phe-D-Ile-D-Arg-NH(2) (ffir) and the nonpeptidic compound ((R,S)-N-[2-(N-methyl-3,4-dichlorophenylacetamido)-2-(3-carboxyphenyl)-ethyl]pyrrolidine hydrochloride (ICI204448)], 2) a centrally penetrating κ agonist (salvinorin A), and 3) several reference drugs, including a nonsteroidal anti-inflammatory drug (NSAID; ketoprofen). Intraperitoneal injection of dilute lactic acid served as a noxious stimulus to stimulate a stretching response and depress intracranial self-stimulation (ICSS) maintained by the delivery of electrical brain stimulation to the medial forebrain bundle. Acid-stimulated stretching was blocked by ketoprofen, the peripherally restricted κ agonists, and salvinorin A. However, acid-induced depression of ICSS was blocked only by ketoprofen. The peripherally restricted κ agonists had little effect, and salvinorin A exacerbated acid-induced depression of ICSS. These results suggest that peripherally restricted κ agonists may be safer than centrally penetrating κ agonists but less efficacious than NSAIDS or μ opioid receptor agonists to block pain-related depression of behavior; however, the peripheral selectivity of ffir and ICI204448 is limited, and future studies with κ agonists capable of greater peripheral selectivity are warranted.
Collapse
Affiliation(s)
- S Stevens Negus
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, 410 N. 12th Street, Richmond, VA 23220, USA.
| | | | | | | | | |
Collapse
|
40
|
Mercadante S, Tirelli W, David F, Arcara C, Fulfaro F, Casuccio A, Gebbia V. Morphine versus oxycodone in pancreatic cancer pain: a randomized controlled study. Clin J Pain 2010; 26:794-797. [PMID: 20973155 DOI: 10.1097/ajp.0b013e3181ecd895] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
OBJECTIVE According to experimental findings, oxycodone (OX) could have some advantages over morphine (MO) in clinical models of visceral pain. It was hypothesized that OX could have some advantages over MO in terms of efficacy and dose escalation in pancreatic cancer pain. METHODS Sixty patients with pancreatic cancer with a pain intensity rating of 4/10 who required opioids were included in the study. Patients were randomized to receive 30 mg/d of sustained release oral MO or sustained release oral OX (20 mg/d). Opioid doses were increased according to the clinical needs. Daily doses of opioids, pain and symptom intensity were recorded at admission (T0) and at weekly intervals for the subsequent 4 weeks (T1, T2, T3, and T4), with an extension at 8 weeks (T8). Opioid escalation index (OEI) as percentage (OEI %) and in mg (OEI mg) was calculated. RESULTS Nineteen and 20 patients in groups OX and MO, respectively, were followed for the entire period of study (T4). No differences between groups were found in age (P=0.400), Karnofsky (P=0.667), or escalation indexes at T4 and T8 (OEImg, P=0.945 and OEI %, P=0.295). No statistical differences in pain and symptoms intensity between the groups were observed. CONCLUSION OX and MO provided similar analgesia and adverse effects with similar escalating doses in patients with pancreatic cancer pain, resembling observations reported in the general cancer pain population. The experimental hypothesis that OX would be superior to MO in the clinical model of pancreatic cancer pain was not confirmed.
Collapse
Affiliation(s)
- Sebastiano Mercadante
- Anesthesia and Intensive Care Unit & Pain Relief and Palliative Care Unit, La Maddalena Cancer Center, Via san Lorenzo 312, 90146 Palermo, Italy.
| | | | | | | | | | | | | |
Collapse
|
41
|
Davis MP. Opioid receptor targeting ligands for pain management: a review and update. Expert Opin Drug Discov 2010; 5:1007-22. [DOI: 10.1517/17460441.2010.511473] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
42
|
Hughes FM, Shaner BE, May LA, Zotian L, Brower JO, Woods RJ, Cash M, Morrow D, Massa F, Mazella J, Dix TA. Identification and functional characterization of a stable, centrally active derivative of the neurotensin (8-13) fragment as a potential first-in-class analgesic. J Med Chem 2010; 53:4623-32. [PMID: 20481538 DOI: 10.1021/jm100092s] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The neurotensin hexapapetide fragment NT(8-13) is a potent analgesic when administered directly to the central nervous system but does not cross the blood-brain barrier. A total of 43 novel derivatives of NT(8-13) were evaluated, with one, ABS212 (1), being most active in four rat models of pain when administered peripherally. Compound 1 binds to human neurotensin receptors 1 and 2 with IC(50) of 10.6 and 54.2 nM, respectively, and tolerance to the compound in a rat pain model did not develop after 12 days of daily administration. When it was administered peripherally, serum levels and neurotensin receptor binding potency of 1 peaked within 5 min and returned to baseline within 90-120 min; however, analgesic activity remained near maximum for >240 min. This could be due to its metabolism into an active fragment; however, all 4- and 5-mer hydrolysis products were inactive. This pharmacokinetic/pharmacodynamic dichotomy is discussed. Compound 1 is a candidate for development as a first-in-class analgesic.
Collapse
Affiliation(s)
- Francis M Hughes
- Department of Pharmaceutical and Biomedical Sciences, South Carolina College of Pharmacy, Medical University of South Carolina Campus, 280 Calhoun Street, Charleston, South Carolina 29425-2303, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Opioid receptors and opioid peptide-producing leukocytes in inflammatory pain--basic and therapeutic aspects. Brain Behav Immun 2010; 24:683-94. [PMID: 19879349 DOI: 10.1016/j.bbi.2009.10.013] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2009] [Revised: 10/22/2009] [Accepted: 10/24/2009] [Indexed: 12/12/2022] Open
Abstract
This review summarizes recent findings on neuro-immune mechanisms underlying opioid-mediated inhibition of pain. The focus is on events occurring in peripheral injured tissues that lead to the sensitization and excitation of primary afferent neurons, and on the modulation of such mechanisms by immune cell-derived opioid peptides. Primary afferent neurons are of particular interest from a therapeutic perspective because they are the initial generators of impulses relaying nociceptive information towards the spinal cord and the brain. Thus, if one finds ways to inhibit the sensitization and/or excitation of peripheral sensory neurons, subsequent central events such as wind-up, sensitization and plasticity may be prevented. This is in part achieved by endogenously released immune cell-derived opioid peptides within inflamed tissue. In addition, exogenous opioid receptor ligands that selectively modulate primary afferent function and do not cross the blood-brain barrier, avoid centrally mediated untoward side effects of conventional analgesics (e.g., opioids, anticonvulsants). This article discusses peripheral opioid receptors and their signaling pathways, opioid peptide-producing/secreting inflammatory cells and arising therapeutic perspectives.
Collapse
|
44
|
Abstract
Similar to mu opioid receptors, kappa and delta opioid receptors reside in the periphery, the dorsal root ganglion, the spinal cord, and in supraspinal regions associated with pain modulation. Both delta and kappa opioid agonists have been shown to activate pain inhibitory pathways in the central nervous system. Yet, currently there are only a few pharmacologic agents that target kappa receptors, and none that target delta receptors. Spurred by the need for an efficacious analgesic without the unwanted side effects associated with the typical clinical profile of mu opioid agonists, new research has provided insight into why the development of effective kappa and delta opioid receptor agonists has remained elusive thus far, and importantly, how these obstacles may be overcome. For example, for delta opioid agonists to be effective, a state of inflammation may be required as this induces delta opioid receptors to migrate to the surface of neuronal cells and thereby become accessible to delta opioid agonists. Studies have shown that delta opioid agonists can provide relief of inflammatory pain and malignant bone pain. Meanwhile, peripherally restricted kappa opioid agonists have been developed to target kappa opioid receptors located on visceral and somatic afferent nerves for relief of inflammatory, visceral, and neuropathic chronic pain. The recently shown efficacy of these analgesics combined with a possible lower abuse potential and side effect burden than mu opioid receptor agonists makes delta and peripherally restricted kappa opioid receptor agonists promising targets for treating pain.
Collapse
|
45
|
Aldrich JV, McLaughlin JP. Peptide kappa opioid receptor ligands: potential for drug development. AAPS JOURNAL 2009; 11:312-22. [PMID: 19430912 DOI: 10.1208/s12248-009-9105-4] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2009] [Accepted: 03/26/2009] [Indexed: 11/30/2022]
Abstract
While narcotic analgesics such as morphine, which act preferentially through mu opioid receptors, remain the gold standard in the treatment of severe pain, their use is limited by detrimental liabilities such as respiratory depression and drug dependence. Thus, there has been considerable interest in developing ligands for kappa opioid receptors (KOR) as potential analgesics and for the treatment of a variety of other disorders. These include effects mediated both by central receptors, such as antidepressant activity and a reduction in cocaine-seeking behavior, and activity resulting from the activation of peripheral receptors, such as analgesic and anti-inflammatory effects. While the vast majority of opioid receptor ligands that have progressed in preclinical development have been small molecules, significant advances have been made in recent years in identifying opioid peptide analogs that exhibit promising in vivo activity. This review will focus on possible therapeutic applications of ligands for KOR and specifically on the potential development of peptide ligands for these receptors.
Collapse
Affiliation(s)
- Jane V Aldrich
- Department of Medicinal Chemistry, University of Kansas, 1251 Wescoe Hall Dr., 4050 Malott Hall, Lawrence, Kansas 66045, USA.
| | | |
Collapse
|
46
|
Stein C, Clark JD, Oh U, Vasko MR, Wilcox GL, Overland AC, Vanderah TW, Spencer RH. Peripheral mechanisms of pain and analgesia. ACTA ACUST UNITED AC 2008; 60:90-113. [PMID: 19150465 DOI: 10.1016/j.brainresrev.2008.12.017] [Citation(s) in RCA: 186] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/29/2008] [Indexed: 12/23/2022]
Abstract
This review summarizes recent findings on peripheral mechanisms underlying the generation and inhibition of pain. The focus is on events occurring in peripheral injured tissues that lead to the sensitization and excitation of primary afferent neurons, and on the modulation of such mechanisms. Primary afferent neurons are of particular interest from a therapeutic perspective because they are the initial generator of noxious impulses traveling towards relay stations in the spinal cord and the brain. Thus, if one finds ways to inhibit the sensitization and/or excitation of peripheral sensory neurons, subsequent central events such as wind-up, sensitization and plasticity may be prevented. Most importantly, if agents are found that selectively modulate primary afferent function and do not cross the blood-brain-barrier, centrally mediated untoward side effects of conventional analgesics (e.g. opioids, anticonvulsants) may be avoided. This article begins with the peripheral actions of opioids, turns to a discussion of the effects of adrenergic co-adjuvants, and then moves on to a discussion of pro-inflammatory mechanisms focusing on TRP channels and nerve growth factor, their signaling pathways and arising therapeutic perspectives.
Collapse
Affiliation(s)
- Christoph Stein
- Department of Anesthesiology and Critical Care Medicine, Charité Campus Benjamin Franklin, Freie Universität Berlin, Germany
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Tao YM, Li QL, Zhang CF, Xu XJ, Chen J, Ju YW, Chi ZQ, Long YQ, Liu JG. LPK-26, a novel kappa-opioid receptor agonist with potent antinociceptive effects and low dependence potential. Eur J Pharmacol 2008; 584:306-11. [PMID: 18353307 DOI: 10.1016/j.ejphar.2008.02.028] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2007] [Revised: 02/02/2008] [Accepted: 02/13/2008] [Indexed: 11/30/2022]
Abstract
Analgesics such as morphine cause many side effects including addiction, but kappa-opioid receptor agonist can produce antinociception without morphine-like side effects. With the aim of developing new and potent analgesics with lower abuse potential, we studied the antinociceptive and physical dependent properties of a derivate of ICI-199441, an analogue of (-)U50,488H, named (2-(3,4-dichloro)-phenyl)-N-methyl-N-[(1S)-1-(2-isopropyl)-2-(1-(3-pyrrolinyl))ethyl] acetamides (LPK-26). LPK-26 showed a high affinity to kappa-opioid receptor with the Ki value of 0.64 nM and the low affinities to micro-opioid receptor and delta-opioid receptor with the Ki values of 1170 nM and >10,000 nM, respectively. It stimulated [(35)S]GTPgammaS binding to G-proteins with an EC50 value of 0.0094 nM. In vivo, LPK-26 was more potent than (-)U50,488H and morphine in analgesia, with the ED50 values of 0.049 mg/kg and 0.0084 mg/kg in hot plat and acetic acid writhing tests, respectively. Moreover, LPK-26 failed to induce physical dependence, but it could suppress naloxone-precipitated jumping in mice when given simultaneously with morphine. Taken together, our results show that LPK-26 is a novel selective kappa-opioid receptor agonist with highly potent antinociception effects and low physical dependence potential. It may be valuable for the development of analgesic and drug that can be used to reduce morphine-induced physical dependence.
Collapse
Affiliation(s)
- Yi-Min Tao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 201203, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Novel D-amino acid tetrapeptides produce potent antinociception by selectively acting at peripheral kappa-opioid receptors. Eur J Pharmacol 2008; 583:62-72. [PMID: 18282565 DOI: 10.1016/j.ejphar.2008.01.011] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2007] [Revised: 12/17/2007] [Accepted: 01/14/2008] [Indexed: 11/24/2022]
Abstract
Kappa-(kappa) opioid receptors are widely distributed in the periphery and activation results in antinociception; however supraspinal acting kappa-agonists result in unwanted side effects. Two novel, all d-amino acid, tetrapeptide kappa-opioid receptor agonists, FE 200665 and FE 200666, were identified and compared to brain penetrating (enadoline) and peripherally selective (asimadoline) kappa-agonists as potential analgesics lacking unwanted central nervous system (CNS) side effects. In vitro characterization was performed using radioligand binding and GTP gamma S binding. Antinociception was evaluated in both mice and rats. Rotarod tests were performed to determine motor impairment effects of the kappa-agonists. FE 200665 and FE 200666 showed high affinity for human kappa-opioid receptor 1 (Ki of 0.24 nM and 0.08 nM, respectively) and selectivity for human kappa-opioid receptor 1 (human kappa-opioid receptor 1/human mu-opioid receptor/human delta-opioid receptor selectivity ratios of 1/16,900/84,600 and 1/88,600/>1,250,000, respectively). Both compounds demonstrated agonist activity in the human kappa-opioid receptor 1 [35S]GTP gamma S binding assay (EC50 of 0.08 nM and 0.03 nM) and resulted in dose-related antinociception in the mouse writhing test (A50: 0.007 and 0.013 mg/kg, i.v., respectively). Markedly higher doses of FE 200665 and FE 200666 were required to induce centrally-mediated effects in the rotarod assay (548- and 182-fold higher doses, respectively), and antinociception determined in the mouse tail-flick assay (>1429- and 430-fold fold higher doses, respectively) after peripheral administration supporting a peripheral site of action. The potency ratios between central and peripheral activity suggest a therapeutic window significantly higher than previous kappa-agonists. Furthermore, FE 200665 has entered into clinical trials with great promise as a novel analgesic lacking unwanted side effects seen with current therapeutics.
Collapse
|
49
|
Houghten RA, Pinilla C, Giulianotti MA, Appel JR, Dooley CT, Nefzi A, Ostresh JM, Yu Y, Maggiora GM, Medina-Franco JL, Brunner D, Schneider J. Strategies for the use of mixture-based synthetic combinatorial libraries: scaffold ranking, direct testing in vivo, and enhanced deconvolution by computational methods. ACTA ACUST UNITED AC 2007; 10:3-19. [PMID: 18067268 DOI: 10.1021/cc7001205] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Richard A Houghten
- Torrey Pines Institute for Molecular Studies, 3550 General Atomics Court, San Diego, California 92121, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Curatolo M, Arendt-Nielsen L, Petersen-Felix S. Central Hypersensitivity in Chronic Pain: Mechanisms and Clinical Implications. Phys Med Rehabil Clin N Am 2006; 17:287-302. [PMID: 16616268 DOI: 10.1016/j.pmr.2005.12.010] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The available literature consistently shows increased pain sensitivity after sensory stimulation of healthy tissues in patients who have various chronic pain conditions. This indicates a state of hypersensitivity of the CNS that amplifies the nociceptive input arising from damaged tissues. Experimental data indicate that central hypersensitivity is probably induced primarily by nociceptive input arising from a diseased tissue. In patients, imbalance of descending modulatory systems connected with psychologic distress may play a role. There is experimental support in animal studies for the persistence of central hypersensitivity after complete resolution of tissue damage. This is particularly true for neuropathic pain conditions, whereby potentially irreversible plasticity changes of the CNS have been documented in animal studies. Whether such changes are present in musculoskeletal pain states is at present uncertain. Despite the likely importance of central hypersensitivity in the pathophysiology of chronic pain, this mechanism should not be used to justify the lack of understanding on the anatomic origin of the pain complaints in several pain syndromes, which is mostly due to limitations of the available diagnostic tools. Treatment strategies for central hypersensitivity in patients have been investigated mostly in neuropathic pain states. Possible therapy modalities for central hypersensitivity in chronic pain of musculoskeletal origin are largely unexplored. The limited evidence available and everyday practice show, at best, modest efficacy of the available treatment modalities for central hypersensitivity. The gap between basic knowledge and clinical benefits remains large and should stimulate further intensive research.
Collapse
Affiliation(s)
- Michele Curatolo
- Department of Anesthesiology, Division of Pain Therapy, Inselspital, 3010 Bern, Switzerland.
| | | | | |
Collapse
|