1
|
Brennan F. The Pathogenesis of CKD-Associated Pruritus: A Theoretical Model and Relevance for Treatment. KIDNEY360 2024; 5:1727-1738. [PMID: 39230964 DOI: 10.34067/kid.0000000573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 08/30/2024] [Indexed: 09/06/2024]
Abstract
Our understanding of the pathogenesis of uremic pruritus (also known as CKD-associated pruritus [CKD-aP]) remains elusive. Although multiple discrete changes in the immunochemical milieu of the skin of patients with CKD-aP have been described, a coherent theory of mechanism is absent. This article proposes a theoretical model of mechanism. It concentrates on the initiation phase of CKD-aP and its three parts: ( 1 ) genesis, triggered by first precipitants; ( 2 ) cascade of cytokine release that follows and the cross-talking of multiple skin cells with each other and afferent nerve fibers; and ( 3 ) enhancement. The limitation of the model will be described and ideas for future research proposed. Implications for management shall be examined.
Collapse
Affiliation(s)
- Frank Brennan
- Department of Nephrology, St George Hospital, Sydney, New South Wales, Australia
| |
Collapse
|
2
|
Chiocchetti R, De Silva M, Aspidi F, Cunha RZ, Gobbo F, Tagliavia C, Sarli G, Morini M. Distribution of Cannabinoid Receptors in Keratinocytes of Healthy Dogs and Dogs With Atopic Dermatitis. Front Vet Sci 2022; 9:915896. [PMID: 35873682 PMCID: PMC9305491 DOI: 10.3389/fvets.2022.915896] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 06/20/2022] [Indexed: 01/15/2023] Open
Abstract
It is commonly accepted that some form of skin barrier dysfunction is present in canine atopic dermatitis (AD), one of the most common cutaneous pruritic inflammatory diseases of dogs. The impaired skin barrier function facilitates the penetration of allergens and subsequently stronger sensitization responses. The role of the endocannabinoid system (ECS) in the physiology and pathology of the skin is becoming increasingly established. It has been demonstrated that cannabinoid receptors are expressed in healthy and diseased skin and, based on current knowledge, it could be stated that cannabinoids are important mediators in the skin. The present study has been designed to immunohistochemically investigate the expression of the cannabinoid receptors type 1 (CB1R) and 2 (CB2R) and the cannabinoid-related receptors G protein-coupled receptor 55 (GPR55), transient receptor potential vanilloid 1 (TRPV1) and ankyrin 1 (TRPA1), peroxisome proliferator-activated receptors alpha (PPARα), and serotoninergic receptor 1a (5-HT1aR) in keratinocytes of healthy dogs and of dogs with AD. Samples of skin tissues were collected from 7 healthy controls (CTRL-dogs) and from 8 dogs with AD (AD-dogs). The tissue samples were processed using an immunofluorescence assay with commercially available antibodies, and the immunolabelling of the receptors studied was quantitatively evaluated. The keratinocytes of the CTRL- and the AD-dogs showed immunoreactivity for all the receptors investigated with a significant upregulation of CB2R, TRPA1, and 5-HT1aR in the epidermis of the AD-dogs. The presence of cannabinoid and cannabinoid-related receptors in healthy keratinocytes suggested the possible role of the ECS in canine epidermal homeostasis while their overexpression in the inflamed tissues of the AD-dogs suggested the involvement of the ECS in the pathogenesis of this disease, having a possible role in the related skin inflammation and itching. Based on the present findings, the ECS could be considered a potential therapeutic target for dogs with AD.
Collapse
|
3
|
Mizobuchi H, Yamamoto K, Yamashita M, Inagawa H, Kohchi C, Soma GI. Prevention of streptozotocin‑induced Neuro‑2a cell death by C8‑B4 microglia transformed with repetitive low‑dose lipopolysaccharide. Mol Med Rep 2021; 24:687. [PMID: 34328201 DOI: 10.3892/mmr.2021.12328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 06/29/2021] [Indexed: 11/05/2022] Open
Abstract
Diabetes‑associated neuronal dysfunction (DAND) is one of the serious complications of diabetes, but there is currently no remedy for it. Streptozotocin [2‑deoxy‑2‑(3‑methy1‑3‑nitrosoureido) D‑glucopyranose; STZ] is one of the most well‑established diabetes inducers and has been used in vivo and in vitro DAND models. The aim of the present study was to demonstrate that C8‑B4 microglia transformed by the stimulus of repetitive low‑dose lipopolysaccharide (LPSx3‑microglia) prevent STZ‑induced Neuro‑2a neuronal cell death in vitro. The ELISA results showed that neurotrophin‑4/5 (NT‑4/5) secretion was promoted in LPSx3‑microglia and the cell viability assay with trypan blue staining revealed that the culture supernatant of LPSx3‑microglia prevented STZ‑induced neuronal cell death. In addition, reverse transcription‑quantitative PCR showed that neurons treated with the culture supernatant of LPSx3‑microglia promoted the gene expression of B‑cell lymphoma‑extra large and glucose‑dependent insulinotropic polypeptide receptor. Furthermore, the inhibition of tyrosine kinase receptor B, a receptor of NT‑4/5, suppressed the neuroprotective effect of LPSx3‑microglia. Taken together, the present study demonstrated that LPSx3‑microglia prevent STZ‑induced neuronal death and that NT‑4/5 may be involved in the neuroprotective mechanism of LPSx3‑microglia.
Collapse
Affiliation(s)
- Haruka Mizobuchi
- Control of Innate Immunity, Collaborative Innovation Partnership, Takamatsu‑shi, Kagawa 761‑0301, Japan
| | - Kazushi Yamamoto
- Control of Innate Immunity, Collaborative Innovation Partnership, Takamatsu‑shi, Kagawa 761‑0301, Japan
| | - Masashi Yamashita
- Control of Innate Immunity, Collaborative Innovation Partnership, Takamatsu‑shi, Kagawa 761‑0301, Japan
| | - Hiroyuki Inagawa
- Control of Innate Immunity, Collaborative Innovation Partnership, Takamatsu‑shi, Kagawa 761‑0301, Japan
| | - Chie Kohchi
- Control of Innate Immunity, Collaborative Innovation Partnership, Takamatsu‑shi, Kagawa 761‑0301, Japan
| | - Gen-Ichiro Soma
- Control of Innate Immunity, Collaborative Innovation Partnership, Takamatsu‑shi, Kagawa 761‑0301, Japan
| |
Collapse
|
4
|
Pramanik S, Sulistio YA, Heese K. Neurotrophin Signaling and Stem Cells-Implications for Neurodegenerative Diseases and Stem Cell Therapy. Mol Neurobiol 2016; 54:7401-7459. [PMID: 27815842 DOI: 10.1007/s12035-016-0214-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 10/11/2016] [Indexed: 02/07/2023]
Abstract
Neurotrophins (NTs) are members of a neuronal growth factor protein family whose action is mediated by the tropomyosin receptor kinase (TRK) receptor family receptors and the p75 NT receptor (p75NTR), a member of the tumor necrosis factor (TNF) receptor family. Although NTs were first discovered in neurons, recent studies have suggested that NTs and their receptors are expressed in various types of stem cells mediating pivotal signaling events in stem cell biology. The concept of stem cell therapy has already attracted much attention as a potential strategy for the treatment of neurodegenerative diseases (NDs). Strikingly, NTs, proNTs, and their receptors are gaining interest as key regulators of stem cells differentiation, survival, self-renewal, plasticity, and migration. In this review, we elaborate the recent progress in understanding of NTs and their action on various stem cells. First, we provide current knowledge of NTs, proNTs, and their receptor isoforms and signaling pathways. Subsequently, we describe recent advances in the understanding of NT activities in various stem cells and their role in NDs, particularly Alzheimer's disease (AD) and Parkinson's disease (PD). Finally, we compile the implications of NTs and stem cells from a clinical perspective and discuss the challenges with regard to transplantation therapy for treatment of AD and PD.
Collapse
Affiliation(s)
- Subrata Pramanik
- Graduate School of Biomedical Science and Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 133-791, Republic of Korea
| | - Yanuar Alan Sulistio
- Graduate School of Biomedical Science and Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 133-791, Republic of Korea
| | - Klaus Heese
- Graduate School of Biomedical Science and Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 133-791, Republic of Korea.
| |
Collapse
|
5
|
Yang IJ, Lee DU, Shin HM. Anti-inflammatory and antioxidant effects of coumarins isolated fromFoeniculum vulgarein lipopolysaccharide-stimulated macrophages and 12-O-tetradecanoylphorbol-13-acetate-stimulated mice. Immunopharmacol Immunotoxicol 2015; 37:308-17. [DOI: 10.3109/08923973.2015.1038751] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
6
|
Bikbova G, Oshitari T, Baba T, Yamamoto S. Altered Expression of NF- κ B and SP1 after Exposure to Advanced Glycation End-Products and Effects of Neurotrophic Factors in AGEs Exposed Rat Retinas. J Diabetes Res 2015; 2015:543818. [PMID: 26078979 PMCID: PMC4452840 DOI: 10.1155/2015/543818] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 04/04/2015] [Accepted: 04/04/2015] [Indexed: 12/31/2022] Open
Abstract
To determine the effect of advanced glycation end-products (AGEs) on neurite regeneration, and also to determine the regenerative effects of different neurotrophic factors (NTFs) on rat retinal explants, the retinas of SD rats were cultured in three-dimensional collagen gels and incubated in 6 types of media: (1) serum-free control culture media; (2) 100 μg/mL AGEs-BSA media; (3) AGEs-BSA + 100 ng/mL neurotrophin-4 (NT-4) media; (4) AGEs-BSA + 100 ng/mL hepatocyte growth factor media; (5) AGEs-BSA + 100 ng/mL glial cell line-derived neurotrophic factor media; or (6) AGEs-BSA + 100 µM tauroursodeoxycholic acid media. After 7 days, the number of regenerating neurites was counted. The explants were immunostained for nuclear factor-κB (NF-κB) and specificity protein 1 (SP1). Statistical analyses were performed by one-way ANOVA. In retinas incubated with AGEs, the numbers of neurites were fewer than in control. All of the NTFs increased the number of neurites, and the increase was more significant in the NT-4 group. The number of NF-κB and SP1 immunopositive cells was higher in retinas exposed to AGEs than in control. All of the NTFs decreased the number of NF-κB immunopositive cells but did not significantly affect SP1 expression. These results demonstrate the potential of the NTFs as axoprotectants in AGEs exposed retinal neurons.
Collapse
Affiliation(s)
- Guzel Bikbova
- Department of Ophthalmology and Visual Science, Chiba University Graduate School of Medicine, Inohana 1-8-1, Chuo-ku, Chiba, Chiba Prefecture 260-8670, Japan
| | - Toshiyuki Oshitari
- Department of Ophthalmology and Visual Science, Chiba University Graduate School of Medicine, Inohana 1-8-1, Chuo-ku, Chiba, Chiba Prefecture 260-8670, Japan
- *Toshiyuki Oshitari:
| | - Takayuki Baba
- Department of Ophthalmology and Visual Science, Chiba University Graduate School of Medicine, Inohana 1-8-1, Chuo-ku, Chiba, Chiba Prefecture 260-8670, Japan
| | - Shuichi Yamamoto
- Department of Ophthalmology and Visual Science, Chiba University Graduate School of Medicine, Inohana 1-8-1, Chuo-ku, Chiba, Chiba Prefecture 260-8670, Japan
| |
Collapse
|
7
|
Mead B, Logan A, Berry M, Leadbeater W, Scheven BA. Paracrine-mediated neuroprotection and neuritogenesis of axotomised retinal ganglion cells by human dental pulp stem cells: comparison with human bone marrow and adipose-derived mesenchymal stem cells. PLoS One 2014; 9:e109305. [PMID: 25290916 PMCID: PMC4188599 DOI: 10.1371/journal.pone.0109305] [Citation(s) in RCA: 179] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 09/10/2014] [Indexed: 12/16/2022] Open
Abstract
We have investigated and compared the neurotrophic activity of human dental pulp stem cells (hDPSC), human bone marrow-derived mesenchymal stem cells (hBMSC) and human adipose-derived stem cells (hAMSC) on axotomised adult rat retinal ganglion cells (RGC) in vitro in order to evaluate their therapeutic potential for neurodegenerative conditions of RGC. Using the transwell system, RGC survival and length/number of neurites were quantified in coculture with stem cells in the presence or absence of specific Fc-receptor inhibitors to determine the role of NGF, BDNF, NT-3, VEGF, GDNF, PDGF-AA and PDGF-AB/BB in stem cell-mediated RGC neuroprotection and neuritogenesis. Conditioned media, collected from cultured hDPSC/hBMSC/hAMSC, were assayed for the secreted growth factors detailed above using ELISA. PCR array determined the hDPSC, hBMSC and hAMSC expression of genes encoding 84 growth factors and receptors. The results demonstrated that hDPSC promoted significantly more neuroprotection and neuritogenesis of axotomised RGC than either hBMSC or hAMSC, an effect that was neutralized after the addition of specific Fc-receptor inhibitors. hDPSC secreted greater levels of various growth factors including NGF, BDNF and VEGF compared with hBMSC/hAMSC. The PCR array confirmed these findings and identified VGF as a novel potentially therapeutic hDPSC-derived neurotrophic factor (NTF) with significant RGC neuroprotective properties after coculture with axotomised RGC. In conclusion, hDPSC promoted significant multi-factorial paracrine-mediated RGC survival and neurite outgrowth and may be considered a potent and advantageous cell therapy for retinal nerve repair.
Collapse
Affiliation(s)
- Ben Mead
- Neurotrauma Research Group, Neurobiology Section, School of Clinical and Experimental Medicine, University of Birmingham, Birmingham, United Kingdom
- School of Dentistry, University of Birmingham, Birmingham, United Kingdom
- * E-mail:
| | - Ann Logan
- Neurotrauma Research Group, Neurobiology Section, School of Clinical and Experimental Medicine, University of Birmingham, Birmingham, United Kingdom
| | - Martin Berry
- Neurotrauma Research Group, Neurobiology Section, School of Clinical and Experimental Medicine, University of Birmingham, Birmingham, United Kingdom
| | - Wendy Leadbeater
- Neurotrauma Research Group, Neurobiology Section, School of Clinical and Experimental Medicine, University of Birmingham, Birmingham, United Kingdom
| | - Ben A. Scheven
- School of Dentistry, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
8
|
Wilson SR, Thé L, Batia LM, Beattie K, Katibah GE, McClain SP, Pellegrino M, Estandian DM, Bautista DM. The epithelial cell-derived atopic dermatitis cytokine TSLP activates neurons to induce itch. Cell 2013; 155:285-95. [PMID: 24094650 DOI: 10.1016/j.cell.2013.08.057] [Citation(s) in RCA: 693] [Impact Index Per Article: 57.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 07/14/2013] [Accepted: 08/23/2013] [Indexed: 12/18/2022]
Abstract
Atopic dermatitis (AD) is a chronic itch and inflammatory disorder of the skin that affects one in ten people. Patients suffering from severe AD eventually progress to develop asthma and allergic rhinitis, in a process known as the "atopic march." Signaling between epithelial cells and innate immune cells via the cytokine thymic stromal lymphopoietin (TSLP) is thought to drive AD and the atopic march. Here, we report that epithelial cells directly communicate to cutaneous sensory neurons via TSLP to promote itch. We identify the ORAI1/NFAT calcium signaling pathway as an essential regulator of TSLP release from keratinocytes, the primary epithelial cells of the skin. TSLP then acts directly on a subset of TRPA1-positive sensory neurons to trigger robust itch behaviors. Our results support a model whereby calcium-dependent TSLP release by keratinocytes activates both primary afferent neurons and immune cells to promote inflammatory responses in the skin and airways.
Collapse
Affiliation(s)
- Sarah R Wilson
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Szegedi K, Kremer AE, Kezic S, Teunissen MBM, Bos JD, Luiten RM, Res PC, Middelkamp-Hup MA. Increased frequencies of IL-31-producing T cells are found in chronic atopic dermatitis skin. Exp Dermatol 2012; 21:431-6. [PMID: 22621183 DOI: 10.1111/j.1600-0625.2012.01487.x] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Interleukin (IL)-31 has been associated with pruritus, a characteristic feature of atopic dermatitis (AD). Local T cell responses may be responsible for the increased level of IL-31 mRNA observed in AD. We investigated the frequency of IL-31-producing T cells in AD lesions, as well as their cytokine profile. T cells were isolated from chronic AD lesions, autologous blood and healthy donor skin. Intracellular expression of IL-31, IFN-γ, IL-13, IL-17 and IL-22 was measured using flow cytometry. T cells from AD lesions contained significantly higher percentages of IL-31-producing T cells compared to autologous blood and donor skin. Many IL-31-producing T cells co-produced IL-13 and to lesser extent IL-22, but rarely IFN-γ or IL-17. A substantial part of the IL-31-producing T cells did not co-produce any of the other cytokines and could therefore not be linked to any of the known functionally different T cell subsets. The T cell infiltrates were also relatively enriched for Th2/Tc2 and Th22/Tc22 cells, while frequencies of Th1/Tc1 and Th17 cells were decreased. This is the first report describing the detection of IL-31 at protein level in skin-infiltrating T cells. We show here that T cells in chronic AD skin produce IL-31 and that AD lesions contain increased levels of these IL-31-producing T cells. This suggests that a substantial part of previously reported increased IL-31 mRNA levels in AD skin is T cell derived and that these cells may be involved in the pathogenesis of AD.
Collapse
Affiliation(s)
- Krisztina Szegedi
- Department of Dermatology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Camara-Lemarroy CR, Gonzalez-Moreno EI, Guzman-de la Garza FJ, Fernandez-Garza NE. Arachidonic acid derivatives and their role in peripheral nerve degeneration and regeneration. ScientificWorldJournal 2012; 2012:168953. [PMID: 22997489 PMCID: PMC3446639 DOI: 10.1100/2012/168953] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2012] [Accepted: 08/10/2012] [Indexed: 01/23/2023] Open
Abstract
After peripheral nerve injury, a process of axonal degradation, debris clearance, and subsequent regeneration is initiated by complex local signaling, called Wallerian degeneration (WD). This process is in part mediated by neuroglia as well as infiltrating inflammatory cells and regulated by inflammatory mediators such as cytokines, chemokines, and the activation of transcription factors also related to the inflammatory response. Part of this neuroimmune signaling is mediated by the innate immune system, including arachidonic acid (AA) derivatives such as prostaglandins and leukotrienes. The enzymes responsible for their production, cyclooxygenases and lipooxygenases, also participate in nerve degeneration and regeneration. The interactions between signals for nerve regeneration and neuroinflammation go all the way down to the molecular level. In this paper, we discuss the role that AA derivatives might play during WD and nerve regeneration, and the therapeutic possibilities that arise.
Collapse
Affiliation(s)
- Carlos Rodrigo Camara-Lemarroy
- Departamento de Medicina Interna, Hospital Universitario "José Eleuterio González", Universidad Autónoma de Nuevo León, School of Medicine, Colonia Mitras Centro, 64460 Monterrey, Nuevo León, Mexico.
| | | | | | | |
Collapse
|
11
|
Ghosh S, Adhikary A, Chakraborty S, Nandi P, Mohanty S, Chakraborty S, Bhattacharjee P, Mukherjee S, Putatunda S, Chakraborty S, Chakraborty A, Sa G, Das T, Sen PC. Nifetepimine, a dihydropyrimidone, ensures CD4+ T cell survival in a tumor microenvironment by maneuvering sarco(endo)plasmic reticulum Ca2+ ATPase (SERCA). J Biol Chem 2012; 287:32881-96. [PMID: 22851172 DOI: 10.1074/jbc.m112.357889] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Multiple mechanisms have been proposed by which tumors induce T cell apoptosis to circumvent tumor immune-surveillance. Although sarco/endoplasmic reticulum Ca(2+)-ATPase (SERCA) have long been known to regulate intracellular Ca(2+) homeostasis, few studies have examined the role of SERCA in processes of T lymphocyte survival and activation. In this context it remains largely unexplored as to how tumors jeopardize SERCA function to disable T cell-mediated anti-tumor immunity. Here, we show that human CD4(+) T cells in the presence of tumor conditions manifested an up-regulation of SERCA3 expression that resulted in development of endoplasmic reticulum stress leading to CD4(+) T cell apoptosis. Prostaglandin E(2) produced by the tumor cell plays a critical role in up-regulating SERCA3 by enhancing the binding of its transcription factor Sp1. Gene manipulation and pharmacological approaches further established that an increase in SERCA expression also resulted in subsequent inhibition of PKCα and -θ and retention of NFκB in the cytosol; however, down-modulation of SERCA3 expression by a dihydropyrimidone derivative, ethyl-4-(3-nitro)-phenyl-6-methyl-2-oxo-1,2,3,4-tetrahydropyrimidine-5 carboxylate (nifetepimine), protected the CD4(+) T cells from tumor-induced apoptosis. In fact, nifetepimine-mediated restoration of PKC activity resulted in nuclear translocation of p65NFκB, thereby ensuring its survival. Studies further undertaken in a tumor-bearing mice model revalidated the immunoprotective role of nifetepimine. Our present study thus strongly suggests that imbalance in cellular calcium homeostasis is an important factor leading to CD4(+) T cell death during cancer and holds promise that nifetepimine may have the potential to be used as an immunorestoring agent in cancer bearers.
Collapse
Affiliation(s)
- Swatilekha Ghosh
- Division of Molecular Medicine, Bose Institute, P1/12 Calcutta Improvement Trust Scheme VIIM Kolkata 700054, India
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Park JH, Kim SR, An HJ, Kim WJ, Choe M, Han JA. Esculetin promotes type I procollagen expression in human dermal fibroblasts through MAPK and PI3K/Akt pathways. Mol Cell Biochem 2012; 368:61-7. [PMID: 22581442 DOI: 10.1007/s11010-012-1342-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Accepted: 05/03/2012] [Indexed: 11/24/2022]
Abstract
Type I collagen is the major constituent of the skin and the reduction of dermal type I collagen content is closely associated with the intrinsic skin aging. We here found that esculetin, 6,7-dihydroxycoumarin, strongly induces type I procollagen expression in human dermal fibroblasts. Esculetin not only increased protein levels of type I procollagen but also increased mRNA levels of COL1A1 but not COL1A2. Esculetin activated the MAPKs (ERK1/2, p38, JNK) and PI3K/Akt pathways, through which it promoted the type I procollagen expression. We also demonstrated that the binding motifs for transcription factor Sp1 occur with the highest frequency in the COL1A1 promoter and that esculetin increases the Sp1 expression through the MAPK and PI3K/Akt pathways. These results suggest that esculetin promotes type I procollagen expression through the MAPK and PI3K/Akt pathways and that Sp1 might be involved in the esculetin-induced type I procollagen expression via activation of the COL1A1 transcription.
Collapse
Affiliation(s)
- Jung Hae Park
- Department of Biochemistry and Molecular Biology, Kangwon National University School of Medicine, Chuncheon 200-701, South Korea
| | | | | | | | | | | |
Collapse
|
13
|
Abstract
One of the most common features of exposure of skin to ultraviolet (UV) light is the induction of inflammation, a contributor to tumorigenesis, which is characterized by the synthesis of cytokines, growth factors and arachidonic acid metabolites, including the prostaglandins (PGs). Studies on the role of the PGs in non-melanoma skin cancer (NMSC) have shown that the cyclooxygenase-2 (COX-2) isoform of the cyclooxygenases is responsible for the majority of the pathological effects of PGE2. In mouse skin models, COX-2 deficiency significantly protects against chemical carcinogen- or UV-induced NMSC while overexpression confers endogenous tumor promoting activity. Current studies are focused on identifying which of the G protein-coupled EP receptors mediate the tumor promotion/progression activities of PGE2 and the signaling pathways involved. As reviewed here, the EP1, EP2, and EP4 receptors, but not the EP3 receptor, contribute to NMSC development, albeit through different signaling pathways and with somewhat different outcomes. The signaling pathways activated by the specific EP receptors are context specific and likely depend on the level of PGE2 synthesis, the differential levels of expression of the different EP receptors, as well as the levels of expression of other interacting receptors. Understanding the role and mechanisms of action of the EP receptors potentially offers new targets for the prevention or therapy of NMSCs.
Collapse
|
14
|
Woodward DF, Jones RL, Narumiya S. International Union of Basic and Clinical Pharmacology. LXXXIII: classification of prostanoid receptors, updating 15 years of progress. Pharmacol Rev 2011; 63:471-538. [PMID: 21752876 DOI: 10.1124/pr.110.003517] [Citation(s) in RCA: 327] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
It is now more than 15 years since the molecular structures of the major prostanoid receptors were elucidated. Since then, substantial progress has been achieved with respect to distribution and function, signal transduction mechanisms, and the design of agonists and antagonists (http://www.iuphar-db.org/DATABASE/FamilyIntroductionForward?familyId=58). This review systematically details these advances. More recent developments in prostanoid receptor research are included. The DP(2) receptor, also termed CRTH2, has little structural resemblance to DP(1) and other receptors described in the original prostanoid receptor classification. DP(2) receptors are more closely related to chemoattractant receptors. Prostanoid receptors have also been found to heterodimerize with other prostanoid receptor subtypes and nonprostanoids. This may extend signal transduction pathways and create new ligand recognition sites: prostacyclin/thromboxane A(2) heterodimeric receptors for 8-epi-prostaglandin E(2), wild-type/alternative (alt4) heterodimers for the prostaglandin FP receptor for bimatoprost and the prostamides. It is anticipated that the 15 years of research progress described herein will lead to novel therapeutic entities.
Collapse
Affiliation(s)
- D F Woodward
- Dept. of Biological Sciences RD3-2B, Allergan, Inc., 2525 Dupont Dr., Irvine, CA 92612, USA.
| | | | | |
Collapse
|
15
|
Bio-released gold ions modulate expression of neuroprotective and hematopoietic factors after brain injury. Brain Res 2010; 1307:1-13. [DOI: 10.1016/j.brainres.2009.10.028] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2009] [Revised: 10/06/2009] [Accepted: 10/12/2009] [Indexed: 12/21/2022]
|
16
|
Pedersen MØ, Jensen R, Pedersen DS, Skjolding AD, Hempel C, Maretty L, Penkowa M. Metallothionein-I+II in neuroprotection. Biofactors 2009; 35:315-25. [PMID: 19655389 DOI: 10.1002/biof.44] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Metallothionein (MT)-I+II synthesis is induced in the central nervous system (CNS) in response to practically any pathogen or disorder, where it is increased mainly in reactive glia. MT-I+II are involved in host defence reactions and neuroprotection during neuropathological conditions, in which MT-I+II decrease inflammation and secondary tissue damage (oxidative stress, neurodegeneration, and apoptosis) and promote post-injury repair and regeneration (angiogenesis, neurogenesis, neuronal sprouting and tissue remodelling). Intracellularly the molecular MT-I+II actions involve metal ion control and scavenging of reactive oxygen species (ROS) leading to cellular redox control. By regulating metal ions, MT-I+II can control metal-containing transcription factors, zinc-finger proteins and p53. However, the neuroprotective functions of MT-I+II also involve an extracellular component. MT-I+II protects the neurons by signal transduction through the low-density lipoprotein family of receptors on the cell surface involving lipoprotein receptor-1 (LRP1) and megalin (LRP2). In this review we discuss the newest data on cerebral MT-I+II functions following brain injury and experimental autoimmune encephalomyelitis.
Collapse
Affiliation(s)
- Mie Ø Pedersen
- Section of Neuroprotection, Institute of Neuroscience and Pharmacology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | | | | | | |
Collapse
|
17
|
Costa R, Marotta DM, Manjavachi MN, Fernandes ES, Lima-Garcia JF, Paszcuk AF, Quintão NLM, Juliano L, Brain SD, Calixto JB. Evidence for the role of neurogenic inflammation components in trypsin-elicited scratching behaviour in mice. Br J Pharmacol 2008; 154:1094-103. [PMID: 18454165 DOI: 10.1038/bjp.2008.172] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND AND PURPOSE We investigated the mechanisms underlying the pruritogenic response induced by trypsin in mice, to assess the relevance of neurogenic inflammation components in this response. EXPERIMENTAL APPROACH Itching was induced by an intradermal injection of trypsin in the mouse neck. The animals were observed for 40 min and their scratching behaviour was quantified. KEY RESULTS Trypsin-induced itching was blocked by the lima bean trypsin inhibitor, the selective proteinase-activated receptor-2 (PAR-2) antagonist FSLLRY and PAR-2 receptor desensitization. An important involvement of mast cells was observed, as chronic pretreatment with the mast cell degranulator compound 48/80 or the mast cell stabilizer disodium cromoglycate prevented scratching. Also, trypsin response was inhibited by the selective COX-2 inhibitor celecoxib and by the selective kinin B2 (FR173657) and B1 (SSR240612) receptor antagonists. Moreover, an essential role for the mediators of neurogenic inflammation was established, as the selective NK1 (FK888), NK3 (SR142801) and calcitonin gene-related peptide (CGRP(8-37) fragment) receptor antagonists inhibited trypsin-induced itching. Similarly, blockade of transient receptor potential vanilloid 1 (TRPV1) receptors by the selective TRPV1 receptor antagonist SB366791, or by genetic deletion of TRPV1 receptor reduced this behaviour in mice. C-fibre desensitization showed a very similar result. CONCLUSIONS AND IMPLICATIONS Trypsin intradermal injection proved to be a reproducible model for the study of itching and the involvement of PAR-2 receptors. Also, trypsin-induced itching seems to be widely dependent on neurogenic inflammation, with a role for TRPV1 receptors. In addition, several other mediators located in the sensory nerves and skin also seem to contribute to this process.
Collapse
Affiliation(s)
- R Costa
- Department of Pharmacology, Centre of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Macias-Perez IM, Zent R, Carmosino M, Breyer MD, Breyer RM, Pozzi A. Mouse EP3 alpha, beta, and gamma receptor variants reduce tumor cell proliferation and tumorigenesis in vivo. J Biol Chem 2008; 283:12538-45. [PMID: 18230618 DOI: 10.1074/jbc.m800105200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Prostaglandin E(2), which exerts its functions by binding to four G protein-coupled receptors (EP1-4), is implicated in tumorigenesis. Among the four E-prostanoid (EP) receptors, EP3 is unique in that it exists as alternatively spliced variants, characterized by differences in the cytoplasmic C-terminal tail. Although three EP3 variants, alpha, beta, and gamma, have been described in mice, their functional significance in regulating tumorigenesis is unknown. In this study we provide evidence that expressing murine EP3 alpha, beta, and gamma receptor variants in tumor cells reduces to the same degree their tumorigenic potential in vivo. In addition, activation of each of the three mEP3 variants induces enhanced cell-cell contact and reduces cell proliferation in vitro in a Rho-dependent manner. Finally, we demonstrate that EP3-mediated RhoA activation requires the engagement of the heterotrimeric G protein G(12). Thus, our study provides strong evidence that selective activation of each of the three variants of the EP3 receptor suppresses tumor cell function by activating a G(12)-RhoA pathway.
Collapse
Affiliation(s)
- Ines M Macias-Perez
- Department of Medicine (Division of Nephrology), Vanderbilt University, Nashville, Tennessee 37232, USA
| | | | | | | | | | | |
Collapse
|
19
|
Takagi A, Nishiyama C, Maeda K, Tokura T, Kawada H, Kanada S, Niwa Y, Nakano N, Mayuzumi N, Nishiyama M, Ikeda S, Okumura K, Ogawa H. Role of Sp1 in Transcription of Human ATP2A2 Gene in Keratinocytes. J Invest Dermatol 2008; 128:96-103. [PMID: 17597815 DOI: 10.1038/sj.jid.5700937] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The ATP2A2 gene encodes Ca2+-dependent ATPase, the dysfunction of which causes Darier disease. In this study, we analyzed the promoter structure of the human ATP2A2 gene using primary normal human keratinocytes (NHK). Reporter assays showed that deletion of -550/-529, -488/-472, -390/-362, or -42/-21 resulted in a significant decrease in human ATP2A2 promoter activity. Electrophoretic mobility shift assay (EMSA) showed that Sp1 is a transcription factor that binds to the -550/-529 and -488/-472 regions of the promoter. Chromatin immunoprecipitation (ChIP) assay demonstrated that Sp1, but not Sp3, binds to the promoter region of the ATP2A2 gene in NHK cells in vivo. Knockdown of Sp1 expression by small interfering RNA resulted in a marked reduction in ATP2A2 promoter activity and ATP2A2 mRNA levels in NHK, suggesting that Sp1 positively transactivates the ATP2A2 promoter in NHK. This is early evidence demonstrating that Sp1 plays an important and positive role in ATP2A2 gene expression in NHK in vivo and in vitro.
Collapse
Affiliation(s)
- Atsushi Takagi
- Atopy Research Center, Juntendo University School of Medicine, Bunkyo-ku, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Riera MF, Galardo MN, Pellizzari EH, Meroni SB, Cigorraga SB. Participation of phosphatidyl inositol 3-kinase/protein kinase B and ERK1/2 pathways in interleukin-1β stimulation of lactate production in Sertoli cells. Reproduction 2007; 133:763-73. [PMID: 17504920 DOI: 10.1530/rep.1.01091] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Interleukin-1β (IL1β ) belongs to a set of intratesticular regulators that provide the fine-tuning of cellular processes implicated in the maintenance of spermatogenesis. The aim of the present study was to analyze the signaling pathways that may participate in IL1β regulation of Sertoli cell function. Sertoli cell cultures from 20-day-old rat were used. Stimulation of the cultures with IL1β showed increments in phosphorylated protein kinase B (PKB), P70S6K, and ERK1/2 levels. A phosphatidyl inositol 3-kinase (PI3K) inhibitor (wortmannin (W)), a mammalian target of rapamycin inhibitor (rapamycin (R)), and a MEK inhibitor (PD98059 (PD)) were utilized to evaluate the participation of PI3K/PKB, P70S6K, and ERK1/2 pathways in the regulation of lactate production by IL1β . PD and W, but not R, decreased IL1β-stimulated lactate production. The participation of these pathways in the regulation of glucose uptake and lactate dehydrogenase (LDH) A mRNA levels by IL1β was also analyzed. It was observed that W decreased IL1β-stimulated glucose uptake, whereas PD and R did not modify it. On the other hand, PD decreased the stimulation of LDH A mRNA levels by IL1β , whereas W and R did not modify it. In summary, results presented herein demonstrate that IL1β stimulates PI3K/PKB-, P70S6K-, and ERK1/2-dependent pathways in rat Sertoli cells. Moreover, these results show that while IL1β utilizes the PI3K/PKB pathway to regulate glucose transport, it utilizes the ERK1/2 pathway to regulate LDH A mRNA levels. This study reveals that IL1β utilizes different signal transduction pathways to modify the biochemical steps that are important to regulate lactate production in rat Sertoli cells.
Collapse
Affiliation(s)
- María Fernanda Riera
- Centro de Investigaciones Endocrinológicas (CEDIE), Hospital de Niños Ricardo Gutiérrez, Gallo 1330, C1425EFD Buenos Aires, Argentina
| | | | | | | | | |
Collapse
|
21
|
Roosterman D, Goerge T, Schneider SW, Bunnett NW, Steinhoff M. Neuronal Control of Skin Function: The Skin as a Neuroimmunoendocrine Organ. Physiol Rev 2006; 86:1309-79. [PMID: 17015491 DOI: 10.1152/physrev.00026.2005] [Citation(s) in RCA: 419] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
This review focuses on the role of the peripheral nervous system in cutaneous biology and disease. During the last few years, a modern concept of an interactive network between cutaneous nerves, the neuroendocrine axis, and the immune system has been established. We learned that neurocutaneous interactions influence a variety of physiological and pathophysiological functions, including cell growth, immunity, inflammation, pruritus, and wound healing. This interaction is mediated by primary afferent as well as autonomic nerves, which release neuromediators and activate specific receptors on many target cells in the skin. A dense network of sensory nerves releases neuropeptides, thereby modulating inflammation, cell growth, and the immune responses in the skin. Neurotrophic factors, in addition to regulating nerve growth, participate in many properties of skin function. The skin expresses a variety of neurohormone receptors coupled to heterotrimeric G proteins that are tightly involved in skin homeostasis and inflammation. This neurohormone-receptor interaction is modulated by endopeptidases, which are able to terminate neuropeptide-induced inflammatory or immune responses. Neuronal proteinase-activated receptors or transient receptor potential ion channels are recently described receptors that may have been important in regulating neurogenic inflammation, pain, and pruritus. Together, a close multidirectional interaction between neuromediators, high-affinity receptors, and regulatory proteases is critically involved to maintain tissue integrity and regulate inflammatory responses in the skin. A deeper understanding of cutaneous neuroimmunoendocrinology may help to develop new strategies for the treatment of several skin diseases.
Collapse
|
22
|
Steinhoff M, Bienenstock J, Schmelz M, Maurer M, Wei E, Bíró T. Neurophysiological, neuroimmunological, and neuroendocrine basis of pruritus. J Invest Dermatol 2006; 126:1705-18. [PMID: 16845410 DOI: 10.1038/sj.jid.5700231] [Citation(s) in RCA: 202] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Pruritus (itch) can be defined as an unpleasant cutaneous sensation associated with the immediate desire to scratch. Recent findings have identified potential classes of endogenous "itch mediators" and establish a modern concept for the pathophysiology of pruritus. First, there in no universal peripheral itch mediator, but disease-specific sets of involved mediators. Second, numerous mediators of skin cells can activate and sensitize pruritic nerve endings, and even modulate their growth. Our knowledge of itch processing in the spinal cord and the involved centers in the central nervous system is rapidly growing. This review summarizes the current information about the significance of neuron-skin interactions, ion channels, neuropeptides, proteases, cannabinoids, opioids, kinins, cytokines, biogenic amines, neurotransmitters, and their receptors in the pathobiology of pruritus. A deeper understanding of these circuits is required for the development of novel antipruritic strategies.
Collapse
Affiliation(s)
- Martin Steinhoff
- Department of Dermatology, IZKF Münster, Ludwig Boltzmann-Institute for Immunobiology of the Skin, University Hospital Muenster, Muenster, Germany.
| | | | | | | | | | | |
Collapse
|