1
|
Kagawa T, Shirai Y, Oda S, Yokoi T. Identification of Specific MicroRNA Biomarkers in Early Stages of Hepatocellular Injury, Cholestasis, and Steatosis in Rats. Toxicol Sci 2019; 166:228-239. [PMID: 30125006 DOI: 10.1093/toxsci/kfy200] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Recently, studies on circulating microRNAs (miRNAs) as potential biomarkers of drug-induced liver injury (DILI) have received increasing attention. It has been demonstrated that miR-122 and miR-192, which are liver enriched, could be potential biomarkers of DILI; however, these miRNAs cannot discern types of injuries. In the present study, we comprehensively analyzed time-dependent plasma miRNA profiles in rats with drug- or chemical-induced hepatocellular injury, cholestasis, and steatosis with high-throughput miRNA sequencing. To enable the comparison of miRNA expression levels between DILI models with different severity and peak time of injuries, the stages of injury were defined as early, middle, and late, according to cluster patterns of miRNA expression profiles. Through differential analysis, we characterized miRNAs that were specifically up- or down-regulated in each DILI model. Several miRNAs were dramatically changed earlier than traditional biomarkers such as alanine aminotransferase (ALT) and aspartate aminotransferase (AST). For example, in an acetaminophen (APAP)-induced hepatocellular injury model, plasma let-7b-5p was up-regulated as early as 3 h after dosing, whereas a significant change in ALT level was observed at 12 h. We then focused on the DILI type-specific miRNAs in plasma that were up-regulated at the early stage of injury. RT-qPCR analysis validated that let-7b-5p and miR-1-3p for hepatocellular injury, miR-143-3p and miR-218a-5p for cholestasis, and miR-320-3p for steatosis models showed significant increases in the early stage of the injuries. The present study suggests the utility of miRNAs as specific biomarkers for the early detection of DILI.
Collapse
Affiliation(s)
- Takumi Kagawa
- Department of Drug Safety Sciences Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Yuji Shirai
- Department of Drug Safety Sciences Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Shingo Oda
- Department of Drug Safety Sciences Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Tsuyoshi Yokoi
- Department of Drug Safety Sciences Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| |
Collapse
|
2
|
Salazar-González RA, Zhang X, Doll MA, Lykoudi A, Hein DW. Role of the human N-acetyltransferase 2 genetic polymorphism in metabolism and genotoxicity of 4, 4'-methylenedianiline. Arch Toxicol 2019; 93:2237-2246. [PMID: 31292670 PMCID: PMC6713601 DOI: 10.1007/s00204-019-02516-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 07/04/2019] [Indexed: 01/06/2023]
Abstract
4, 4'-Methylenedianiline (MDA) is used extensively as a curing agent in the production of elastomers and is classified as reasonably anticipated to be a human carcinogen based on sufficient evidence in animal experiments. Human N-acetyltransferase 1 (NAT1) and 2 (NAT2) catalyze the N-acetylation of aromatic amines and NAT2 is subjected to a common genetic polymorphism in human populations separating individuals into rapid, intermediate, and slow acetylator phenotypes. Although MDA is known to undergo N-acetylation to mono- and di-acetyl metabolites, very little is known regarding whether this metabolism is subject to the NAT2 genetic polymorphism. We investigated the N-acetylation of MDA by recombinant human NAT1, NAT2, genetic variants of NAT2, and cryoplateable human hepatocytes obtained from rapid, intermediate and slow acetylators. MDA N-acetylation was catalyzed by both recombinant human NAT1 and NAT2 exhibiting a fivefold higher affinity for human NAT2. N-acetylation of MDA was acetylator genotype dependent as evidenced via its N-acetylation by recombinant human NAT2 genetic variants or by cryoplateable human hepatocytes. MDA N-acetylation to the mono-acetyl or di-acetyl-MDA was highest in rapid, lower in intermediate, and lowest in slow acetylator human hepatocytes. MDA-induced DNA damage in the human hepatocytes was dose-dependent and also acetylator genotype dependent with highest levels of DNA damage in rapid, lower in intermediate, and lowest in slow acetylator human hepatocytes under the same MDA exposure level. In summary, the N-acetylation of MDA by recombinant human NAT2 and cryopreserved human hepatocytes support an important role for the NAT2 genetic polymorphism in modifying MDA metabolism and genotoxicity and potentially carcinogenic risk.
Collapse
Affiliation(s)
- Raúl A Salazar-González
- Department of Pharmacology and Toxicology and James Graham Brown Cancer Center, University of Louisville School of Medicine, 505 South Hancock Street, Louisville, KY, 40202-1617, USA
| | - Xiaoyan Zhang
- Department of Pharmacology and Toxicology and James Graham Brown Cancer Center, University of Louisville School of Medicine, 505 South Hancock Street, Louisville, KY, 40202-1617, USA
- Department of Clinical Pharmacology, ADC Therapeutics, Murray Hill, NJ, USA
| | - Mark A Doll
- Department of Pharmacology and Toxicology and James Graham Brown Cancer Center, University of Louisville School of Medicine, 505 South Hancock Street, Louisville, KY, 40202-1617, USA
| | - Angeliki Lykoudi
- Department of Pharmacology and Toxicology and James Graham Brown Cancer Center, University of Louisville School of Medicine, 505 South Hancock Street, Louisville, KY, 40202-1617, USA
| | - David W Hein
- Department of Pharmacology and Toxicology and James Graham Brown Cancer Center, University of Louisville School of Medicine, 505 South Hancock Street, Louisville, KY, 40202-1617, USA.
| |
Collapse
|
3
|
Carroll EE, Ippolito DL, Permenter MG, McDyre BC, Baer CE, Kumsher DM, Boyle MH, DiVito VT, Lewis JA, Koontz JM. Utility of Serum miR-122, Liver Enzymes, and Hepatic Histopathology in Response to Hepatotoxicants in Sprague-Dawley Rats. Toxicol Pathol 2018; 46:835-846. [PMID: 30205766 DOI: 10.1177/0192623318795435] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
More than 80,000 chemicals are in commercial use worldwide. Hepatic metabolism to toxic intermediates is often a key mechanism leading to tissue damage and organ dysfunction. Effective treatment requires prompt detection of hepatotoxicity, ideally with rapid, minimally invasive diagnostic assays. In this study, archetypal histologic features of chemically induced hepatic injury were compared with clinical chemistries (including liver enzymes) and serum concentrations of microRNA-122 (miR-122, the processed form miR-122-5p), a biomarker of liver injury. The hepatotoxicants 4,4'-methylenedianiline (4,4'-MDA), allyl alcohol (AA), or carbon tetrachloride (CCl4) were orally administered to male Sprague-Dawley rats for 1, 5, 14, or 28 days to induce liver damage. Formalin-fixed, paraffin-embedded liver sections were evaluated histologically for inflammation, fibrosis, necrosis, and lipid accumulation. Liver enzymes were measured in serum, and serum miR-122 concentrations were assessed by quantitative polymerase chain reaction (qPCR). Histologic features of hepatic injury dose-dependently increased in both severity and frequency. Increases in liver enzymes and bilirubin were more pronounced in response to AA or 4,4'-MDA than to CCl4 at early time points. Elevated serum miR-122 levels in animals administered CCl4, AA, or 4,4'-MDA were more strongly associated with degree of hepatic histopathology than with dosage. Given this sensitive expression pattern postexposure, liver-specific miR-122 may improve the diagnostic accuracy of early hepatic injury.
Collapse
Affiliation(s)
- Erica E Carroll
- 1 Army Public Health Center, Gunpowder, Maryland, USA.,2 Covance Inc., Greenfield, Indiana, USA.,These authors contributed equally to this work
| | - Danielle L Ippolito
- 3 The Environmental Health Program, U.S. Army Center for Environmental Health Research (USACEHR), Fort Detrick, Maryland, USA.,These authors contributed equally to this work
| | | | | | | | | | | | - Valerie T DiVito
- 3 The Environmental Health Program, U.S. Army Center for Environmental Health Research (USACEHR), Fort Detrick, Maryland, USA
| | - John A Lewis
- 3 The Environmental Health Program, U.S. Army Center for Environmental Health Research (USACEHR), Fort Detrick, Maryland, USA
| | - Jason M Koontz
- 3 The Environmental Health Program, U.S. Army Center for Environmental Health Research (USACEHR), Fort Detrick, Maryland, USA
| |
Collapse
|
4
|
Harvey BG, Yandek GR, Lamb JT, Eck WS, Garrison MD, Davis MC. Synthesis and characterization of a high temperature thermosetting polyimide oligomer derived from a non-toxic, sustainable bisaniline. RSC Adv 2017. [DOI: 10.1039/c7ra02182h] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A high temperature, hydrophobic thermosetting polyimide oligomer has been prepared from a non-toxic, bio-based bisaniline derived from p-cymene.
Collapse
Affiliation(s)
| | - Gregory R. Yandek
- Air Force Research Laboratory
- Rocket Propulsion Division
- Edwards AFB
- USA
| | - Jason T. Lamb
- ERC, Inc
- Air Force Research Laboratory
- Rocket Propulsion Division
- Edwards AFB
- USA
| | | | | | | |
Collapse
|
5
|
Otieno MA, Bhaskaran V, Janovitz E, Callejas Y, Foster WB, Washburn W, Megill JR, Lehman-McKeeman L, Gemzik B. Mechanisms for Hepatobiliary Toxicity in Rats Treated with an Antagonist of Melanin Concentrating Hormone Receptor 1 (MCHR1). Toxicol Sci 2016; 155:379-388. [DOI: 10.1093/toxsci/kfw216] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
|
6
|
Garrison MD, Harvey BG. Bio-based hydrophobic epoxy-amine networks derived from renewable terpenoids. J Appl Polym Sci 2016. [DOI: 10.1002/app.43621] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Michael D. Garrison
- US NAVY, NAWCWD, Research Office, Chemistry Branch; China Lake California 93555
| | - Benjamin G. Harvey
- US NAVY, NAWCWD, Research Office, Chemistry Branch; China Lake California 93555
| |
Collapse
|
7
|
Ippolito DL, AbdulHameed MDM, Tawa GJ, Baer CE, Permenter MG, McDyre BC, Dennis WE, Boyle MH, Hobbs CA, Streicker MA, Snowden BS, Lewis JA, Wallqvist A, Stallings JD. Gene Expression Patterns Associated With Histopathology in Toxic Liver Fibrosis. Toxicol Sci 2015; 149:67-88. [DOI: 10.1093/toxsci/kfv214] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
|
8
|
Österreicher CH, Trauner M. Xenobiotic-induced liver injury and fibrosis. Expert Opin Drug Metab Toxicol 2012; 8:571-80. [PMID: 22452290 DOI: 10.1517/17425255.2012.674511] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Many different drugs and xenobiotics (chemical compounds foreign to an organism) can injure the bile duct epithelium and cause inflammatory bile duct diseases (cholangiopathies) ranging from transient cholestasis to vanishing bile duct syndrome, sclerosing cholangitis with development of biliary fibrosis and cirrhosis. Animal models of xenobiotic-induced liver injury have provided major mechanistic insights into the molecular mechanisms of xenobiotic-induced cholangiopathies and biliary fibrosis including primary biliary cirrhosis and primary sclerosing cholangitis. AREAS COVERED In this review, the authors discuss the basic principles of xenobiotic-induced liver and bile duct injury and biliary fibrosis with emphasis on animal models. A PubMed search was performed using the search terms "xenobiotic," "liver injury," "cholestasis," and "biliary fibrosis." Reference lists of retrieved articles were also searched for relevant literature. EXPERT OPINION Xenobiotic-induced cholangiopathies are underestimated and frequently overlooked medical conditions due to their often transient nature. However, biliary disease may progress to vanishing bile duct syndrome, biliary fibrosis, and cirrhosis. Moreover, xenobiotics may prime the liver for subsequent liver disease by other agents and may also contribute to the development of hepatobiliary cancer though interaction with resident stem cells.
Collapse
Affiliation(s)
- Christoph H Österreicher
- Medical University of Vienna, Institute of Pharmacology, Center for Physiology and Pharmacology, Vienna, Austria
| | | |
Collapse
|
9
|
Giouleme O, Karabatsou S, Hytiroglou P, Xanthis A, Tsiaousi E, Katsaros M, Koliouskas D. 4,4'-Methylenedianiline-induced hepatitis in an industrial worker: case report and review of the literature. Hum Exp Toxicol 2010; 30:762-7. [PMID: 20621954 DOI: 10.1177/0960327110376549] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
4,4'-Methylenedianiline (MDA) is a chemical used in manufacturing and insulation processes and is a well-known hepatotoxin. We report the case of a 42-year-old construction-site worker who was accidentally exposed to large amounts of MDA and developed acute liver damage. The clinical course is described, with particular emphasis on the timely identification of the underlying cause and prompt management that led to an uneventful recovery. We review the relevant literature and discuss the safety measures necessary to minimize similar occupational hazards in industrial workers.
Collapse
Affiliation(s)
- Olga Giouleme
- First Propedeutic Department of Internal Medicine, Medical School, Aristotle University of Thessaloniki, AHEPA Hospital, Thessaloniki, Greece.
| | | | | | | | | | | | | |
Collapse
|
10
|
Khelil M, Djerdjouri B, Tayebi B. N-acetyltransferase 2 (Nat2) polymorphism in the sand rat Psammomys obesus. Toxicol Mech Methods 2010; 20:440-4. [PMID: 20550432 DOI: 10.3109/15376516.2010.492814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Human arylamine N-acetyltransferase 1 (NAT1) and its homologue in rodents (Nat2) are polymorphic xenobiotic metabolizing enzymes and also seem to play a role in endogenous metabolism. NAT1 and Nat2 polymorphism was associated to cancers under xenobiotic procarcinogens metabolism as well as under endogenous substrate metabolism. This study investigated the p-aminobenzoic acid (PABA) -Nat2 catalytic activity and its polymorphism in liver homogenates of adult sand rats Psammomys obesus Cretzschmar, 1828. These Saharian sand rats develop high incidence of spontaneous cancers under standard laboratory diet. The average value of PABA-Nat2 specific activity tested in nine sand rats was significant (2.96 ± 2.16 nmoles/min/mg). The N-acetylation exhibited a bimodal distribution. There was a significant difference (p<0.01) between PABA-Nat2 activity in the fast acetylators group (4.10 ± 1.67 nmol/min/mg) and slow acetylators group (0.7 ± 0.27 nmol/min/mg). The percentage of the fast acetylator group was 66.66%. These results support the presence of Nat2 polymorphism in the liver of the strain sand rats Psammomys obesus. This strain is useful for investigating the role of Nat2 polymorphisms in susceptibility to cancers related to arylamine carcinogen exposures as well as to endogenous substrate metabolism.
Collapse
Affiliation(s)
- Malika Khelil
- Département de Biologie Cellulaire et Moléculaire, Faculté des Sciences Biologiques, Université des Sciences et de la Technologie Houari Boumediène, BP: 32 El-Alia, 16111 Alger, Algérie.
| | | | | |
Collapse
|
11
|
Oh JH, Yoon HJ, Lim JS, Park HJ, Cho JW, Kwon MS, Yoon S. Analysis of Gene Expression in 4,4'-Methylenedianiline-induced Acute Hepatotoxicity. Toxicol Res 2009; 25:85-92. [PMID: 32038824 PMCID: PMC7006339 DOI: 10.5487/tr.2009.25.2.085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2009] [Revised: 05/13/2009] [Accepted: 05/13/2009] [Indexed: 01/06/2023] Open
Abstract
4,4′-Methylenedianiline (MDA) is an aromatic amine that is widely used in the industrial synthetic process. Genotoxic MDA forms DNA adducts in the liver and is known to induce liver damage in human and rats. To elucidate the molecular mechanisms associated with MDA-induced hepatotoxicity, we have identified genes differentially expressed by microarray approach. BALB/c male mice were treated once daily with MDA (20 mg/kg) up to 7 days via intraperitoneal injection (i.p.) and hepatic damages were revealed by histopathological observation and elevation of serum marker enzymes such as AST, ALT, ALP, cholesterol, DBIL, and TBIL. Microarray analysis showed that 952 genes were differentially expressed in the liver of MDA-treated mice and their biological functions and canonical pathways were further analyzed using Ingenuity Pathways Analysis (IPA). Toxicological functional analysis showed that genes related to hepatotoxicity such hyperplasia/hyperproliferation (Timpl), necrosis/cell death (Cd14, Mt1f, Timpl, and Pmaipl), hemorrhaging (Mt1f), cholestasis (Akr1c3, Hpx, and Slc10a2), and inflammation (Cd14 and Hpx) were differentially expressed in MDA-treated group. This gene expression profiling should be useful for elucidating the genetic events associated with aromatic amine-induced hepatotoxicity and for discovering the potential biomarkers for hepatotoxicity.
Collapse
Affiliation(s)
- Jung-Hwa Oh
- 14Toxicogenomics Team, Korea Institute of Toxicology, 19 Shinsung-ro, Yuseoung, Daejeon, 305-343 Korea
| | - Hea-Jin Yoon
- 14Toxicogenomics Team, Korea Institute of Toxicology, 19 Shinsung-ro, Yuseoung, Daejeon, 305-343 Korea
| | - Jung-Sun Lim
- 14Toxicogenomics Team, Korea Institute of Toxicology, 19 Shinsung-ro, Yuseoung, Daejeon, 305-343 Korea
| | - Han-Jin Park
- 14Toxicogenomics Team, Korea Institute of Toxicology, 19 Shinsung-ro, Yuseoung, Daejeon, 305-343 Korea
| | - Jae-Woo Cho
- 24Clinical Pathology Team, Korea Institute of Toxicology, 19 Shinsung-ro, Yuseoung, Daejeon, 305-343 Korea
| | - Myung-Sang Kwon
- 34Korea Institute of Toxicology, 19 Shinsung-ro, Yuseoung, Daejeon, 305-343 Korea.,44School of Veterinary Medicine, Kangwon National University, Chuncheon, 200-701 Korea
| | - Seokjoo Yoon
- 14Toxicogenomics Team, Korea Institute of Toxicology, 19 Shinsung-ro, Yuseoung, Daejeon, 305-343 Korea
| |
Collapse
|
12
|
Stanley LA, Sim E. Update on the pharmacogenetics of NATs: structural considerations. Pharmacogenomics 2009; 9:1673-93. [PMID: 19018723 DOI: 10.2217/14622416.9.11.1673] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The arylamine N-acetyltransferase (NAT) genes encode enzymes that catalyze the N-acetylation of aromatic amines and hydrazines and the O-acetylation of heterocyclic amines. These genes, which play a key role in cellular homeostasis as well as in gene-environment interactions, are subject to marked pharmacogenetic variation, and different combinations of SNPs in the human NAT genes lead to different acetylation phenotypes. Our understanding of the consequences of pharmacogenetic variability in NATs has recently been enhanced by structural studies showing that effects on protein folding, aggregation and turnover, as well as direct changes in active site topology, are involved. These developments pave the way for a better understanding of the role played by NATs in maintaining cellular homeostasis. In addition, the NATs represent a model for studying fundamental processes associated with protein folding and pharmacogenomic effects mediated by inheritance in human populations across a polymorphic region of the genome.
Collapse
|
13
|
Walker K, Ginsberg G, Hattis D, Johns DO, Guyton KZ, Sonawane B. Genetic polymorphism in N-Acetyltransferase (NAT): Population distribution of NAT1 and NAT2 activity. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2009; 12:440-472. [PMID: 20183529 DOI: 10.1080/10937400903158383] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
N-Acetyltransferases (NAT) are key enzymes in the conjugation of certain drugs and other xenobiotics with an arylamine structure. Polymorphisms in NAT2 have long been recognized to modulate toxicity produced by the anti-tubercular drug isoniazid, with molecular epidemiologic studies suggesting a link between acetylator phenotype and increased risk for bladder cancer. Recent evidence indicates that the other major NAT isozyme, NAT1, is also polymorphic. The current analysis characterizes the main polymorphisms in both NAT2 and NAT1 in terms of their effect on enzyme activity and frequency in the population. Multiple NAT2 alleles (NAT2*5, *6, *7, and *14) have substantially decreased acetylation activity and are common in Caucasians and populations of African descent. In these groups, most individuals carry at least one copy of a slow acetylator allele, and less than 10% are homozygous for the wild type (fast acetylator) trait. Incorporation of these data into a Monte Carlo modeling framework led to a population distribution of NAT2 activity that was bimodal and associated with considerable variability in each population assessed. The ratio of the median to the first percentile of NAT2 activity ranged from 7 in Caucasians to 18 in the Chinese population. This variability indicates the need for more quantitative approaches (e.g., physiologically based pharmacokinetic [PBPK] modeling) to assess the full distribution of internal dose and adverse responses to aromatic amines and other NAT2 substrates. Polymorphisms in NAT1 are generally associated with relatively minor effects on acetylation function, with Monte Carlo analysis indicating less interindividual variability than seen in NAT2 analysis.
Collapse
Affiliation(s)
- Katy Walker
- Clark University, Center for Technology, Environment, and Development, Worcester, Massachusetts, USA
| | | | | | | | | | | |
Collapse
|
14
|
Hein DW, Bendaly J, Neale JR, Doll MA. Systemic functional expression of N-acetyltransferase polymorphism in the F344 Nat2 congenic rat. Drug Metab Dispos 2008; 36:2452-9. [PMID: 18799801 DOI: 10.1124/dmd.108.023960] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Rat lines congenic for the rat N-acetyltransferase 2 [(RAT)Nat2] gene were constructed and characterized. F344 (homozygous Nat2 rapid) males were mated to Wistar Kyoto (homozygous Nat2 slow) females to produce heterozygous F1. F1 females were then backcrossed to F344 males. Heterozygous acetylator female progeny from this and each successive backcross were identified by rat Nat2 genotyping and mated with F344 rapid acetylator males. After 10 generations of backcross mating, heterozygous acetylator brother/sister progeny were mated to produce the homozygous rapid and slow acetylator Nat2 congenic rat lines. p-Aminobenzoic acid (selective for rat NAT2) and 4-aminobiphenyl N-acetyltransferase activities were expressed in all tissues examined (liver, lung, esophagus, stomach, small intestine, colon, pancreas, kidney, skin, leukocytes, and urinary bladder in male and female rats and in breast of female and prostate of male rats). NAT2 expression in rat extrahepatic tissues was much higher than that in liver. In each tissue, activities were Nat2-genotype-dependent, with the highest levels in homozygous rapid acetylators, intermediate levels in heterozygous acetylators, and lowest in homozygous slow acetylators. Sulfamethazine (selective for rat NAT1) N-acetyltransferase activities were observed in all tissues examined in both male and female rats except for breast (females), bladder, and leukocytes. In each tissue, the activity was Nat2 genotype-independent, with similar levels in homozygous rapid, heterozygous, and homozygous slow acetylators. These congenic rat lines are useful for investigating the role of NAT2 genetic polymorphisms in susceptibility to cancers related to arylamine carcinogen exposures.
Collapse
Affiliation(s)
- David W Hein
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40292, USA.
| | | | | | | |
Collapse
|
15
|
Lipscomb JC, Poet TS. In vitro measurements of metabolism for application in pharmacokinetic modeling. Pharmacol Ther 2008; 118:82-103. [DOI: 10.1016/j.pharmthera.2008.01.006] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2008] [Accepted: 01/24/2008] [Indexed: 11/25/2022]
|
16
|
Walraven JM, Doll MA, Hein DW. Identification and Characterization of Functional Rat Arylamine N-Acetyltransferase 3: Comparisons with Rat Arylamine N-Acetyltransferases 1 and 2. J Pharmacol Exp Ther 2006; 319:369-75. [PMID: 16829624 DOI: 10.1124/jpet.106.108399] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Arylamine N-acetyltransferases (NATs; EC 2.3.1.5) catalyze both the N-acetylation and O-acetylation of arylamines and N-hydroxyarylamines. Humans possess two functional N-acetyltransferase genes, NAT1 and NAT2, as well as a nonfunctional pseudogene, NATP. Previous studies have identified Nat1 and Nat2 genes in the rat. In this study, we identified and characterized a third rat N-acetyltransferase gene (Nat3) consisting of a single open reading frame of 870 base pairs encoding a 290-amino acid protein, analogous to the previously identified human and rat N-acetyltransferase genes. Rat Nat3 nucleotide sequence was 77.2 and 75.9% identical to human NAT1 and NAT2, respectively. Rat Nat3 amino acid sequence was 68.6 and 67.2% identical to human NAT1 and NAT2, respectively. Rat Nat1, Nat2, and Nat3 were each cloned and recombinantly expressed in Escherichia coli. Recombinant rat Nat3 exhibited thermostability intermediate between recombinant rat Nat1 and Nat2. Recombinant rat Nat3 was functional and catalyzed the N-acetylation of several arylamine substrates, including 3-ethylaniline, 3,5-dimethylaniline, 5-aminosalicylic acid, 4-aminobiphenyl, 4,4'-methylenedianiline, 4,4'-methylenebis(2-chloroaniline), and 2-aminofluorene, and the O-acetylation of N-hydroxy-4-aminobiphenyl. The relative affinities of arylamine carcinogens such as 4-aminobiphenyl, N-hydroxy-4-aminobiphenyl, and 2-aminofluorene for N- and O-acetylation via recombinant rat Nat3 were comparable with recombinant rat Nat1 and higher than for recombinant rat Nat2. This study is the first to report a third arylamine N-acetyltransferase isozyme with significant functional capacity.
Collapse
Affiliation(s)
- Jason M Walraven
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | | | | |
Collapse
|
17
|
Hein DW. N-acetyltransferase 2 genetic polymorphism: effects of carcinogen and haplotype on urinary bladder cancer risk. Oncogene 2006; 25:1649-58. [PMID: 16550165 PMCID: PMC1434721 DOI: 10.1038/sj.onc.1209374] [Citation(s) in RCA: 145] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
A role for the N-acetyltransferase 2 (NAT2) genetic polymorphism in cancer risk has been the subject of numerous studies. Although comprehensive reviews of the NAT2 acetylation polymorphism have been published elsewhere, the objective of this paper is to briefly highlight some important features of the NAT2 acetylation polymorphism that are not universally accepted to better understand the role of NAT2 polymorphism in carcinogenic risk assessment. NAT2 slow acetylator phenotype(s) infer a consistent and robust increase in urinary bladder cancer risk following exposures to aromatic amine carcinogens. However, identification of specific carcinogens is important as the effect of NAT2 polymorphism on urinary bladder cancer differs dramatically between monoarylamines and diarylamines. Misclassifications of carcinogen exposure and NAT2 genotype/phenotype confound evidence for a real biological effect. Functional understanding of the effects of NAT2 genetic polymorphisms on metabolism and genotoxicity, tissue-specific expression and the elucidation of the molecular mechanisms responsible are critical for the interpretation of previous and future human molecular epidemiology investigations into the role of NAT2 polymorphism on cancer risk. Although associations have been reported for various cancers, this paper focuses on urinary bladder cancer, a cancer in which a role for NAT2 polymorphism was first proposed and for which evidence is accumulating that the effect is biologically significant with important public health implications.
Collapse
Affiliation(s)
- D W Hein
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40292, USA.
| |
Collapse
|