1
|
Vecchio FL, Bisceglia P, Imbimbo BP, Lozupone M, Latino RR, Resta E, Leone M, Solfrizzi V, Greco A, Daniele A, Watling M, Panza F, Seripa D. Are apolipoprotein E fragments a promising new therapeutic target for Alzheimer’s disease? Ther Adv Chronic Dis 2022; 13:20406223221081605. [PMID: 35321401 PMCID: PMC8935560 DOI: 10.1177/20406223221081605] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 01/28/2022] [Indexed: 11/17/2022] Open
Abstract
Human apolipoprotein E (ApoE) is a 299-amino acid secreted glycoprotein that binds cholesterol and phospholipids. ApoE exists as three common isoforms (ApoE2, ApoE3, and ApoE4) and heterozygous carriers of the ε4 allele of the gene encoding ApoE (APOE) have a fourfold greater risk of developing Alzheimer’s disease (AD). The enzymes thrombin, cathepsin D, α-chymotrypsin-like serine protease, and high-temperature requirement serine protease A1 are responsible for ApoE proteolytic processing resulting in bioactive C-terminal-truncated fragments that vary depending on ApoE isoforms, brain region, aging, and neural injury. The objectives of the present narrative review were to describe ApoE processing, discussing current hypotheses about the potential role of various ApoE fragments in AD pathophysiology, and reviewing the current development status of different anti-ApoE drugs. The exact mechanism by which APOE gene variants increase/decrease AD risk and the role of ApoE fragments in the deposition are not fully understood, but APOE is known to directly affect tau-mediated neurodegeneration. ApoE fragments co-localize with neurofibrillary tangles and amyloid β (Aβ) plaques, and may cause neurodegeneration. Among anti-ApoE approaches, a fascinating strategy may be to therapeutically overexpress ApoE2 in APOE ε4/ε4 carriers through vector administration or liposomal delivery systems. Another approach involves reducing ApoE4 expression by intracerebroventricular antisense oligonucleotides that significantly decreased Aβ pathology in transgenic mice. Differences in the proteolytic processing of distinct ApoE isoforms and the use of ApoE fragments as mimetic peptides in AD treatment are also under investigation. Treatment with peptides that mimic the structural and biological properties of native ApoE may reduce Aβ deposition, tau hyperphosphorylation, and glial activation in mouse models of Aβ pathology. Alternative strategies involve the use of ApoE4 structure correctors, passive immunization to target a certain form of ApoE, conversion of the ApoE4 aminoacid sequence into that of ApoE3 or ApoE2, and inhibition of the ApoE-Aβ interaction.
Collapse
Affiliation(s)
- Filomena Lo Vecchio
- Research Laboratory, Complex Structure of Geriatrics, Department of Medical Sciences, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Foggia 71013, Italy
| | - Paola Bisceglia
- Research Laboratory, Complex Structure of Geriatrics, Department of Medical Sciences, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | | | - Madia Lozupone
- Neurodegenerative Disease Unit, Department of Basic Medicine, Neuroscience, and Sense Organs, University of Bari Aldo Moro, Bari, Italy
| | - Raffaela Rita Latino
- Complex Structure of Neurology, Department of Medical Sciences, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Emanuela Resta
- Translational Medicine and Management of Health Systems, University of Foggia, Foggia, Italy
| | - Maurizio Leone
- Complex Structure of Neurology, Department of Medical Sciences, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Vincenzo Solfrizzi
- ‘Cesare Frugoni’ Internal and Geriatric Medicine and Memory Unit, University of Bari ‘Aldo Moro’, Bari, Italy
| | - Antonio Greco
- Department of Neuroscience, Catholic University of the Sacred Heart, Rome, Italy; Neurology Unit, IRCCS Fondazione Policlinico Universitario A. Gemelli, Rome, Italy
- Research Laboratory, Complex Structure of Geriatrics, Department of Medical Sciences, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | | | - Mark Watling
- CNS & Pain Department, TranScrip Ltd, Reading, UK
| | - Francesco Panza
- Research Laboratory, Complex Structure of Geriatrics, Department of Medical Sciences, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Foggia, Italy
- Population Health Unit, Healthy Aging Phenotypes Research Unit, ‘Salus in Apulia Study’, National Institute of Gastroenterology ‘Saverio de Bellis’, Research Hospital, Castellana Grotte, Bari 70013, Italy
| | - Davide Seripa
- Research Laboratory, Complex Structure of Geriatrics, Department of Medical Sciences, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
- Hematology and Stem Cell Transplant Unit, ‘Vito Fazzi’ Hospital, Lecce, Italy
| |
Collapse
|
2
|
Ahmed S, Pande AH, Sharma SS. Therapeutic potential of ApoE-mimetic peptides in CNS disorders: Current perspective. Exp Neurol 2022; 353:114051. [DOI: 10.1016/j.expneurol.2022.114051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/23/2022] [Accepted: 03/14/2022] [Indexed: 02/07/2023]
|
3
|
Xue M, Li S, Xu M, Yan L, Laskowitz DT, Kolls BJ, Chen G, Qian X, Wang Y, Song H, Wang Y. Antagonism of nicotinic acetycholinergic receptors by CN‐105, an apoE‐mimetic peptide reduces stroke‐induced excitotoxicity. Clin Transl Med 2022; 12:e677. [PMID: 35075820 PMCID: PMC8787096 DOI: 10.1002/ctm2.677] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/21/2021] [Accepted: 11/25/2021] [Indexed: 12/19/2022] Open
Affiliation(s)
- Miaomiao Xue
- State Key Laboratory of Proteomics Beijing Proteome Research Center National Center for Protein Sciences (Beijing) Beijing Institute of Lifeomics Beijing China
| | - Shuya Li
- Department of Neurology Beijing Tiantan Hospital Capital Medical University Beijing China
- China National Clinical Research Center for Neurological Diseases Beijing China
| | - Mingzhi Xu
- State Key Laboratory of Proteomics Beijing Proteome Research Center National Center for Protein Sciences (Beijing) Beijing Institute of Lifeomics Beijing China
| | - Li Yan
- ICE Bioscience Inc. Beijing China
| | - Daniel T. Laskowitz
- Duke Clinical Research Institute Duke University School of Medicine Durham North Carolina USA
- Department of Neurology Duke University Durham North Carolina USA
- Department of Anesthesiology Duke University Durham North Carolina USA
- Aegis‐CN, LLC Durham North Carolina USA
| | - Brad J. Kolls
- Duke Clinical Research Institute Duke University School of Medicine Durham North Carolina USA
- Department of Neurology Duke University Durham North Carolina USA
| | - Gang Chen
- Guangdong Cerebtron Biotech Ltd. Guangdong China
| | - Xiaohong Qian
- State Key Laboratory of Proteomics Beijing Proteome Research Center National Center for Protein Sciences (Beijing) Beijing Institute of Lifeomics Beijing China
| | - Yongjun Wang
- Department of Neurology Beijing Tiantan Hospital Capital Medical University Beijing China
- China National Clinical Research Center for Neurological Diseases Beijing China
| | - Haifeng Song
- State Key Laboratory of Proteomics Beijing Proteome Research Center National Center for Protein Sciences (Beijing) Beijing Institute of Lifeomics Beijing China
| | - Yi Wang
- State Key Laboratory of Proteomics Beijing Proteome Research Center National Center for Protein Sciences (Beijing) Beijing Institute of Lifeomics Beijing China
| |
Collapse
|
4
|
Amponsah AE, Feng B, Guo R, Zhang W, He J, Kong D, Dong T, Ma J, Cui H. Fragmentation of brain apolipoprotein E (ApoE) and its relevance in Alzheimer's disease. Rev Neurosci 2021; 31:589-603. [PMID: 32364519 DOI: 10.1515/revneuro-2019-0115] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 02/01/2020] [Indexed: 11/15/2022]
Abstract
Alzheimer's disease (AD) is a very common cause of dementia in the elderly. It is characterized by progressive amnesia and accretions of neurofibrillary tangles (NFTs) of neurons and senile plaques in the neuropil. After aging, the inheritance of the apolipoprotein E (ApoE) epsilon 4 (ε4) allele is the greatest risk factor for late-onset AD. The ApoE protein is the translated product of the ApoE gene. This protein undergoes proteolysis, and the resulting fragments colocalize with neurofibrillary tangles and amyloid plaques, and for that matter may be involved in AD onset and/or progression. Previous studies have reported the pathogenic potential of various ApoE fragments in AD pathophysiology. However, the pathways activated by the fragments are not fully understood. In this review, ApoE fragments obtained from post-mortem brains and body fluids, cerebrospinal fluid (CSF) and plasma, are discussed. Additionally, current knowledge about the process of fragmentation is summarized. Finally, the mechanisms by which these fragments are involved in AD pathogenesis and pathophysiology are discussed.
Collapse
Affiliation(s)
- Asiamah Ernest Amponsah
- Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China.,Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, 050017, Hebei Province, China
| | - Baofeng Feng
- Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China.,Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, 050017, Hebei Province, China
| | - Ruiyun Guo
- Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China.,Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, 050017, Hebei Province, China
| | - Wei Zhang
- Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China.,Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, 050017, Hebei Province, China
| | - Jingjing He
- Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China.,Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, 050017, Hebei Province, China
| | - Desheng Kong
- Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China.,Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, 050017, Hebei Province, China
| | - Tianyu Dong
- Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China.,Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, 050017, Hebei Province, China.,Human Anatomy Department, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China
| | - Jun Ma
- Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China.,Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, 050017, Hebei Province, China.,China Human Anatomy Department, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China
| | - Huixian Cui
- Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China.,Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, 050017, Hebei Province, China.,China Human Anatomy Department, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China
| |
Collapse
|
5
|
Understanding the Role of ApoE Fragments in Alzheimer's Disease. Neurochem Res 2018; 44:1297-1305. [PMID: 30225748 DOI: 10.1007/s11064-018-2629-1] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 08/23/2018] [Accepted: 09/04/2018] [Indexed: 01/05/2023]
Abstract
Alzheimer's disease (AD) is one of the most devastating neurodegenerative diseases. It has been known for decades that the APOE ɛ4 allele is the most significant genetic risk factor for late-onset AD and yet its precise role in the disease remains unclear. The APOE gene encodes apolipoprotein E (apoE), a 35 kDa glycoprotein highly expressed in the brain. There are three different isoforms: apoE3 is the most common allele in the population, whilst apoE2 decreases, and apoE4 increases AD risk. ApoE has numerous functions that affect neuronal and non-neuronal cells, thus how it contributes to disease onset and progression is hotly debated. The apoE4 isoform has been linked to the accumulation of both of the major pathological hallmarks of AD, amyloid plaques containing amyloid β peptides, and neurofibrillary tangles containing hyperphosphorylated tau protein, as well as other hallmarks of the disease, including inflammation and oxidative stress. Numerous studies have shown that apoE undergoes fragmentation in the human brain, and that the fragmentation pattern varies between isoforms. It was previously shown that apoE4 has neurotoxic functions, however recent data has also identified a neuroprotective role for the apoE N-terminal 25 kDa fragment, which is more prevalent in apoE3 individuals. The ability of the apoE 25 kDa fragment to promote neurite outgrowth was recently demonstrated and this suggests there is a potential loss of neuroprotection in apoE4 individuals in addition to the previously described gain of toxic function for specific apoE4 fragments. Here we review the enzymes proposed to be responsible for apoE fragmentation, the specific functions of different apoE fragments and their possible links with AD.
Collapse
|
6
|
Wang HY, Trocmé-Thibierge C, Stucky A, Shah SM, Kvasic J, Khan A, Morain P, Guignot I, Bouguen E, Deschet K, Pueyo M, Mocaer E, Ousset PJ, Vellas B, Kiyasova V. Increased Aβ 42-α7-like nicotinic acetylcholine receptor complex level in lymphocytes is associated with apolipoprotein E4-driven Alzheimer's disease pathogenesis. ALZHEIMERS RESEARCH & THERAPY 2017; 9:54. [PMID: 28750690 PMCID: PMC5530996 DOI: 10.1186/s13195-017-0280-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 06/21/2017] [Indexed: 12/19/2022]
Abstract
BACKGROUND The apolipoprotein E ε4 (APOE4) genotype is a prominent late-onset Alzheimer's disease (AD) risk factor. ApoE4 disrupts memory function in rodents and may contribute to both plaque and tangle formation. METHODS Coimmunoprecipitation and Western blot detection were used to determine: 1) the effects of select fragments from the apoE low-density lipoprotein (LDL) binding domain and recombinant apoE subtypes on amyloid beta (Aβ)42-α7 nicotinic acetylcholine receptor (α7nAChR) interaction and tau phosphorylation in rodent brain synaptosomes; and 2) the level of Aβ42-α7nAChR complexes in matched controls and patients with mild cognitive impairment (MCI) and dementia due to AD with known APOE genotypes. RESULTS In an ex vivo study using rodent synaptosomes, apoE141-148 of the apoE promotes Aβ42-α7nAChR association and Aβ42-induced α7nAChR-dependent tau phosphorylation. In a single-blind study, we examined lymphocytes isolated from control subjects, patients with MCI and dementia due to AD with known APOE genotypes, sampled at two time points (1 year apart). APOE ε4 genotype was closely correlated with heightened Aβ42-α7nAChR complex levels and with blunted exogenous Aβ42 effects in lymphocytes derived from AD and MCI due to AD cases. Similarly, plasma from APOE ε4 carriers enhanced the Aβ42-induced Aβ42-α7nAChR association in rat cortical synaptosomes. The progression of cognitive decline in APOE ε4 carriers correlated with higher levels of Aβ42-α7nAChR complexes in lymphocytes and greater enhancement by their plasma of Aβ42-induced Aβ42-α7nAChR association in rat cortical synaptosomes. CONCLUSIONS Our data suggest that increased lymphocyte Aβ42-α7nAChR-like complexes may indicate the presence of AD pathology especially in APOE ε4 carriers. We show that apoE, especially apoE4, promotes Aβ42-α7nAChR interaction and Aβ42-induced α7nAChR-dependent tau phosphorylation via its apoE141-148 domain. These apoE-mediated effects may contribute to the APOE ε4-driven neurodysfunction and AD pathologies.
Collapse
Affiliation(s)
- Hoau-Yan Wang
- Department of Physiology, Pharmacology and Neuroscience, CUNY School of Medicine, 160 Convent Avenue, New York, NY, 10031, USA. .,Department of Physiology, Pharmacology & Neuroscience, The City University of New York School of Medicine, CDI-3370 85 St. Nicholas Terrace, New York, NY, 10027, USA.
| | | | - Andres Stucky
- Department of Physiology, Pharmacology and Neuroscience, CUNY School of Medicine, 160 Convent Avenue, New York, NY, 10031, USA.,Department of Biology, Neuroscience Program, Graduate School of The City University of New York, New York, New York, 10061, USA
| | - Sanket M Shah
- Department of Physiology, Pharmacology and Neuroscience, CUNY School of Medicine, 160 Convent Avenue, New York, NY, 10031, USA
| | - Jessica Kvasic
- Department of Physiology, Pharmacology and Neuroscience, CUNY School of Medicine, 160 Convent Avenue, New York, NY, 10031, USA
| | - Amber Khan
- Department of Physiology, Pharmacology and Neuroscience, CUNY School of Medicine, 160 Convent Avenue, New York, NY, 10031, USA
| | - Philippe Morain
- Institut de Recherches Internationales Servier, 50 Rue Carnot, 92284, Suresnes, France
| | - Isabelle Guignot
- Institut de Recherches Internationales Servier, 50 Rue Carnot, 92284, Suresnes, France
| | - Eva Bouguen
- Institut de Recherches Internationales Servier, 50 Rue Carnot, 92284, Suresnes, France
| | - Karine Deschet
- Institut de Recherches Internationales Servier, 50 Rue Carnot, 92284, Suresnes, France
| | - Maria Pueyo
- Institut de Recherches Internationales Servier, 50 Rue Carnot, 92284, Suresnes, France
| | - Elisabeth Mocaer
- Institut de Recherches Internationales Servier, 50 Rue Carnot, 92284, Suresnes, France
| | - Pierre-Jean Ousset
- Alzheimer's Disease Research and Clinical Center, Inserm U1027, Toulouse University Hospital, Toulouse, France
| | - Bruno Vellas
- Alzheimer's Disease Research and Clinical Center, Inserm U1027, Toulouse University Hospital, Toulouse, France
| | - Vera Kiyasova
- Institut de Recherches Internationales Servier, 50 Rue Carnot, 92284, Suresnes, France
| |
Collapse
|
7
|
Weng PH, Chen JH, Chen TF, Sun Y, Wen LL, Yip PK, Chu YM, Chen YC. CHRNA7 Polymorphisms and Dementia Risk: Interactions with Apolipoprotein ε4 and Cigarette Smoking. Sci Rep 2016; 6:27231. [PMID: 27249957 PMCID: PMC4890170 DOI: 10.1038/srep27231] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 02/15/2016] [Indexed: 12/16/2022] Open
Abstract
α7 nicotinic acetylcholine receptor (α7nAChR, encoded by CHRNA7) is involved in dementia pathogenesis through cholinergic neurotransmission, neuroprotection and interactions with amyloid-β. Smoking promotes atherosclerosis and increases dementia risk, but nicotine exerts neuroprotective effect via α7nAChR in preclinical studies. No studies explored the gene-gene, gene-environment interactions between CHRNA7 polymorphism, apolipoprotein E (APOE) ε4 status and smoking on dementia risk. This case-control study recruited 254 late-onset Alzheimer’s disease (LOAD) and 115 vascular dementia (VaD) cases (age ≥65) from the neurology clinics of three teaching hospitals in Taiwan during 2007–2010. Controls (N = 435) were recruited from health checkup programs and volunteers during the same period. Nine CHRNA7 haplotype-tagging single nucleotide polymorphisms representative for Taiwanese were genotyped. Among APOE ε4 non-carriers, CHRNA7 rs7179008 variant carriers had significantly decreased LOAD risk after correction for multiple tests (GG + AG vs. AA: adjusted odds ratio = 0.29, 95% confidence interval = 0.13–0.64, P = 0.002). Similar findings were observed for carriers of GT haplotype in CHRNA7 block4. A significant interaction was found between rs7179008, GT haplotype in block4 and APOE ε4 on LOAD risk. rs7179008 variant also reduced the detrimental effect of smoking on LOAD risk. No significant association was found between CHRNA7 and VaD. These findings help to understand dementia pathogenesis.
Collapse
Affiliation(s)
- Pei-Hsuan Weng
- Department of Family Medicine, Taiwan Adventist Hospital, Taipei, Taiwan.,Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Jen-Hau Chen
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan.,Department of Geriatrics and Gerontology, National Taiwan University Hospital, Taipei, Taiwan
| | - Ta-Fu Chen
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
| | - Yu Sun
- Department of Neurology, En Chu Kong Hospital, New Taipei City, Taiwan
| | - Li-Li Wen
- Department of Laboratory Medicine, En Chu Kong Hospital, New Taipei City, Taiwan
| | - Ping-Keung Yip
- School of Medicine, Fu-Jen Catholic University, New Taipei City, Taiwan.,Center of Neurological Medicine, Cardinal Tien Hospital, New Taipei City, Taiwan
| | - Yi-Min Chu
- Department of Laboratory Medicine, Cardinal Tien Hospital, New Taipei City, Taiwan
| | - Yen-Ching Chen
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan.,Department of Public Health, College of Public Health, National Taiwan University, Taipei, Taiwan.,Research Center for Genes, Environment and Human Health, College of Public Health, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
8
|
Sharifov OF, Nayyar G, Garber DW, Handattu SP, Mishra VK, Goldberg D, Anantharamaiah GM, Gupta H. Apolipoprotein E mimetics and cholesterol-lowering properties. Am J Cardiovasc Drugs 2012; 11:371-81. [PMID: 22149316 DOI: 10.2165/11594190-000000000-00000] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Apolipoprotein E (apoE) is a ligand for clearance of lipoprotein remnants such as chylomicrons and very low-density lipoproteins. It has anti-atherogenic and anti-inflammatory properties. Therefore, there is extensive ongoing research to create peptides that can mimic properties of apoE. A number of synthetic peptides that encompass different regions of apoE have been studied for inhibiting inflammatory states, including Alzheimer disease. However, peptides that clear atherogenic lipoproteins, analogous to apoE, via enhanced hepatic uptake have not been previously reviewed. Toward this end, we describe the design and studies of a dual-domain apoE mimetic peptide, Ac-hE18A-NH(2). This peptide consists of residues 141-150, the putative receptor-binding region of human apoE, covalently linked to a well characterized class A amphipathic helix, 18A, which has no sequence homology to any other exchangeable apolipoprotein sequences. It demonstrates dramatic effects in reducing plasma cholesterol levels in dyslipidemic mouse and rabbit models. We discuss the scientific rationale and review the literature for the design and efficacy of the peptide. Analogous to apoE, this peptide bypasses the low-density lipoprotein receptor for the hepatic uptake of atherogenic lipoproteins via heparan sulfate proteoglycan (HSPG). ApoE mimetics such as Ac-hE18A-NH(2) may therefore restore or replace ligands in genetically induced hyperlipidemias to enable reduction in atherogenic lipoproteins via HSPG even in the absence of functional low-density lipoprotein receptors. Therefore, this and similar peptides may be useful in the treatment of dyslipidemic disorders such as familial hyperlipidemia and atherosclerosis.
Collapse
Affiliation(s)
- Oleg F Sharifov
- Departments of Medicine, Biochemistry and Molecular Genetics and the Atherosclerosis Research Unit, University of Alabama at Birmingham, USA
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Geerts H. α7 Nicotinic receptor modulators for cognitive deficits in schizophrenia and Alzheimer's disease. Expert Opin Investig Drugs 2011; 21:59-65. [PMID: 22047592 DOI: 10.1517/13543784.2012.633510] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
INTRODUCTION Nicotinic receptors (nAChR), a class of ligand-gated ion channels, are attractive targets in a variety of CNS diseases. The low-affinity α7 nAChR modulate the levels of various neurotransmitters, their receptor density is affected in schizophrenia and a single nucleotide polymorphism in the promoter region has been associated with higher risk for schizophrenia. AREAS COVERED This article reviews the scientific rationale for α7 nAChR stimulation and presents a selection of α7-positive modulators that are in development for cognitive deficits, both in Alzheimer's disease and in cognitive impairment associated with schizophrenia. The available clinical information is reviewed and the translational difficulties are discussed. EXPERT OPINION In contrast to preclinical models, clinical proof-of-concept studies so far have not shown clear unequivocal cognitive benefit, although there are signs of clinical efficacy on specific cognitive scales and on negative symptoms. Possible problems associated with the clinical development include the impact of dosage and dosing schedule on the balance between activation and desensitization of the ion channel, the selection of comedication, robust human target engagement data and the choice of clinical readout scales. A better understanding of the human biology of α7 nAChR is essential for improving the successful clinical development of this promising target.
Collapse
|
10
|
Bhattacharjee PS, Huq TS, Mandal TK, Graves RA, Muniruzzaman S, Clement C, McFerrin HE, Hill JM. A novel peptide derived from human apolipoprotein E is an inhibitor of tumor growth and ocular angiogenesis. PLoS One 2011; 6:e15905. [PMID: 21253017 PMCID: PMC3017052 DOI: 10.1371/journal.pone.0015905] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Accepted: 11/25/2010] [Indexed: 12/21/2022] Open
Abstract
Angiogenesis is a hallmark of tumor development and metastasis and now a validated target for cancer treatment. We previously reported that a novel dimer peptide (apoEdp) derived from the receptor binding region of human apolipoprotein E (apoE) inhibits virus-induced angiogenesis. However, its role in tumor anti-angiogenesis is unknown. This study demonstrates that apoEdp has anti-angiogenic property in vivo through reduction of tumor growth in a mouse model and ocular angiogenesis in a rabbit eye model. Our in vitro studies show that apoEdp inhibits human umbilical vein endothelial cell proliferation, migration, invasion and capillary tube formation. We document that apoEdp inhibits vascular endothelial growth factor-induced Flk-1 activation as well as downstream signaling pathways that involve c-Src, Akt, eNOS, FAK, and ERK1/2. These in vitro data suggest potential sites of the apoE dipeptide inhibition that could occur in vivo. This is the first evidence that a synthetic dimer peptide mimicking human apoE has anti-angiogenesis functions and could be an anti-tumor drug candidate.
Collapse
Affiliation(s)
- Partha S. Bhattacharjee
- Department of Biology, Xavier University of Louisiana, New Orleans, Louisiana, United States of America
- Department of Ophthalmology, Louisiana State University Health Sciences Center, New Orleans, Louisiana, United States of America
| | - Tashfin S. Huq
- Department of Biology, Xavier University of Louisiana, New Orleans, Louisiana, United States of America
| | - Tarun K. Mandal
- College of Pharmacy, Xavier University of Louisiana, New Orleans, Louisiana, United States of America
| | - Richard A. Graves
- College of Pharmacy, Xavier University of Louisiana, New Orleans, Louisiana, United States of America
| | - Syed Muniruzzaman
- Department of Biology, Xavier University of Louisiana, New Orleans, Louisiana, United States of America
| | - Christian Clement
- Department of Ophthalmology, Louisiana State University Health Sciences Center, New Orleans, Louisiana, United States of America
| | - Harris E. McFerrin
- Department of Biology, Xavier University of Louisiana, New Orleans, Louisiana, United States of America
| | - James M. Hill
- Department of Ophthalmology, Louisiana State University Health Sciences Center, New Orleans, Louisiana, United States of America
- Neuroscience Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana, United States of America
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, Louisiana, United States of America
- Department of Pharmacology, Louisiana State University Health Sciences Center, New Orleans, Louisiana, United States of America
- * E-mail:
| |
Collapse
|
11
|
Barrantes FJ, Borroni V, Vallés S. Neuronal nicotinic acetylcholine receptor-cholesterol crosstalk in Alzheimer's disease. FEBS Lett 2009; 584:1856-63. [PMID: 19914249 DOI: 10.1016/j.febslet.2009.11.036] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2009] [Revised: 11/09/2009] [Accepted: 11/10/2009] [Indexed: 10/20/2022]
Abstract
Alzheimer's disease (AD) is one of the most devastating diseases of the central nervous system (CNS). It is characterized by two neuropathological findings: amyloid plaques and neurofibrillary tangles. AD is also accompanied by an extensive functional deficit in the cholinergic system, involving the neuronal-type nicotinic acetylcholine receptor (AChR). Furthermore there is increasing evidence showing a misregulation of cholesterol metabolism in the development of the disease. Since cholesterol affects AChR protein at multiple levels, the cognitive impairment and other neurological correlates of AD might be partly associated with an abnormal crosstalk between the receptor protein and the sterol in this synaptopathy.
Collapse
Affiliation(s)
- Francisco J Barrantes
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, UNESCO Chair of Biophysics and Molecular Neurobiology, Bahía Blanca, Argentina.
| | | | | |
Collapse
|
12
|
Hippocampal infusions of MARCKS peptides impair memory of rats on the radial-arm maze. Brain Res 2009; 1308:147-52. [PMID: 19854162 DOI: 10.1016/j.brainres.2009.10.040] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2009] [Revised: 10/13/2009] [Accepted: 10/16/2009] [Indexed: 12/24/2022]
Abstract
In vitro hippocampal studies by Gay et al. (2008) demonstrated that a myristoylated alanine-rich C kinase substrate (MARCKS) peptide comprising the phosphorylation site or effector domain of the protein acts as a powerful inhibitor of alpha7 nicotinic acetylcholine receptors (nAChRs), which are known to be critically involved in memory function. However, behavioral consequences of hippocampal MARCKS peptide infusions have not been investigated. The purpose of the current study was to determine if local infusions in the rat ventral hippocampus of long (comprising amino acids 151-175) and short (amino acids 159-165) forms of MARCKS peptides could affect memory performance in the 16-arm radial maze. Our results demonstrated a dramatic impairment of both working (changing) and reference (constant) memory with MARCKS(151-175) only. The shorter MARCKS peptide did not affect memory performance. This is in line with in vitro results reported by Gay et al. (2008) that long, but not short, MARCKS peptides inhibit alpha7 nAChRs. We also found that the effect of the MARCKS(151-175) peptide was dose-dependent, with a robust memory impairment at 10 microg/side, and smaller inconsistent effects at lower doses. Our present behavioral study, together with the earlier in vitro study by Gay et al. (2008), suggests that effector domain MARCKS peptides could play a significant role in memory regulation and impairment.
Collapse
|
13
|
Crutcher KA, Lilley HN, Anthony SR, Zhou W, Narayanaswami V. Full-length apolipoprotein E protects against the neurotoxicity of an apoE-related peptide. Brain Res 2009; 1306:106-15. [PMID: 19836363 DOI: 10.1016/j.brainres.2009.10.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2009] [Revised: 10/06/2009] [Accepted: 10/08/2009] [Indexed: 11/26/2022]
Abstract
Apolipoprotein E was found to protect against the neurotoxic effects of a dimeric peptide derived from the receptor-binding region of this protein (residues 141-149). Both apoE3 and apoE4 conferred protection but the major N-terminal fragment of each isoform did not. Nor was significant protection provided by bovine serum albumin or apoA-I. Full-length apoE3 and apoE4 also inhibited the uptake of a fluorescent-labeled derivative of the peptide, suggesting that the mechanism of inhibition might involve competition for cell surface receptors/proteoglycans that mediate endocytosis and/or signaling pathways. These results might bear on the question of the role of apoE in neuronal degeneration, such as occurs in Alzheimer's disease where apoE4 confers a significantly greater risk of pathology.
Collapse
Affiliation(s)
- K A Crutcher
- Department of Neurosurgery, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| | | | | | | | | |
Collapse
|
14
|
Buckingham SD, Jones AK, Brown LA, Sattelle DB. Nicotinic acetylcholine receptor signalling: roles in Alzheimer's disease and amyloid neuroprotection. Pharmacol Rev 2009; 61:39-61. [PMID: 19293145 DOI: 10.1124/pr.108.000562] [Citation(s) in RCA: 208] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Alzheimer's disease (AD), the major contributor to dementia in the elderly, involves accumulation in the brain of extracellular plaques containing the beta-amyloid protein (Abeta) and intracellular neurofibrillary tangles of hyperphosphorylated tau protein. AD is also characterized by a loss of neurons, particularly those expressing nicotinic acetylcholine receptors (nAChRs), thereby leading to a reduction in nAChR numbers. The Abeta(1-42) protein, which is toxic to neurons, is critical to the onset and progression of AD. The discovery of new drug therapies for AD is likely to be accelerated by an improved understanding of the mechanisms whereby Abeta causes neuronal death. We examine the evidence for a role in Abeta(1-42) toxicity of nAChRs; paradoxically, nAChRs can also protect neurons when activated by nicotinic ligands. Abeta peptides and nicotine differentially activate several intracellular signaling pathways, including the phosphatidylinositol 3-kinase/v-akt murine thymoma viral oncogene homolog pathway, the extracellular signal-regulated kinase/mitogen-activated protein kinase, and JAK-2/STAT-3 pathways. These pathways control cell death or survival and the secretion of Abeta peptides. We propose that understanding the differential activation of these pathways by nicotine and/or Abeta(1-42) may offer the prospect of new routes to therapy for AD.
Collapse
Affiliation(s)
- Steven D Buckingham
- Medical Research Council Functional Genomics Unit, Department of Physiology Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, UK, OX1 3QX
| | | | | | | |
Collapse
|
15
|
Eddins D, Klein RC, Yakel JL, Levin ED. Hippocampal infusions of apolipoprotein E peptides induce long-lasting cognitive impairment. Brain Res Bull 2009; 79:111-5. [PMID: 19185602 DOI: 10.1016/j.brainresbull.2009.01.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2008] [Revised: 12/18/2008] [Accepted: 01/06/2009] [Indexed: 11/28/2022]
Abstract
The inheritance of the varepsilon4 allele of apolipoprotein E (ApoE4) and cholinergic system dysfunction have long been associated with the pathology of Alzheimer's disease (AD). Recently, in vitro studies have established a direct link between ApoE and cholinergic function in that synthetic peptides containing segments of the ApoE protein (ApoE(133-149) and ApoE(141-148)) interact with alpha7 nicotinic acetylcholine receptors (nAChRs) in the hippocampus. This raises the possibility that ApoE peptides may contribute to cognitive impairment in AD in that the hippocampus plays a key role in cognitive functioning. To test this, we acutely infused ApoE peptides into the ventral hippocampus of female Sprague-Dawley rats and assessed the resultant effects on radial-arm maze choice accuracy over a period of weeks after the infusion. Local ventral hippocampal infusion of ApoE peptides caused significant cognitive impairment in radial-arm maze learning that persisted several weeks after the acute infusion. This persisting deficit may be an important model for understanding the relationship between ApoE protein-induced neurotoxicity and cognitive impairment as well as serve as a platform for the development of new therapies to avoid neurotoxicity and cognitive decline.
Collapse
Affiliation(s)
- Donnie Eddins
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC 27710, United States
| | | | | | | |
Collapse
|
16
|
Hoane MR, Kaufman N, Vitek MP, McKenna SE. COG1410 improves cognitive performance and reduces cortical neuronal loss in the traumatically injured brain. J Neurotrauma 2009; 26:121-9. [PMID: 19119914 PMCID: PMC2749004 DOI: 10.1089/neu.2008.0565] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We have previously shown that a single dose of COG1410, a small molecule ApoE-mimetic peptide derived from the apolipoprotein E (ApoE) receptor binding region, improves sensorimotor and motor outcome following cortical contusion injury (CCI). The present study evaluated a regimen of COG1410 following frontal CCI in order to examine its preclinical efficacy on cognitive recovery. Animals were prepared with a bilateral CCI of the frontal cortex. A regimen of COG1410 (0.8mg/kg intravenously [IV]) was administered twice, at 30min and again at 24h post-CCI. Starting on day 11, the animals were tested for their acquisition of a reference memory task in the Morris water maze (MWM), followed by a working memory task in the MWM on day 15. Following CCI, the animals were also tested on the bilateral tactile adhesive removal test to measure sensorimotor dysfunction. On all of the behavioral tests the COG1410 group was no different from the uninjured sham group. Administration of the regimen of COG1410 significantly improved recovery on the reference and working memory tests, as well as on the sensorimotor test. Lesion analysis revealed that COG1410 significantly reduced the size of the injury cavity. Administration of COG1410 also reduced the number of degenerating neurons, as measured by Fluoro-Jade C staining, in the frontal cortex at 48h post-CCI. These results suggest that a regimen of COG1410 appeared to block the development of significant behavioral deficits and reduced tissue loss. These combined findings suggest that COG1410 appears to have strong preclinical efficacy when administered following traumatic brain injury (TBI).
Collapse
Affiliation(s)
- Michael R Hoane
- Restorative Neuroscience Laboratory, Center for Integrative Research in Cognitive and Neural Sciences, Department of Psychology,Southern Illinois University, Carbondale, IL 62901, USA.
| | | | | | | |
Collapse
|
17
|
Gay EA, Klein RC, Melton MA, Blackshear PJ, Yakel JL. Inhibition of native and recombinant nicotinic acetylcholine receptors by the myristoylated alanine-rich C kinase substrate peptide. J Pharmacol Exp Ther 2008; 327:884-90. [PMID: 18812491 DOI: 10.1124/jpet.108.144758] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A variety of peptide ligands are known to inhibit the function of neuronal nicotinic acetylcholine receptors (nAChRs), including small toxins and brain-derived peptides such as beta-amyloid(1-42) and synthetic apolipoproteinE peptides. The myristoylated alanine-rich C kinase substrate (MARCKS) protein is a major substrate of protein kinase C and is highly expressed in the developing and adult brain. The ability of a 25-amino acid synthetic MARCKS peptide, derived from the effector domain (ED), to modulate nAChR activity was tested. To determine the effects of the MARCKS ED peptide on nAChR function, receptors were expressed in Xenopus laevis oocytes, and two-electrode voltage-clamp experiments were performed. The MARCKS ED peptide completely inhibited acetylcholine (ACh)-evoked responses from alpha7 nAChRs in a dose-dependent manner, yielding an IC(50) value of 16 nM. Inhibition of ACh-induced responses was both activity- and voltage-independent. The MARCKS ED peptide was unable to block alpha-bungarotoxin binding. A MARCKS ED peptide in which four serine residues were replaced with aspartate residues was unable to inhibit alpha7 nAChR-mediated currents. The MARCKS ED peptide inhibited ACh-induced alpha4beta2 and alpha2beta2 responses, although with decreased potency. The effects of the MARCKS ED peptide on native nAChRs were tested using acutely isolated rat hippocampal slices. In hippocampal interneurons, the MARCKS ED peptide was able to block native alpha7 nAChRs in a dose-dependent manner. The MARCKS ED peptide represents a novel antagonist of neuronal nAChRs that has considerable utility as a research tool.
Collapse
Affiliation(s)
- Elaine A Gay
- Laboratory of Neurobiology, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC 27709, USA
| | | | | | | | | |
Collapse
|
18
|
Gay EA, Giniatullin R, Skorinkin A, Yakel JL. Aromatic residues at position 55 of rat alpha7 nicotinic acetylcholine receptors are critical for maintaining rapid desensitization. J Physiol 2007; 586:1105-15. [PMID: 18096596 DOI: 10.1113/jphysiol.2007.149492] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The rat alpha7 nicotinic acetylcholine receptor (nAChR) can undergo rapid onset of desensitization; however, the mechanisms of desensitization are largely unknown. The contribution of a tryptophan (W) residue at position 55 of the rat alpha7 nAChR subunit, which lies within the beta2 strand, was studied by mutating it to other hydrophobic and/or aromatic amino acids, followed by voltage-clamp experiments in Xenopus oocytes. When mutated to alanine, the alpha7-W55A nAChR desensitized more slowly, and recovered from desensitization more rapidly, than wildtype alpha7 nAChRs. The contribution of desensitization was validated by kinetic modelling. Mutating W55 to other aromatic residues (phenylalanine or tyrosine) had no significant effect on the kinetics of desensitization, whereas mutation to various hydrophobic residues (alanine, cysteine or valine) significantly decreased the rate of onset and increased the rate of recovery from desensitization. To gain insight into possible structural rearrangements during desensitization, we probed the accessibility of W55 by mutating W55 to cysteine (alpha7-W55C) and testing the ability of various sulfhydryl reagents to react with this cysteine. Several positively charged sulfhydryl reagents blocked ACh-induced responses for alpha7-W55C nAChRs, whereas a neutral sulfhydryl reagent potentiated responses; residue C55 was not accessible for modification in the desensitized state. These data suggest that W55 plays an important role in both the onset and recovery from desensitization in the rat alpha7 nAChR, and that aromatic residues at position 55 are critical for maintaining rapid desensitization. Furthermore, these data suggest that W55 may be a potential target for modulatory agents operating via hydrophobic interactions.
Collapse
Affiliation(s)
- Elaine A Gay
- Laboratory of Neurobiology, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services PO Box 12233, Research Triangle Park, NC 27709, USA
| | | | | | | |
Collapse
|
19
|
Laskowitz DT, McKenna SE, Song P, Wang H, Durham L, Yeung N, Christensen D, Vitek MP. COG1410, a novel apolipoprotein E-based peptide, improves functional recovery in a murine model of traumatic brain injury. J Neurotrauma 2007; 24:1093-107. [PMID: 17610350 DOI: 10.1089/neu.2006.0192] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Traumatic brain injury (TBI) is a silent epidemic affecting approximately 1.4 million Americans annually, at an estimated annual cost of $60 billion in the United States alone. Despite an increased understanding of the pathophysiology of closed head injury, there remains no pharmacological intervention proven to improve functional outcomes in this setting. Currently, the existing standard of care for TBI consists primarily of supportive measures. Apolipoprotein E (apoE) is the primary apolipoprotein synthesized in the brain in response to injury, where it modulates several components of the neuroinflammatory cascade associated with TBI. We have previously demonstrated that COG133, an apoE mimetic peptide, improved functional outcomes and attenuated neuronal death when administered as a single intravenous injection at 30 min post-TBI in mice. Using the principles of rational drug design, we developed a more potent analog, COG1410, which expands the therapeutic window for the treatment of TBI by a factor of four, from 30 min to 2 h. Mice that received a single intravenous injection of COG1410 at 120 min post-TBI exhibited significant improvement on a short term test of vestibulomotor function and on a long term test of spatial learning and memory. This was associated with a significant attenuation of microglial activation and neuronal death in the hippocampus, the neuroanatomical substrate for learning and memory. Rationally derived apoE mimetic peptides have been demonstrated to exert neuroprotective and anti-inflammatory effects in vitro and in clinically relevant models of brain injury. This represents a novel therapeutic strategy in the treatment of TBI.
Collapse
Affiliation(s)
- Daniel T Laskowitz
- Division of Neurology, Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Hoane MR, Pierce JL, Holland MA, Birky ND, Dang T, Vitek MP, McKenna SE. The novel apolipoprotein E-based peptide COG1410 improves sensorimotor performance and reduces injury magnitude following cortical contusion injury. J Neurotrauma 2007; 24:1108-18. [PMID: 17610351 DOI: 10.1089/neu.2006.0254] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
It has previously been shown that small peptide molecules derived from the apolipoprotein E (ApoE) receptor binding region are anti-inflammatory in nature and can improve outcome following head injury. The present study evaluated the preclinical efficacy of COG1410, a small molecule ApoE-mimetic peptide (1410 daltons), following cortical contusion injury (CCI). Animals were prepared with a unilateral CCI of the sensorimotor cortex (SMC) or sham procedure. Thirty mins post-CCI the animals received i.v. infusions of 0.8 mg/kg COG1410, 0.4 mg/kg COG1410, or vehicle. Starting on day 2, the animals were tested on a battery of behavioral measures to assess sensorimotor (vibrissae-forelimb placing and forelimb use-asymmetry), and motor (tapered balance beam) performance. Administration of the 0.8 mg/kg dose of COG1410 significantly improved recovery on the vibrissae-forelimb and limb asymmetry tests. However, no facilitation was observed on the tapered beam. The low dose (0.4 mg/kg) of COG1410 did not show any significant differences compared to vehicle. Lesion analysis revealed that the 0.8 mg/kg dose of COG1410 significantly reduced the size of the injury cavity compared to the 0.4 mg/kg dose and vehicle. The 0.8 mg/kg dose also reduced the number of glial fibrillary acid protein (GFAP+) reactive cells in the injured cortex. These results suggest that a single dose of COG1410 facilitates behavioral recovery and provides neuroprotection in a dose and task-dependent manner. Thus, the continued clinical development of ApoE based therapeutics is warranted and could represent a novel strategy for the treatment of traumatic brain injuries.
Collapse
Affiliation(s)
- Michael R Hoane
- Restorative Neuroscience Laboratory, Center for Integrative Research in Cognitive and Neural Sciences, Department of Psychology, Southern Illinois University, Carbondale, Illinois 62901, USA.
| | | | | | | | | | | | | |
Collapse
|
21
|
Gay EA, Bienstock RJ, Lamb PW, Yakel JL. Structural determinates for apolipoprotein E-derived peptide interaction with the alpha7 nicotinic acetylcholine receptor. Mol Pharmacol 2007; 72:838-49. [PMID: 17609418 PMCID: PMC2742887 DOI: 10.1124/mol.107.035527] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Neuronal nicotinic acetylcholine receptor (nAChR) signaling has been implicated in a variety of normal central nervous system (CNS) functions as well as an array of neuropathologies. Previous studies have demonstrated both neurotoxic and neuroprotective actions of peptides derived from apolipoprotein E (apoE). It has been discovered that apoE-derived peptides inhibit native and recombinant alpha7-containing nAChRs, indicating a direct interaction between apoE peptides and nAChRs. To probe the structure/function interaction between alpha7 nAChRs and the apoE peptide apoE(141-148), experiments were conducted in Xenopus laevis oocytes expressing wild-type and mutated nAChRs. Mutation of Trp55 to alanine blocks apoE peptide-induced inhibition of acetylcholine (ACh)-mediated alpha7 nAChR responses. Additional mutations at Trp55 suggest that hydrophobic interactions between the receptor and apoE(141-148) are essential for inhibition of alpha7 nAChR function. A mutated apoE peptide also demonstrated decreased inhibition at alpha7-W55A nAChRs as well as activity-dependent inhibition of both wild-type alpha7 nAChRs and alpha7-W55A receptors. Finally, a three-dimensional model of the alpha7 nAChR was developed based on the recently refined Torpedo marmorata nACh receptor. A structural model is proposed for the binding of apoE(141-148) to the alpha7 nAChR where the peptide binds at the interface between two subunits, near the ACh binding site. Similar to the functional data, the computational docking suggests the importance of hydrophobic interactions between the alpha7 nAChR and the apoE peptide for inhibition of receptor function. The current data suggest a mode for apoE peptide binding that directly blocks alpha7 nAChR activity and consequently may disrupt nAChR signaling.
Collapse
Affiliation(s)
- Elaine A Gay
- NIEHS, F2-08, P.O. Box 12233, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | | | | | | |
Collapse
|
22
|
Chan WK, Wong PTH, Sheu FS. Frontal cortical α7 and α4β2 nicotinic acetylcholine receptors in working and reference memory. Neuropharmacology 2007; 52:1641-9. [PMID: 17482650 DOI: 10.1016/j.neuropharm.2007.03.008] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2006] [Revised: 02/19/2007] [Accepted: 03/18/2007] [Indexed: 10/23/2022]
Abstract
The alpha7 and alpha4beta2 nicotinic acetylcholine receptor (nAchR) subtypes have been shown to be involved in memory. It is also known that losses of frontal cortical nAchRs are correlated to declining memory function in Alzheimer's disease, but the subtype-specific role of frontal cortical nAchRs in memory has not been well characterized. Hence, we sought to understand the role of frontal cortical alpha7 and alpha4beta2 nAchR subtypes in both working and reference memory by observing the effects of subtype specific agonists and antagonists on radial arm maze performance. It was found that alpha7 nAchRs in the frontal cortex are involved in working and reference memory, while alpha4beta2 nAchRs are only involved in working memory. Throughout the study, drug treatments did not affect motor functionality in the animals. Our data thus sheds further light on the frontal cortex as an important anatomical locus for nAchR-mediated memory function in the brain, and highlights the differing role of alpha7 and alpha4beta2 nAchRs in long and short term memory.
Collapse
Affiliation(s)
- Wai Kit Chan
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore
| | | | | |
Collapse
|
23
|
Ely EW, Girard TD, Shintani AK, Jackson JC, Gordon SM, Thomason JWW, Pun BT, Canonico AE, Light RW, Pandharipande P, Laskowitz DT. Apolipoprotein E4 polymorphism as a genetic predisposition to delirium in critically ill patients. Crit Care Med 2007; 35:112-7. [PMID: 17133176 DOI: 10.1097/01.ccm.0000251925.18961.ca] [Citation(s) in RCA: 134] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To test for an association between apolipoprotein E (APOE) genotypes and duration of intensive care unit delirium. DESIGN Prospective, observational cohort study. SETTING A 541-bed, community-based teaching hospital. PATIENTS Fifty-three mechanically ventilated intensive care unit patients. INTERVENTIONS None. MEASUREMENTS AND MAIN RESULTS All patients were managed with standardized sedation and ventilator weaning protocols as part of an ongoing clinical trial and were evaluated prospectively for delirium with the Confusion Assessment Method for the Intensive Care Unit (CAM-ICU). DNA was extracted from whole blood samples obtained on enrollment, and APOE genotype was determined using polymerase chain reaction followed by restriction enzyme digestion by investigators blinded to the clinical information. Delirium occurred in 47 (89%) patients at some point during the intensive care unit stay. Of the 53 patients, 12 (23%) had an APOE4 allele (APOE4+) and 41 (77%) had only APOE2 or APOE3 alleles (APOE4-). APOE4+ patients were younger (53.2 +/- 21.9 vs. 65.4 +/- 13.4, p = .08) and less often admitted for pneumonia (0% vs. 29.3%, p = .05) compared with APOE4- patients, yet they had a duration of delirium that was twice as long: median (interquartile range), 4 (3, 4.5) vs. 2 (1, 4) days (p = .05). No other clinical outcomes were significantly different between the APOE4+ and APOE4- patients. Using multivariable regression analysis to adjust for age, admission diagnosis of sepsis or acute respiratory distress syndrome or pneumonia, severity of illness, and duration of coma, the presence of APOE4 allele was the strongest predictor of delirium duration (odds ratio, 7.32; 95% confidence interval, 1.82-29.51, p = .005). CONCLUSIONS APOE4 allele represents the first demonstrated genetic predisposition to longer duration of delirium in humans.
Collapse
Affiliation(s)
- E Wesley Ely
- Department of Medicine, Saint Thomas Hospital, and Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Li FQ, Sempowski GD, McKenna SE, Laskowitz DT, Colton CA, Vitek MP. Apolipoprotein E-derived peptides ameliorate clinical disability and inflammatory infiltrates into the spinal cord in a murine model of multiple sclerosis. J Pharmacol Exp Ther 2006; 318:956-65. [PMID: 16740622 DOI: 10.1124/jpet.106.103671] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Apolipoprotein E (apoE), well known to play a role in lipid transport and cholesterol metabolism, also exerts anti-inflammatory and neuroprotective effects in the central nervous system. Recent clinical and genetic studies display an association between apoE genotype (APOE) and the progression and severity of multiple sclerosis, raising the possibility that modulation of apoE may be a novel treatment for multiple sclerosis. Using a murine experimental autoimmune encephalomyelitis (EAE) model of human multiple sclerosis, we found that a peptidomimetic of apoE protein, COG133, substantially reduces the clinical symptoms of EAE and promotes remission from the disability when administered before or after onset of disease. Most notably, fusion of COG133 to a protein transduction domain creates COG112, a modified apoE-mimetic peptide with significantly enhanced anti-inflammatory bioactivities in vitro, and improved therapeutic effects on EAE in vivo, which renders a nearly full remission from the disability. Histopathological analysis showed that COG112 and COG133 attenuated demyelination and significantly diminished the number of peripheral cells infiltrating into the spinal cord. ApoE mimetics also interfered with several mechanisms relevant to the pathogenesis of EAE and multiple sclerosis, including activation of macrophages, subsequent production of nitric oxide and inflammatory cytokines, and lymphocyte proliferation. These data suggest that apoE mimetics represent a multidimensional therapeutic for multiple sclerosis capable of inhibiting the inflammatory cascade, modulating immune cell function, and reducing clinical signs, which may have novel utility for the treatment of inflammatory autoimmune diseases.
Collapse
Affiliation(s)
- Feng-Qiao Li
- Division of Neurology, Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA.
| | | | | | | | | | | |
Collapse
|