1
|
AlKhelb D, Burke EL, Zvonok A, Iliopoulos-Tsoutsouvas C, Georgiadis MO, Jiang S, Ho TC, Nikas SP, Makriyannis A, Desai RI. Effects of cannabinoid agonists and antagonists in male rats discriminating the synthetic cannabinoid AM2201. Eur J Pharmacol 2023; 960:176168. [PMID: 38059442 PMCID: PMC10704044 DOI: 10.1016/j.ejphar.2023.176168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/30/2023] [Accepted: 10/26/2023] [Indexed: 12/08/2023]
Abstract
The synthetic forms of delta-9-tetrahydrocannabinol (Δ9-THC), dronabinol or nabilone, have been approved to treat several indications. However, due to safety concerns their clinical utility remains limited. Consequently, there is a need for developing cannabinoid (CB) ligands that display better behavioral pharmacological profiles than Δ9-THC. Here, we utilized drug discrimination methods to compare the interoceptive effects of CB ligands that vary in potency, efficacy, and selectivity at the CB receptors, including two ligands, AM411 and AM4089, that show CB1 partial agonist-like actions in vitro. Male rats were trained to discriminate 0.1 mg/kg AM2201 from saline under a fixed-ratio (FR) 10 response schedule of food reinforcement. After establishing AM2201's discriminative-stimulus effects, pretreatment tests with the CB1 antagonist/inverse agonist rimonabant blocked AM2201's effects, whereas the peripherally-restricted antagonist AM6545 had no effect. Next, the generalization profiles of AM411 and AM4089 with CB1 full agonists (JWH-018, CP-55,940, AM8936), partial agonist (Δ9-THC), and non-cannabinoids (fentanyl, atropine) were compared. The CBs either fully (AM2201, CP-55,940, JWH-018, AM8936, Δ9-THC) or partially (AM411, AM4089) substituted for AM2201, whereas fentanyl and atropine did not produce AM2201-like effects. All CB drugs were more potent than Δ9-THC and correlation analysis confirmed that the relative behavioral potencies of CBs corresponded strongly with their relative affinities at the CB1 but not CB2 receptors. Together, our results further demonstrate that AM411 and AM4089 exhibit better pharmacological profiles compared to Δ9-THC, in that they are more potent and display in vivo partial agonist-like actions that are centrally mediated via CB1 receptors.
Collapse
Affiliation(s)
- Dalal AlKhelb
- Center for Drug Discovery, Departments of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, MA, 02115, USA; Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, 12371, Saudi Arabia
| | - Emily L Burke
- Center for Drug Discovery, Departments of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, MA, 02115, USA
| | - Alexander Zvonok
- MAK Scientific LLC, 151 South Bedford Street, Burlington, MA, 01803, USA
| | - Christos Iliopoulos-Tsoutsouvas
- Center for Drug Discovery, Departments of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, MA, 02115, USA
| | - Markos-Orestis Georgiadis
- Center for Drug Discovery, Departments of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, MA, 02115, USA
| | - Shan Jiang
- Center for Drug Discovery, Departments of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, MA, 02115, USA
| | - Thanh C Ho
- Center for Drug Discovery, Departments of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, MA, 02115, USA
| | - Spyros P Nikas
- Center for Drug Discovery, Departments of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, MA, 02115, USA
| | - Alexandros Makriyannis
- Center for Drug Discovery, Departments of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, MA, 02115, USA; MAK Scientific LLC, 151 South Bedford Street, Burlington, MA, 01803, USA.
| | - Rajeev I Desai
- Center for Drug Discovery, Departments of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, MA, 02115, USA; Department of Psychiatry, Behavioral Biology Program, Integrative Neurochemistry Laboratory, McLean Hospital - Harvard Medical School, Belmont, MA, 02478, USA.
| |
Collapse
|
2
|
Erwin LL, Nilges MR, Denys IB, Sutphen JC, Friend AJ, Kapusta DR, Winsauer PJ. Interactive effects of (±)-trans-U50488 and its stereoisomers with cannabinoids. Pharmacol Biochem Behav 2021; 207:173218. [PMID: 34118232 DOI: 10.1016/j.pbb.2021.173218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 04/08/2021] [Accepted: 06/05/2021] [Indexed: 10/21/2022]
Abstract
The adverse effects of mu opioid agonists have spurred a renewed interest in using kappa opioid receptor (KOR) agonists as analgesics. KOR agonists also have potential for development as diuretics for the treatment of edema and hypertension. Here, we evaluated the discriminative stimulus, antinociceptive, and diuretic effects of the kappa agonist (±)-trans-U-50488 and its stereoisomers (-)-(1S,2S)-U-50488 or (+)-(1R,2R)-U-50488) alone and in combination with the cannabinoid agonist (-)-CP 55,940. To establish (±)-U-50488 as a discriminative stimulus, rats (n = 12) were trained to discriminate intraperitoneal (i.p.) administration of 5.6 mg/kg of (±)-trans-U-50488 from saline under a fixed-ratio 20 (FR-20) schedule of food reinforcement. Then, antinociception was assessed using two procedures: warm water tail withdrawal and von Frey paw withdrawal. Diuretic effects were assessed in separate rats (n = 6/group). Doses of (±)-U-50488 and (-)-U-50488 that served as discriminative stimuli produced significant increases in urine output, but at lower doses than those that produced antinociception. In contrast, (+)-U-50488 alone had no discriminative stimulus or diuretic effects at the doses tested, but did produce antinociception in the von Frey assay. When three cannabinoids and morphine were tested in the (±)-U-50488 discrimination procedure to determine the similarity of these drugs' discriminative stimulus effects to those for (±)-U-50488, the rank order similarity was (-)-CP 55,940 > (-)-trans-THC > (+)-WIN 55,212-2 ≥ morphine. (-)-CP 55,940 alone (0.056 mg/kg) partially substituted for the discriminative stimulus effects of (±)-U-50488 and produced significant diuretic and antinociceptive effects. (-)-CP 55,940 in combination with (±)-U-50488 also produced a two-fold leftward shift in the discriminative stimulus curve for (±)-U-50488, and near-additive antinociception with (±)-U-50488 and (+)-U-50488. Further, the diuretic effect of (-)-CP 55,940 was enhanced by a dose of (+)-U50488, which itself did not alter urine output. These data together indicate that a combination of cannabinoid and kappa opioid agonists can enhance diuresis, but may have limited potential for serving as opioid-sparing pharmacotherapeutics for treatment of pain.
Collapse
Affiliation(s)
- Laura L Erwin
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA.
| | - Mark R Nilges
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Ian B Denys
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Jane C Sutphen
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Ashton J Friend
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Daniel R Kapusta
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Peter J Winsauer
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA; Alcohol and Drug Abuse Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| |
Collapse
|
3
|
Maguire DR, France CP. Reinforcing effects of opioid/cannabinoid mixtures in rhesus monkeys responding under a food/drug choice procedure. Psychopharmacology (Berl) 2018; 235:2357-2365. [PMID: 29860612 PMCID: PMC6045955 DOI: 10.1007/s00213-018-4932-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 05/22/2018] [Indexed: 01/04/2023]
Abstract
OBJECTIVE Cannabinoid receptor agonists such as delta-9-tetrahydrocannabinol (Δ9-THC) enhance the antinociceptive potency of mu opioid receptor agonists such as morphine, indicating that opioid/cannabinoid mixtures might be effective for treating pain. However, such enhancement will be beneficial only if cannabinoids do not also enhance adverse effects of opioids, including those related to abuse. In rhesus monkeys, cannabinoids fail to enhance and often decrease self-administration of the mu opioid receptor agonist heroin, suggesting that opioid/cannabinoid mixtures do not have greater reinforcing effects (abuse potential) compared with opioids alone. Previous studies on the self-administration of opioid/cannabinoid mixtures used single-response procedures, which do not easily differentiate changes in reinforcing effects from other effects (e.g., rate decreasing). METHODS In this study, rhesus monkeys (n = 4) responded under a choice procedure wherein responding on one lever delivered sucrose pellets and responding on the other lever delivered intravenous infusions of the mu opioid receptor agonist remifentanil (0.032-1.0 μg/kg/infusion) alone or in combination with either Δ9-THC (10-100 μg/kg/infusion) or the synthetically derived cannabinoid receptor agonist CP55940 (3.2-10 μg/kg/infusion). RESULTS Remifentanil dose-dependently increased choice of drug over food, whether available alone or in combination with a cannabinoid, and the potency of remifentanil was not significantly altered by coadministration with a cannabinoid. Mixtures containing the largest doses of cannabinoids decreased response rates in most subjects, confirming that behaviorally active doses were studied. CONCLUSION Overall, these results extend previous studies to include choice behavior and show that cannabinoids do not substantially enhance the reinforcing effects of mu opioid receptor agonists.
Collapse
Affiliation(s)
- David R Maguire
- Departments of Pharmacology (DRM, CPF) and Psychiatry (CPF) and the Addiction Research, Treatment and Training Center of Excellence (DRM, CPF), the University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Charles P France
- Departments of Pharmacology (DRM, CPF) and Psychiatry (CPF) and the Addiction Research, Treatment and Training Center of Excellence (DRM, CPF), the University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
| |
Collapse
|
4
|
Leonard MZ, Alapafuja SO, Ji L, Shukla VG, Liu Y, Nikas SP, Makriyannis A, Bergman J, Kangas BD. Cannabinoid CB 1 Discrimination: Effects of Endocannabinoids and Catabolic Enzyme Inhibitors. J Pharmacol Exp Ther 2017; 363:314-323. [PMID: 28947487 PMCID: PMC5683067 DOI: 10.1124/jpet.117.244392] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 09/14/2017] [Indexed: 11/22/2022] Open
Abstract
An improved understanding of the endocannabinoid system has provided new avenues of drug discovery and development toward the management of pain and other behavioral maladies. Exogenous cannabinoid type 1 (CB1) receptor agonists such as Δ9-tetrahydrocannabinol are increasingly used for their medicinal actions; however, their utility is constrained by concern regarding abuse-related subjective effects. This has led to growing interest in the clinical benefit of indirectly enhancing the activity of the highly labile endocannabinoids N-arachidonoylethanolamine [AEA (or anandamide)] and/or 2-arachidonoylglycerol (2-AG) via catabolic enzyme inhibition. The present studies were conducted to determine whether such actions can lead to CB1 agonist-like subjective effects, as reflected in CB1-related discriminative stimulus effects in laboratory subjects. Squirrel monkeys (n = 8) that discriminated the CB1 full agonist AM4054 (0.01 mg/kg) from vehicle were used to study, first, the inhibitors of fatty acid amide hydrolase (FAAH) or monoacylglycerol lipase (MGL) alone or in combination [FAAH (URB597, AM4303); MGL (AM4301); FAAH/MGL (JZL195, AM4302)] and, second, the ability of the endocannabinoids AEA and 2-AG to produce CB1 agonist-like effects when administered alone or after enzyme inhibition. Results indicate that CB1-related discriminative stimulus effects were produced by combined, but not selective, inhibition of FAAH and MGL, and that these effects were nonsurmountably antagonized by low doses of rimonabant. Additionally, FAAH or MGL inhibition revealed CB1-like subjective effects produced by AEA but not by 2-AG. Taken together, the present data suggest that therapeutic effects of combined, but not selective, enhancement of AEA or 2-AG activity via enzyme inhibition may be accompanied by CB1 receptor-mediated subjective effects.
Collapse
MESH Headings
- Adamantane/administration & dosage
- Adamantane/adverse effects
- Adamantane/analogs & derivatives
- Adamantane/pharmacology
- Amidohydrolases/antagonists & inhibitors
- Amidohydrolases/metabolism
- Animals
- Arachidonic Acids/administration & dosage
- Arachidonic Acids/agonists
- Arachidonic Acids/antagonists & inhibitors
- Arachidonic Acids/pharmacology
- Behavior, Animal/drug effects
- Cannabinoid Receptor Antagonists/administration & dosage
- Cannabinoid Receptor Antagonists/adverse effects
- Cannabinoid Receptor Antagonists/pharmacology
- Cannabinol/administration & dosage
- Cannabinol/adverse effects
- Cannabinol/analogs & derivatives
- Cannabinol/pharmacology
- Discrimination Learning/drug effects
- Dose-Response Relationship, Drug
- Drug Agonism
- Drug Antagonism
- Drugs, Investigational/administration & dosage
- Drugs, Investigational/adverse effects
- Drugs, Investigational/pharmacology
- Endocannabinoids/administration & dosage
- Endocannabinoids/agonists
- Endocannabinoids/antagonists & inhibitors
- Endocannabinoids/pharmacology
- Enzyme Inhibitors/administration & dosage
- Enzyme Inhibitors/adverse effects
- Enzyme Inhibitors/pharmacology
- Glycerides/administration & dosage
- Glycerides/agonists
- Glycerides/antagonists & inhibitors
- Glycerides/pharmacology
- Injections, Intramuscular
- Injections, Intravenous
- Ligands
- Male
- Monoacylglycerol Lipases/antagonists & inhibitors
- Monoacylglycerol Lipases/metabolism
- Nerve Tissue Proteins/agonists
- Nerve Tissue Proteins/antagonists & inhibitors
- Nerve Tissue Proteins/metabolism
- Polyunsaturated Alkamides
- Receptor, Cannabinoid, CB1/agonists
- Receptor, Cannabinoid, CB1/antagonists & inhibitors
- Receptor, Cannabinoid, CB1/metabolism
- Saimiri
Collapse
Affiliation(s)
- Michael Z Leonard
- Harvard Medical School, Department of Psychiatry, Boston, Massachusetts (J.B., B.D.K.); McLean Hospital, Preclinical Pharmacology Laboratory, Belmont, Massachusetts (M.Z.L., J.B., B.D.K.); MakScientific LLC, Burlington, Massachusetts (S.O.A.); and Center for Drug Discovery, Northeastern University, Boston, Massachusetts (L.J., V.G.S., Y.L., S.P.N., A.M.)
| | - Shakiru O Alapafuja
- Harvard Medical School, Department of Psychiatry, Boston, Massachusetts (J.B., B.D.K.); McLean Hospital, Preclinical Pharmacology Laboratory, Belmont, Massachusetts (M.Z.L., J.B., B.D.K.); MakScientific LLC, Burlington, Massachusetts (S.O.A.); and Center for Drug Discovery, Northeastern University, Boston, Massachusetts (L.J., V.G.S., Y.L., S.P.N., A.M.)
| | - Lipin Ji
- Harvard Medical School, Department of Psychiatry, Boston, Massachusetts (J.B., B.D.K.); McLean Hospital, Preclinical Pharmacology Laboratory, Belmont, Massachusetts (M.Z.L., J.B., B.D.K.); MakScientific LLC, Burlington, Massachusetts (S.O.A.); and Center for Drug Discovery, Northeastern University, Boston, Massachusetts (L.J., V.G.S., Y.L., S.P.N., A.M.)
| | - Vidyanand G Shukla
- Harvard Medical School, Department of Psychiatry, Boston, Massachusetts (J.B., B.D.K.); McLean Hospital, Preclinical Pharmacology Laboratory, Belmont, Massachusetts (M.Z.L., J.B., B.D.K.); MakScientific LLC, Burlington, Massachusetts (S.O.A.); and Center for Drug Discovery, Northeastern University, Boston, Massachusetts (L.J., V.G.S., Y.L., S.P.N., A.M.)
| | - Yingpeng Liu
- Harvard Medical School, Department of Psychiatry, Boston, Massachusetts (J.B., B.D.K.); McLean Hospital, Preclinical Pharmacology Laboratory, Belmont, Massachusetts (M.Z.L., J.B., B.D.K.); MakScientific LLC, Burlington, Massachusetts (S.O.A.); and Center for Drug Discovery, Northeastern University, Boston, Massachusetts (L.J., V.G.S., Y.L., S.P.N., A.M.)
| | - Spyros P Nikas
- Harvard Medical School, Department of Psychiatry, Boston, Massachusetts (J.B., B.D.K.); McLean Hospital, Preclinical Pharmacology Laboratory, Belmont, Massachusetts (M.Z.L., J.B., B.D.K.); MakScientific LLC, Burlington, Massachusetts (S.O.A.); and Center for Drug Discovery, Northeastern University, Boston, Massachusetts (L.J., V.G.S., Y.L., S.P.N., A.M.)
| | - Alexandros Makriyannis
- Harvard Medical School, Department of Psychiatry, Boston, Massachusetts (J.B., B.D.K.); McLean Hospital, Preclinical Pharmacology Laboratory, Belmont, Massachusetts (M.Z.L., J.B., B.D.K.); MakScientific LLC, Burlington, Massachusetts (S.O.A.); and Center for Drug Discovery, Northeastern University, Boston, Massachusetts (L.J., V.G.S., Y.L., S.P.N., A.M.)
| | - Jack Bergman
- Harvard Medical School, Department of Psychiatry, Boston, Massachusetts (J.B., B.D.K.); McLean Hospital, Preclinical Pharmacology Laboratory, Belmont, Massachusetts (M.Z.L., J.B., B.D.K.); MakScientific LLC, Burlington, Massachusetts (S.O.A.); and Center for Drug Discovery, Northeastern University, Boston, Massachusetts (L.J., V.G.S., Y.L., S.P.N., A.M.)
| | - Brian D Kangas
- Harvard Medical School, Department of Psychiatry, Boston, Massachusetts (J.B., B.D.K.); McLean Hospital, Preclinical Pharmacology Laboratory, Belmont, Massachusetts (M.Z.L., J.B., B.D.K.); MakScientific LLC, Burlington, Massachusetts (S.O.A.); and Center for Drug Discovery, Northeastern University, Boston, Massachusetts (L.J., V.G.S., Y.L., S.P.N., A.M.)
| |
Collapse
|
5
|
Hruba L, McMahon LR. Apparent Affinity Estimates and Reversal of the Effects of Synthetic Cannabinoids AM-2201, CP-47,497, JWH-122, and JWH-250 by Rimonabant in Rhesus Monkeys. J Pharmacol Exp Ther 2017; 362:278-286. [PMID: 28533288 PMCID: PMC5502382 DOI: 10.1124/jpet.117.240572] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 05/19/2017] [Indexed: 01/04/2023] Open
Abstract
Synthetic cannabinoids have been prohibited due to abuse liability and toxicity. Four such synthetic cannabinoids, AM-2201 ([1-(5-fluoropentyl)indol-3-yl]-naphthalen-1-ylmethanone), CP-47,497 (2-[(1R,3S)-3-hydroxycyclohexyl]-5-(2-methyloctan-2-yl)phenol), JWH-122 [(4-methylnaphthalen-1-yl)-(1-pentylindol-3-yl)methanone], and JWH-250 [2-(2-methoxyphenyl)-1-(1-pentylindol-3-yl)ethanone], were tested for their capacity to produce CB1 receptor-mediated discriminative stimulus effects in two groups of rhesus monkeys. One group (n = 4) discriminated Δ9-tetrahydrocannabinol (∆9-THC; 0.1 mg/kg i.v.), and a second group (n = 4) discriminated the cannabinoid antagonist rimonabant (1 mg/kg i.v.) while receiving 1 mg/kg/12 hours of ∆9-THC. AM-2201, JWH-122, CP-47,497, JWH-250, and ∆9-THC increased ∆9-THC lever responding. Duration of action was 1-2 hours for AM-2201, JWH-122, and JWH-250 and 4-5 hours for CP-47,497 and ∆9-THC. Rimonabant (1 mg/kg) surmountably antagonized the discriminative stimulus effects of all cannabinoid agonists; the magnitude of rightward shift was 10.6-fold for AM-2201, 10.7-fold for JWH-122, 11.0-fold for CP-47,497, and 15.7-fold for JWH-250. The respective pKB values were not significantly different: 6.61, 6.65, 6.66, and 6.83. In ∆9-THC-treated monkeys discriminating rimonabant, AM-2201 (0.1 and 0.32 mg/kg), JWH-122 (0.32 and 1 mg/kg), JWH-250 (1 and 3.2 mg/kg), and CP-47,497 (0.32, 1, and 3.2 mg/kg) produced not only rate-decreasing effects that were reversed by rimonabant, but also dose-dependent, rightward shifts in the rimonabant discrimination dose-effect function. These results show striking similarity in the CB1 receptor mechanism mediating the subjective effects of AM-2201, JWH-122, JWH-250, and CP-47,497. For products containing AM-2201 and JWH-122, a short duration of action could lead to more frequent use; moreover, inattention to differences in potency among synthetic cannabinoids could underlie unexpected toxicity. Rapid reversal of effects by intravenous rimonabant has potential value in emergency situations.
Collapse
Affiliation(s)
- Lenka Hruba
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Lance R McMahon
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| |
Collapse
|
6
|
Grim TW, Morales AJ, Thomas BF, Wiley JL, Endres GW, Negus SS, Lichtman AH. Apparent CB 1 Receptor Rimonabant Affinity Estimates: Combination with THC and Synthetic Cannabinoids in the Mouse In Vivo Triad Model. J Pharmacol Exp Ther 2017; 362:210-218. [PMID: 28442584 PMCID: PMC5478909 DOI: 10.1124/jpet.117.240192] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 04/19/2017] [Indexed: 11/22/2022] Open
Abstract
Synthetic cannabinoids (SCs) represent an emerging class of abused drugs associated with psychiatric complications and other substantial health risks. These ligands are largely sold over the internet for human consumption, presumably because of their high cannabinoid 1 receptor (CB1R) affinity and their potency in eliciting pharmacological effects similar to Δ9-tetrahydrocannabinol (THC), as well as circumventing laws illegalizing this plant. Factors potentially contributing to the increased prevalence of SC abuse and related hospitalizations, such as increased CB1R efficacy and non-CB1R targets, highlight the need for quantitative pharmacological analyses to determine receptor mediation of the pharmacological effects of cannabinoids. Accordingly, the present study used pA2 and pKB analyses for quantitative determination of CB1R mediation in which we utilized the CB1R-selective inverse agonist/antagonist rimonabant to elicit rightward shifts in the dose-response curves of five SCs (i.e., A-834,735D; WIN55,212-2; CP55,950; JWH-073; and CP47,497) and THC in producing common cannabimimetic effects (i.e., catalepsy, antinociception, and hypothermia). The results revealed overall similarity of pA2 and pKB values for these compounds and suggest that CB1Rs, and not other pharmacological targets, largely mediated the central pharmacological effects of SCs. More generally, affinity estimation offers a powerful pharmacological approach to assess potential receptor heterogeneity subserving in vivo pharmacological effects of SCs.
Collapse
Affiliation(s)
- T W Grim
- Department of Pharmacology, Virginia Commonwealth University, Richmond, Virginia (T.W.G., A.J.M., S.S.N., A.H.L.); RTI International, Research Triangle Park, North Carolina (B.F.T., J.L.W.); and PinPoint Testing, LLC, AR (G.W.E.)
| | - A J Morales
- Department of Pharmacology, Virginia Commonwealth University, Richmond, Virginia (T.W.G., A.J.M., S.S.N., A.H.L.); RTI International, Research Triangle Park, North Carolina (B.F.T., J.L.W.); and PinPoint Testing, LLC, AR (G.W.E.)
| | - B F Thomas
- Department of Pharmacology, Virginia Commonwealth University, Richmond, Virginia (T.W.G., A.J.M., S.S.N., A.H.L.); RTI International, Research Triangle Park, North Carolina (B.F.T., J.L.W.); and PinPoint Testing, LLC, AR (G.W.E.)
| | - J L Wiley
- Department of Pharmacology, Virginia Commonwealth University, Richmond, Virginia (T.W.G., A.J.M., S.S.N., A.H.L.); RTI International, Research Triangle Park, North Carolina (B.F.T., J.L.W.); and PinPoint Testing, LLC, AR (G.W.E.)
| | - G W Endres
- Department of Pharmacology, Virginia Commonwealth University, Richmond, Virginia (T.W.G., A.J.M., S.S.N., A.H.L.); RTI International, Research Triangle Park, North Carolina (B.F.T., J.L.W.); and PinPoint Testing, LLC, AR (G.W.E.)
| | - S S Negus
- Department of Pharmacology, Virginia Commonwealth University, Richmond, Virginia (T.W.G., A.J.M., S.S.N., A.H.L.); RTI International, Research Triangle Park, North Carolina (B.F.T., J.L.W.); and PinPoint Testing, LLC, AR (G.W.E.)
| | - A H Lichtman
- Department of Pharmacology, Virginia Commonwealth University, Richmond, Virginia (T.W.G., A.J.M., S.S.N., A.H.L.); RTI International, Research Triangle Park, North Carolina (B.F.T., J.L.W.); and PinPoint Testing, LLC, AR (G.W.E.)
| |
Collapse
|
7
|
McMahon LR. Enhanced discriminative stimulus effects of Δ(9)-THC in the presence of cannabidiol and 8-OH-DPAT in rhesus monkeys. Drug Alcohol Depend 2016; 165:87-93. [PMID: 27289270 PMCID: PMC4947395 DOI: 10.1016/j.drugalcdep.2016.05.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 05/10/2016] [Accepted: 05/20/2016] [Indexed: 10/21/2022]
Abstract
BACKGROUND Cannabidiol, a therapeutic with potential serotonin (5-hydroxytryptamine; 5-HT) 5-HT1A receptor agonist activity, is the second most prevalent cannabinoid in Cannabis after Δ(9)-THC. The extent to which cannabidiol modifies the effects of Δ(9)-THC has not been firmly established, especially with respect to abuse-related effects in rhesus monkeys where previously antagonistic interactions have been reported for some behavioral outcomes. METHODS Cannabidiol and the 5-HT1A receptor agonist (±)-8-hydroxy-2-(dipropylamino)tetralin hydrobromide (8-OH-DPAT) were tested in two separate discrimination assays in rhesus monkeys. One group (n=6) discriminated Δ(9)-tetrahydrocannabinol (Δ(9)-THC; 0.1mg/kg i.v.); a second group (n=6) discriminated the cannabinoid antagonist rimonabant (1mg/kg i.v.) while receiving Δ(9)-THC daily (1mg/kg/12hs.c.). Responding was maintained under a fixed ratio 5 schedule of stimulus-shock termination. RESULTS Both training drugs dose-dependently increased the percentage of responses on the respective drug-associated levers. Cannabidiol (up to 17.8mg/kg) and 8-OH-DPAT (up to 0.178mg/kg) did not substitute for either training drug; however, both significantly increased the potency of Δ(9)-THC to produce discriminative stimulus effects. Moreover, 8-OH-DPAT significantly attenuated the discriminative stimulus effects of rimonabant, whereas cannabidiol did not modify the rimonabant discriminative stimulus. CONCLUSIONS These results, which are consistent with cannabidiol lacking CB1 receptor agonist or antagonist activity in vivo, demonstrate enhancement of the effects of Δ(9)-THC by cannabidiol, albeit at cannabidiol amounts larger than those in Cannabis or cannabidiol-based therapeutics (nabiximols). In addition to showing that cannabidiol and a 5-HT1A receptor agonist have overlapping behavioral effects, the current results suggest that 5-HT1A agonism enhances the CB1 receptor-mediated effects of Δ(9)-THC.
Collapse
Affiliation(s)
- Lance R. McMahon
- The University of Texas Health Science Center at San Antonio, Department of Pharmacology, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, 210 567 0143
| |
Collapse
|
8
|
Maguire DR, France CP. Interactions between cannabinoid receptor agonists and mu opioid receptor agonists in rhesus monkeys discriminating fentanyl. Eur J Pharmacol 2016; 784:199-206. [PMID: 27184925 DOI: 10.1016/j.ejphar.2016.05.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 05/10/2016] [Accepted: 05/11/2016] [Indexed: 11/17/2022]
Abstract
Cannabinoid receptor agonists such as delta-9-tetrahydrocannabinol (Δ(9)-THC) enhance some (antinociceptive) but not other (positive reinforcing) effects of mu opioid receptor agonists, suggesting that cannabinoids might be combined with opioids to treat pain without increasing, and possibly decreasing, abuse. The degree to which cannabinoids enhance antinociceptive effects of opioids varies across drugs insofar as Δ(9)-THC and the synthetic cannabinoid receptor agonist CP55940 increase the potency of some mu opioid receptor agonists (e.g., fentanyl) more than others (e.g., nalbuphine). It is not known whether interactions between cannabinoids and opioids vary similarly for other (abuse-related) effects. This study examined whether Δ(9)-THC and CP55940 differentially impact the discriminative stimulus effects of fentanyl and nalbuphine in monkeys (n=4) discriminating 0.01mg/kg of fentanyl (s.c.) from saline. Fentanyl (0.00178-0.0178mg/kg) and nalbuphine (0.01-0.32mg/kg) dose-dependently increased drug-lever responding. Neither Δ(9)-THC (0.032-1.0mg/kg) nor CP55940 (0.0032-0.032mg/kg) enhanced the discriminative stimulus effects of fentanyl or nalbuphine; however, doses of Δ(9)-THC and CP55940 that shifted the nalbuphine dose-effect curve markedly to the right and/or down were less effective or ineffective in shifting the fentanyl dose-effect curve. The mu opioid receptor antagonist naltrexone (0.032mg/kg) attenuated the discriminative stimulus effects of fentanyl and nalbuphine similarly. These data indicate that the discriminative stimulus effects of nalbuphine are more sensitive to attenuation by cannabinoids than those of fentanyl. That the discriminative stimulus effects of some opioids are more susceptible to modification by drugs from other classes has implications for developing maximally effective therapeutic drug mixtures with reduced abuse liability.
Collapse
Affiliation(s)
- David R Maguire
- Department of Pharmacology, the University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, Mail Code 7764, San Antonio, TX 78229, USA
| | - Charles P France
- Department of Pharmacology, the University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, Mail Code 7764, San Antonio, TX 78229, USA; Department of Psychiatry, the University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, Mail Code 7764, San Antonio, TX 78229, USA.
| |
Collapse
|
9
|
Rodriguez JS, McMahon LR. JWH-018 in rhesus monkeys: differential antagonism of discriminative stimulus, rate-decreasing, and hypothermic effects. Eur J Pharmacol 2014; 740:151-9. [PMID: 24972243 DOI: 10.1016/j.ejphar.2014.06.023] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 06/12/2014] [Accepted: 06/17/2014] [Indexed: 11/27/2022]
Abstract
Several effects of the abused synthetic cannabinoid JWH-018 were compared to those of Δ9-tetrahydrocannabinol (Δ9-THC) in rhesus monkeys. JWH-018 (0.1 mg/kg i.v.) was established as a discriminative stimulus and rimonabant was used to examine mechanisms responsible for discrimination as well as operant response rate-decreasing and hypothermic effects. JWH-018 dose-dependently increased drug-lever responding (ED50=0.01 mg/kg) and decreased response rate (ED50=0.064 mg/kg). Among various cannabinoids, the relative potency for producing discriminative stimulus and rate-decreasing effects was the same: CP-55940=JWH-018>Δ9-THC=WIN-55212-2=JWH-073. The benzodiazepine agonist midazolam and the NMDA antagonist ketamine did not exert JWH-018 like discriminative stimulus effects up to doses that disrupted responding. JWH-018 and Δ9-THC decreased rectal temperature by 2.2 and 2.8°C, respectively; the doses decreasing temperature by 2°C were 0.21 and 1.14 mg/kg, respectively. Antagonism did not differ between JWH-018 and Δ9-THC, but did differ among effects. The apparent affinities of rimonabant calculated in the presence of JWH-018 and Δ9-THC were not different from each other for antagonism of discriminative stimulus effects (6.58 and 6.59, respectively) or hypothermic effects (7.08 and 7.19, respectively). Apparent affinity estimates are consistent with the same receptors mediating the discriminative stimulus and hypothermic effects of both JWH-018 and Δ9-THC. However, there was more limited and less orderly antagonism of rate-decreasing effects, suggesting that an additional receptor mechanism is involved in mediating the effects of cannabinoids on response rate. Overall, these results strongly suggest that JWH-018 and Δ9-THC act at the same receptors to produce several of their shared psychopharmacological effects.
Collapse
Affiliation(s)
- Jesse S Rodriguez
- Department of Pharmacology, The University of Texas Health Science Center at San Antonio, USA
| | - Lance R McMahon
- Department of Pharmacology, The University of Texas Health Science Center at San Antonio, USA.
| |
Collapse
|
10
|
Järbe TUC, LeMay BJ, Halikhedkar A, Wood J, Vadivel SK, Zvonok A, Makriyannis A. Differentiation between low- and high-efficacy CB1 receptor agonists using a drug discrimination protocol for rats. Psychopharmacology (Berl) 2014; 231:489-500. [PMID: 24005529 PMCID: PMC3947118 DOI: 10.1007/s00213-013-3257-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Accepted: 08/16/2013] [Indexed: 10/26/2022]
Abstract
RATIONALE The "subjective high" from marijuana ingestion is likely due to Δ(9)-tetrahydrocannabinol (THC) activating the central cannabinoid receptor type 1 (CB1R) of the endocannabinoid signaling system. THC is a weak partial agonist according to in vitro assays, yet THC mimics the behavioral effects induced by more efficacious cannabinergics. This distinction may be important for understanding similarities and differences in the dose-effect spectra produced by marijuana/THC and designer cannabimimetics ("synthetic marijuana"). OBJECTIVE We evaluated if drug discrimination is able to functionally detect/differentiate between a full, high-efficacy CB1R agonist [(±)AM5983] and the low-efficacy agonist THC in vivo. MATERIALS AND METHODS Rats were trained to discriminate between four different doses of AM5983 (0.10 to 0.56 mg/kg), and vehicle and dose generalization curves were determined for both ligands at all four training doses of AM5983. The high-efficacy WIN55,212-2 and the lower-efficacy (R)-(+)-methanandamide were examined at some AM5983 training conditions. Antagonism tests involved rimonabant and WIN55,212-2 and AM5983. The separate (S)- and (R)-isomers of (±)AM5983 were tested at one AM5983 training dose (0.30 mg/kg). The in vitro cyclic adenosine monophosphate (cAMP) assay examined AM5983 and the known CB1R agonist CP55,940. RESULTS Dose generalization ed50 values increased as a function of the training dose of AM5983, but more so for the partial agonists. The order of potency was (R)-isomer > (±)AM5983 > (S)-isomer and AM5983 > WIN55,212-2 ≥ THC > (R)-(+)-methanandamide. Surmountable antagonism of AM5983 and WIN55,212-2 occurred with rimonabant. The cAMP assay confirmed the cannabinergic nature of AM5983 and CP55,940. CONCLUSIONS Drug discrimination using different training doses of a high-efficacy, full CB1R agonist differentiated between low- and high-efficacy CB1R agonists.
Collapse
|
11
|
Hruba L, McMahon LR. The cannabinoid agonist HU-210: pseudo-irreversible discriminative stimulus effects in rhesus monkeys. Eur J Pharmacol 2014; 727:35-42. [PMID: 24486701 DOI: 10.1016/j.ejphar.2014.01.041] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 01/14/2014] [Accepted: 01/22/2014] [Indexed: 02/02/2023]
Abstract
Synthetic cannabinoid abuse and case reports of adverse effects have raised concerns about the pharmacologic mechanisms underlying in vivo effects. Here, a synthetic cannabinoid identified in abused products (HU-210) was compared to the effects of Δ(9)-THC and two other synthetic cannabinoid agonists used extensively in pre-clinical studies (CP 55,940 and WIN 55,212-2). One group of monkeys discriminated ∆(9)-THC (0.1mg/kg i.v.); a separate group received chronic ∆(9)-THC (1mg/kg/12h s.c.) and discriminated rimonabant (1mg/kg i.v.). CP 55,940, HU-210, ∆(9)-THC, and WIN 55,212-2 produced ∆(9)-THC lever responding. HU-210 had a long duration (i.e., 1-2 days), whereas that of the other cannabinoids was 5h or less. Rimonabant (1mg/kg) produced surmountable antagonism; single dose-apparent affinity estimates determined in the presence of ∆(9)-THC, CP 55,940, and WIN 55,212-2 did not differ from each other. In contrast, rimonabant (1mg/kg) produced a smaller rightward shift in the HU-210 dose-effect function. In ∆(9)-THC treated monkeys, the relative potency of CP 55,940, ∆(9)-THC, and WIN 55,212-2 to attenuate the discriminative stimulus effects of rimonabant was the same as that evidenced in the ∆(9)-THC discrimination, whereas HU-210 was unexpectedly more potent in attenuating the effects of rimonabant. In conclusion, the same receptor subtype mediates the discriminative stimulus effects of ∆(9)-THC, CP 55,940 and WIN 55,212-2. The limited effectiveness of rimonabant to either prevent or reverse the effects of HU-210 appears to be due to very slow dissociation or pseudo-irreversible binding of HU-210 at cannabinoid receptors.
Collapse
Affiliation(s)
- Lenka Hruba
- Department of Pharmacology, The University of Texas Health Science Center, San Antonio, TX 78229-3900, United States
| | - Lance R McMahon
- Department of Pharmacology, The University of Texas Health Science Center, San Antonio, TX 78229-3900, United States.
| |
Collapse
|
12
|
Chopda GR, Vemuri VK, Sharma R, Thakur GA, Makriyannis A, Paronis CA. Diuretic effects of cannabinoid agonists in mice. Eur J Pharmacol 2013; 721:64-9. [PMID: 24099963 DOI: 10.1016/j.ejphar.2013.09.053] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2013] [Revised: 09/17/2013] [Accepted: 09/26/2013] [Indexed: 10/26/2022]
Abstract
Cannabinoids both increase urine output and decrease urinary frequency in human subjects. However, these effects have not been systematically evaluated in intact mice, a species commonly used to evaluate the effects of novel cannabinoids. The present studies investigated whether cannabinoid agonists reliably produce diuresis in mice at doses comparable to those that produce other cannabinoid effects and, further, identified the receptors that may mediate these effects. Diuretic effects were measured in male mice over 6h. In some studies, urine was collected and analyzed for electrolyte measurements. In other studies, agonist injections were preceded by pretreatment with cannabinoid CB1 or CB2 selective antagonists, including a peripherally constrained CB1 antagonist. Companion studies evaluated the antinociceptive effects of the cannabinoid agonists in a warm-water tail-withdrawal assay. Direct-acting cannabinoid CB1 agonists Δ(9)-tetrahydrocannabinol (THC), WIN 55,212, AM7418 and AM4054, had biphasic effects on diuresis, with peak diuretic effects occurring at lower doses than peak antinociceptive effects. Cannabinoid diuresis was similar to κ-opioid agonist-induced diuresis in terms of maximum effects with only moderate loss of Na(+). Antagonism studies indicate that the diuretic effects of cannabinoids are CB1-receptor mediated, with both central and peripheral components. These findings suggest that mice may provide a model for understanding the mixed effects of marijuana on urine output, as described in clinical studies, and aid in the development of targeted cannabinoid based therapies for bladder dysfunction.
Collapse
Affiliation(s)
- Girish R Chopda
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA.
| | | | | | | | | | | |
Collapse
|
13
|
Järbe TUC, Gifford RS. "Herbal incense": designer drug blends as cannabimimetics and their assessment by drug discrimination and other in vivo bioassays. Life Sci 2013; 97:64-71. [PMID: 23891559 DOI: 10.1016/j.lfs.2013.07.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 06/21/2013] [Accepted: 07/09/2013] [Indexed: 02/05/2023]
Abstract
Recently, synthetic cannabinoids originally designed for testing in the laboratory only have found use recreationally in designer herbal blends, originally called "Spice". The myriad of compounds found are for the most part potent full agonists of the cannabinoid receptor 1, producing effects similar to tetrahydrocannabinol (THC) and marijuana. Drug discrimination of these compounds offers a specific behavioral test that can help determine whether these new synthetic compounds share a similar "subjective high" with the effects of marijuana/THC. By utilization of drug discrimination and other behavioral techniques, a better understanding of these new "designer" cannabinoids may be reached to assist in treating both the acute and chronic effects of these drugs. The paper provides a brief exposé of modern cannabinoid research as a backdrop to the recreational use of designer herbal blend cannabimimetics.
Collapse
Affiliation(s)
- Torbjörn U C Järbe
- Center for Drug Discovery, Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA.
| | - Roger S Gifford
- Center for Drug Discovery, Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA
| |
Collapse
|
14
|
Maguire DR, Yang W, France CP. Interactions between μ-opioid receptor agonists and cannabinoid receptor agonists in rhesus monkeys: antinociception, drug discrimination, and drug self-administration. J Pharmacol Exp Ther 2013; 345:354-62. [PMID: 23536317 PMCID: PMC3657106 DOI: 10.1124/jpet.113.204099] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Accepted: 03/26/2013] [Indexed: 01/29/2023] Open
Abstract
Cannabinoid receptor agonists enhance the antinociceptive effects of μ-opioid receptor agonists, which suggests that combinations of these drugs might enhance therapeutic effectiveness (e.g., analgesia). However, it is not clear whether combinations of these drugs also enhance abuse or dependence liability. This experiment examined whether combinations of cannabinoids and opioids that enhance antinociception also increase abuse-related effects by studying the effects of the cannabinoid receptor agonists 2-[(1R,2R,5R)-5-hydroxy-2-(3-hydroxypropyl)cyclohexyl]-5-(2-methyloctan-2-yl)phenol (CP 55,940) and (R)-(+)-[2,3-dihydro-5-methyl-3-(4-morpholinylmethyl)pyrrolo[1,2,3-de]-1,4-benzoxazin-6-yl]-1-naphthalenylmethanone mesylate (WIN 55,212) on the antinociceptive, discriminative stimulus, and positive reinforcing effects of μ-opioid receptor agonists in rhesus monkeys. In one group of monkeys (n = 3), morphine (0.1-5.6 mg/kg s.c.), CP 55,940 (0.0032-0.032 mg/kg s.c.), and WIN 55,212 (0.1-1.0 mg/kg s.c.) dose-dependently increased tail withdrawal latency from 50°C water, and pretreatment with small, otherwise ineffective, doses of CP 55,940 and WIN 55,212 shifted the morphine dose-effect curve to the left. In monkeys (n = 3) discriminating 3.2 mg/kg morphine, CP 55,940 (0.01-0.032 mg/kg s.c.) and WIN 55,212 (0.1-1.78 mg/kg s.c.) attenuated the discriminative stimulus effects of morphine, shifting the dose-effect curve to the right. In monkeys (n = 4) self-administering heroin (0.32-32.0 µg/kg/infusion i.v.), CP 55,940 (0.001-0.032 mg/kg s.c.), and WIN 55,212 (0.1-1.0 mg/kg s.c.) shifted the heroin dose-effect curve rightward and downward. Cannabinoid receptor agonists CP 55,940 and WIN 55,212 enhanced the antinociceptive effects but not the discriminative stimulus or positive reinforcing effects of μ-opioid receptor agonists in rhesus monkeys, supporting the view that combining cannabinoid and opioid receptor agonists might result in enhanced treatment effectiveness for pain without similarly enhancing abuse and dependence liability.
Collapse
Affiliation(s)
- David R Maguire
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Dr., San Antonio, TX 78229-3900, USA
| | | | | |
Collapse
|
15
|
Kangas BD, Delatte MS, Vemuri VK, Thakur GA, Nikas SP, Subramanian KV, Shukla VG, Makriyannis A, Bergman J. Cannabinoid discrimination and antagonism by CB(1) neutral and inverse agonist antagonists. J Pharmacol Exp Ther 2013; 344:561-7. [PMID: 23287700 PMCID: PMC3583508 DOI: 10.1124/jpet.112.201962] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Accepted: 01/02/2013] [Indexed: 01/24/2023] Open
Abstract
Cannabinoid receptor 1 (CB(1)) inverse agonists (e.g., rimonabant) have been reported to produce adverse effects including nausea, emesis, and anhedonia that limit their clinical applications. Recent laboratory studies suggest that the effects of CB(1) neutral antagonists differ from those of such inverse agonists, raising the possibility of improved clinical utility. However, little is known regarding the antagonist properties of neutral antagonists. In the present studies, the CB(1) inverse agonist SR141716A (rimonabant) and the CB(1) neutral antagonist AM4113 were compared for their ability to modify CB(1) receptor-mediated discriminative stimulus effects in nonhuman primates trained to discriminate the novel CB(1) full agonist AM4054. Results indicate that AM4054 serves as an effective CB(1) discriminative stimulus, with an onset and time course of action comparable with that of the CB(1) agonist Δ(9)-tetrahydrocannabinol, and that the inverse agonist rimonabant and the neutral antagonist AM4113 produce dose-related rightward shifts in the AM4054 dose-effect curve, indicating that both drugs surmountably antagonize the discriminative stimulus effects of AM4054. Schild analyses further show that rimonabant and AM4113 produce highly similar antagonist effects, as evident in comparable pA(2) values (6.9). Taken together with previous studies, the present data suggest that the improved safety profile suggested for CB(1) neutral antagonists over inverse agonists is not accompanied by a loss of antagonist action at CB(1) receptors.
Collapse
Affiliation(s)
- Brian D Kangas
- Preclinical Pharmacology Laboratory, McLean Hospital, Harvard Medical School, 115 Mill Street, Belmont, MA 02478, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Panlilio LV, Justinova Z, Goldberg SR. Inhibition of FAAH and activation of PPAR: new approaches to the treatment of cognitive dysfunction and drug addiction. Pharmacol Ther 2013; 138:84-102. [PMID: 23333350 DOI: 10.1016/j.pharmthera.2013.01.003] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 12/21/2012] [Indexed: 12/16/2022]
Abstract
Enhancing the effects of endogenously-released cannabinoid ligands in the brain might provide therapeutic effects more safely and effectively than administering drugs that act directly at the cannabinoid receptor. Inhibitors of fatty acid amide hydrolase (FAAH) prevent the breakdown of endogenous ligands for cannabinoid receptors and peroxisome proliferator-activated receptors (PPAR), prolonging and enhancing the effects of these ligands when they are naturally released. This review considers recent research on the effects of FAAH inhibitors and PPAR activators in animal models of addiction and cognition (specifically learning and memory). These studies show that FAAH inhibitors can produce potentially therapeutic effects, some through cannabinoid receptors and some through PPAR. These effects include enhancing certain forms of learning, counteracting the rewarding effects of nicotine and alcohol, relieving symptoms of withdrawal from cannabis and other drugs, and protecting against relapse-like reinstatement of drug self-administration. Since FAAH inhibition might have a wide range of therapeutic actions but might also share some of the adverse effects of cannabis, it is noteworthy that at least one FAAH-inhibiting drug (URB597) has been found to have potentially beneficial effects but no indication of liability for abuse or dependence. Although these areas of research are new, the preliminary evidence indicates that they might lead to improved therapeutic interventions and a better understanding of the brain mechanisms underlying addiction and memory.
Collapse
Affiliation(s)
- Leigh V Panlilio
- Preclinical Pharmacology Section, Behavioral Neuroscience Research Branch, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Department of Health and Human Services, Baltimore, MD 21224, USA
| | | | | |
Collapse
|
17
|
Sun J, Fang YQ, Ren H, Chen T, Guo JJ, Yan J, Song S, Zhang LY, Liao H. WIN55,212-2 protects oligodendrocyte precursor cells in stroke penumbra following permanent focal cerebral ischemia in rats. Acta Pharmacol Sin 2013. [PMID: 23202804 DOI: 10.1038/aps.2012.141] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
AIM To explore whether the synthetic cannabinoid receptor agonist WIN55,212-2 could protect oligodendrocyte precursor cells (OPCs) in stroke penumbra, thereby providing neuroprotection following permanent focal cerebral ischemia in rats. METHODS Adult male SD rats were subjected to permanent middle cerebral artery occlusion (p-MCAO). The animals were administered WIN55,212-2 at 2 h, and sacrificed at 24 h after the ischemic insult. The infarct volumes and brain swelling were assessed. The expression of cannabinoid receptor type 1 (CB1) in the stroke penumbra was examined using Western blot assay. The pathological changes and proliferation of neural glial antigen 2-positive OPCs (NG2(+) cells) in the stroke penumbra were studied using immunohistochemistry staining. RESULTS p-MCAO significantly increased the expression of CB1 within the stroke penumbra with the highest level appearing at 2 h following the ischemic insult. Administration of WIN55,212-2 (9 mg/kg, iv) significantly attenuated the brain swelling, and reduced the infarct volume as well as the number of tau-immunoreactive NG2(+) cells (tau-1(+)/NG2(+) cells) in the stroke penumbra. Moreover, WIN55,212-2 significantly promoted the proliferation of NG2(+) cells in the stroke penumbra and in the ipsilateral subventricular zone at 24 h following the ischemic insult. Administration of the selective CB1 antagonist rimonabant (1 mg/kg, iv) partially blocked the effects caused by WIN55,212-2. CONCLUSION Tau-1 is expressed in NG2(+) cells following permanent focal cerebral ischemic injury. Treatment with WIN55,212-2 reduces the number of tau-1(+)/NG2(+) cells and promotes NG2(+) cell proliferation in the stroke penumbra, which are mediated partially via CB1 and may contribute to its neuroprotective effects.
Collapse
|
18
|
Paronis CA, Thakur GA, Bajaj S, Nikas SP, Vemuri VK, Makriyannis A, Bergman J. Diuretic effects of cannabinoids. J Pharmacol Exp Ther 2013; 344:8-14. [PMID: 23019138 PMCID: PMC3533417 DOI: 10.1124/jpet.112.199331] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Accepted: 09/25/2012] [Indexed: 12/29/2022] Open
Abstract
In vivo effects of cannabinoid (CB) agonists are often assessed using four well-established measures: locomotor activity, hypothermia, cataleptic-like effects, and analgesia. The present studies demonstrate that doses of CB agonists that produce these effects also reliably increase diuresis. Diuretic effects of several CB agonists were measured in female rats over 2 hours immediately after drug injection, and results were compared with hypothermic effects. Direct-acting CB1 agonists, including Δ(9)-tetrahydrocannabinol, WIN 55,212 [R-(1)-[2,3-dihydro-5-methyl-3-[(morpholinyl)methyl]pyrrolo[1,2,3-de]-1,4-benzoxazinyl]-(1-naphthalenyl)methanone mesylate], AM2389 [9β-hydroxy-3-(1-hexyl-cyclobut-1-yl)-hexahydrocannabinol], and AM4054 [9β-(hydroxymethyl)-3-(1-adamantyl)-hexahydrocannabinol], produced dose-dependent increases in diuresis and decreases in colonic temperature, with slightly lower ED(50) values for diuresis than for hypothermia. The highest doses of cannabinoid drugs yielded, on average, 26-32 g/kg urine; comparable effects were obtained with 10 mg/kg furosemide and 3.0 mg/kg trans-(-)-3,4-dichloro-N-methyl-N-[2-(1-pyrrolidinyl)cyclohexyl]benzeneacetamide (U50-488). Methanandamide (10.0 mg/kg) had lesser effect than other CB agonists, and the CB2 agonist AM1241 [1-(methylpiperidin-2-ylmethyl)-3-(2-iodo-5-nitrobenzoyl)indole], the anandamide transport inhibitor AM404, and the CB antagonist rimonabant did not have diuretic effects. In further studies, the diuretic effects of the CB1 agonist AM4054 were similar in male and female rats, displayed a relatively rapid onset to action, and were dose-dependently antagonized by 30 minutes pretreatment with rimonabant, but not by the vanilloid receptor type I antagonist capsazepine, nor were the effects of WIN 55,212 antagonized by the CB2 antagonist AM630 [(6-iodo-2-methyl-1-[2-(4-morpholinyl)ethyl]-1H-indol-3-yl](4-methoxyphenyl) methanone)]. These data indicate that cannabinoids have robust diuretic effects in rats that are mediated via CB1 receptor mechanisms.
Collapse
Affiliation(s)
- Carol A Paronis
- Department of Pharmaceutical Sciences, Northeastern University, Mailstop 206, 140TF 360 Huntington Avenue, Boston, MA 02115, USA.
| | | | | | | | | | | | | |
Collapse
|
19
|
Hruba L, Ginsburg BC, McMahon LR. Apparent inverse relationship between cannabinoid agonist efficacy and tolerance/cross-tolerance produced by Δ⁹-tetrahydrocannabinol treatment in rhesus monkeys. J Pharmacol Exp Ther 2012; 342:843-9. [PMID: 22718500 PMCID: PMC3422532 DOI: 10.1124/jpet.112.196444] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Accepted: 06/19/2012] [Indexed: 12/26/2022] Open
Abstract
Synthetic cannabinoids (CBs) [naphthalen-1-yl-(1-pentylindol-3-yl) methanone (JWH-018) and naphthalen-1-yl-(1-butylindol-3-yl) methanone (JWH-073)] are marketed, sold, and used as alternatives to cannabis. Synthetic CBs appear to have effects similar to those of Δ⁹-tetrahydrocannabinol (Δ⁹-THC), the drug primarily responsible for the behavioral effects of cannabis. However, synthetic CB products produce atypical effects (e.g., hypertension, seizures, and panic attacks). One potential explanation for atypical effects is CB₁ receptor agonist efficacy, which is reportedly higher for JWH-018 and JWH-073 compared with Δ⁹-THC. The goal of this study was to test a prediction from receptor theory that tolerance/cross-tolerance (i.e., resulting from daily Δ⁹-THC treatment) is greater for a low-efficacy agonist compared with a high-efficacy agonist. Rhesus monkeys discriminated 0.1 mg/kg Δ⁹-THC i.v. from vehicle, and sensitivity to CB(1) agonists was determined before and after 3 and 14 days of Δ⁹-THC treatment (1 mg/kg per day s.c.). (1R,3R,4R)-3-[2-Hydroxy-4-(1,1-dimethylheptyl) phenyl]-4-(3-hydroxypropyl)cyclohexan-1-ol (CP-55,940), a prototype high-efficacy CB₁ receptor agonist, JWH-018, and JWH-073 substituted for the discriminative stimulus effects of Δ⁹-THC. Three days of Δ⁹-THC treatment produced less tolerance/cross-tolerance than 14 days of Δ⁹-THC treatment. Three days of Δ⁹-THC did not result in cross-tolerance to CP-55,940, JWH-073, and JWH-018; in contrast, as reported previously, 3 days of Δ⁹-THC treatment decreased sensitivity to Δ⁹-THC 3-fold. Fourteen days of Δ⁹-THC decreased sensitivity to Δ⁹-THC, CP-55,940, JWH-018, and JWH-073 9.2-fold, 3.6-fold, 4.3-fold, and 5.6-fold, respectively. The greater loss of sensitivity to Δ⁹-THC relative to CP-55,940 and JWH-018 suggests that differences in CB₁ receptor agonist efficacy are important in vivo and might underlie differences in the dependence liability and adverse effects of synthetic CBs versus cannabis.
Collapse
Affiliation(s)
- Lenka Hruba
- Department of Pharmacology, the University of Texas Health Science Center, San Antonio, Texas, USA
| | | | | |
Collapse
|
20
|
Schulze DR, Carroll FI, McMahon LR. Interactions between dopamine transporter and cannabinoid receptor ligands in rhesus monkeys. Psychopharmacology (Berl) 2012; 222:425-38. [PMID: 22374253 PMCID: PMC3620032 DOI: 10.1007/s00213-012-2661-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Accepted: 02/02/2012] [Indexed: 11/28/2022]
Abstract
RATIONALE Δ(9)-tetrahydrocannabinol (Δ(9)-THC) modifies dopamine efflux. However, the extent to which cannabinoid and dopamine drugs modify each other's behavioral effects has not been fully established. OBJECTIVES This study examined dopamine releasers and/or transport inhibitors alone and in combination with cannabinoids in two drug discrimination assays. METHODS Experimentally and pharmacologically experienced rhesus monkeys (n = 5) discriminated Δ(9)-THC (0.1 mg/kg i.v.) from vehicle while responding under a fixed ratio 5 schedule of stimulus-shock termination. A separate group (n = 6) of monkeys responded under the same schedule, received daily Δ(9)-THC (1 mg/kg/12 h s.c.), and discriminated the cannabinoid antagonist rimonabant (1 mg/kg i.v.), i.e., cannabinoid withdrawal, from vehicle. A sign of withdrawal sign (head shaking) was examined in monkeys receiving Δ(9)-THC daily. RESULTS Rimonabant antagonized the Δ(9)-THC discriminative stimulus and a dose of Δ(9)-THC greater than the daily treatment attenuated the rimonabant discriminative stimulus. In monkeys discriminating Δ(9)-THC, the dopamine transporter ligands cocaine, amphetamine, bupropion, RTI 113, and RTI 177 produced a maximum of 2% responding on the drug lever and blocked the discriminative stimulus effects of Δ(9)-THC. In Δ(9)-THC treated monkeys discriminating rimonabant, the dopamine transporter ligands partially substituted for and increased the potency of rimonabant to produce discriminative stimulus effects. The dopamine antagonist haloperidol enhanced the Δ(9)-THC discriminative stimulus without significantly modifying the rimonabant discriminative stimulus. Imipramine and desipramine, which have low affinity for dopamine transporters, were less effective in modifying either the Δ(9)-THC or rimonabant discriminations. The dopamine transporter ligands and haloperidol attenuated head shaking, whereas imipramine and desipramine did not. CONCLUSIONS Dopamine release and/or inhibition of dopamine transport blocks detection of Δ(9)-THC and is potentially the mechanism by which some therapeutics (e.g., bupropion) reduce the subjective effects of marijuana and enhance the subjective effects of marijuana withdrawal.
Collapse
Affiliation(s)
- David R. Schulze
- Department of Pharmacology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - F. Ivy Carroll
- Organic and Medicinal Chemistry, Research Triangle Institute, Research Triangle Park, Durham, NC, USA
| | - Lance R. McMahon
- Department of Pharmacology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| |
Collapse
|
21
|
Lile JA, Kelly TH, Hays LR. Separate and combined effects of the GABA reuptake inhibitor tiagabine and Δ9-THC in humans discriminating Δ9-THC. Drug Alcohol Depend 2012; 122:61-9. [PMID: 21975195 PMCID: PMC3307819 DOI: 10.1016/j.drugalcdep.2011.09.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Revised: 08/11/2011] [Accepted: 09/07/2011] [Indexed: 02/07/2023]
Abstract
BACKGROUND The involvement of non-cannabinoid neurotransmitter systems in the abuse-related behavioral effects of cannabis has not been well characterized in humans. GABAergic drugs have overlapping effects with cannabis and Δ(9)-tetrahydrocannabinol (Δ(9)-THC) on certain behavioral measures, but those measures lack the specificity to draw conclusions regarding the involvement of GABA in cannabinoid effects. The aim of this study was to assess the separate and combined effects of the GABA reuptake inhibitor tiagabine and Δ(9)-THC using more pharmacologically specific drug-discrimination procedures. METHODS Eight cannabis users learned to discriminate 30 mg oral Δ(9)-THC from placebo and then received tiagabine (6 and 12 mg), Δ(9)-THC (5, 15 and 30 mg) and placebo, alone and in combination. Self-report, task performance and physiological measures were also collected. RESULTS Δ(9)-THC produced subjective effects typically associated with cannabinoids (e.g., High, Stoned, Like Drug), elevated heart rate and impaired rate and accuracy on psychomotor performance tasks. The higher tiagabine dose substituted for the Δ(9)-THC discriminative stimulus and engendered subjective and performance-impairing effects that overlapped with those of Δ(9)-THC when administered alone. In combination, tiagabine shifted the discriminative-stimulus effects of Δ(9)-THC leftward/upward and enhanced Δ(9)-THC effects on other outcomes. CONCLUSIONS These results indicate that GABA is involved in the clinical effects of Δ(9)-THC, and by extension, cannabis. Future studies should test selective GABAergic compounds to determine which receptor subtype(s) are responsible for the effects observed when combined with cannabinoids.
Collapse
Affiliation(s)
- Joshua A. Lile
- Department of Behavioral Science, University of Kentucky College of Medicine,To whom correspondence should be addressed: Joshua A. Lile, Department of Behavioral Science, College of Medicine, University of Kentucky, Lexington, KY 40536-0086, phone: 1-859-323-6034, , fax: 1-859-323-5350
| | - Thomas H. Kelly
- Department of Behavioral Science, University of Kentucky College of Medicine,Department of Psychology, University of Kentucky College of Arts and Sciences,Department of Psychiatry, University of Kentucky College of Medicine
| | - Lon R. Hays
- Department of Psychiatry, University of Kentucky College of Medicine,Department of Internal Medicine, University of Kentucky College of Medicine
| |
Collapse
|
22
|
Järbe TUC, Tai S, LeMay BJ, Nikas SP, Shukla VG, Zvonok A, Makriyannis A. AM2389, a high-affinity, in vivo potent CB1-receptor-selective cannabinergic ligand as evidenced by drug discrimination in rats and hypothermia testing in mice. Psychopharmacology (Berl) 2012; 220:417-26. [PMID: 21989802 PMCID: PMC3291515 DOI: 10.1007/s00213-011-2491-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Accepted: 09/03/2011] [Indexed: 11/24/2022]
Abstract
RATIONALE The endocannabinoid signaling system (ECS) has been targeted for developing novel therapeutics since ECS dysfunction has been implicated in various pathologies. Current focus is on chemical modifications of the hexahydrocannabinol (HHC) nabilone (Cesamet(®)). OBJECTIVE To characterize the novel, high-affinity cannabinoid receptor 1 (CB(1)R) HHC-ligand AM2389 [9β-hydroxy-3-(1-hexyl-cyclobut-1-yl)-hexahydrocannabinol in two rodent pre-clinical assays. MATERIALS AND METHODS CB(1)R mediation of AM2389-induced hypothermia in mice was evaluated with AM251, a CB(1)R-selective antagonist/inverse agonist. Additionally, two groups of rats discriminated the full cannabinergic aminoalkylindole AM5983 (0.18 and 0.56 mg/kg) from vehicle 20 min post-injection in a two-choice operant conditioning task motivated by 0.1% saccharin/water. Generalization/substitution tests were conducted with AM2389, AM5983, and Δ(9)-tetrahydrocannabinol (Δ(9)-THC). RESULTS Δ(9)-THC (30 mg/kg)-induced hypothermia exhibited a faster onset and shorter duration of action compared with AM2389 (0.1 and 0.3 mg/kg). AM251 (3 and 10 mg/kg) attenuated/blocked hypothermia induced by 0.3 mg/kg AM2389. In drug discrimination, the order of potency was AM2389 > AM5983 > Δ(9)-THC with ED(50) values of 0.0025, 0.0571, and 0.2635 mg/kg, respectively, in the low-dose condition. The corresponding ED(50) values in the high-dose condition were 0.0069, 0.1246, and 0.8438 mg/kg, respectively. Onset of the effects of AM2389 was slow with a protracted time-course; the functional, perceptual in vivo half-life was approximately 17 h. CONCLUSIONS This potent cannabinergic HHC exhibited a slow onset of action with a protracted time-course. The AM2389 chemotype appears well suited for further drug development, and AM2389 currently is used to probe behavioral consequences of sustained ECS activation.
Collapse
Affiliation(s)
- Torbjörn U. C. Järbe
- Center for Drug Discovery, Department of Pharmaceutical Sciences, Northeastern University, 116 Mugar Hall, 360 Huntington Ave, Boston, MA 02115, USA
| | - Sherrica Tai
- Center for Drug Discovery, Department of Pharmaceutical Sciences, Northeastern University, 116 Mugar Hall, 360 Huntington Ave, Boston, MA 02115, USA
| | - Brian J. LeMay
- Center for Drug Discovery, Department of Pharmaceutical Sciences, Northeastern University, 116 Mugar Hall, 360 Huntington Ave, Boston, MA 02115, USA
| | - Spyros P. Nikas
- Center for Drug Discovery, Department of Pharmaceutical Sciences, Northeastern University, 116 Mugar Hall, 360 Huntington Ave, Boston, MA 02115, USA
| | - Vidyanand G. Shukla
- Center for Drug Discovery, Department of Pharmaceutical Sciences, Northeastern University, 116 Mugar Hall, 360 Huntington Ave, Boston, MA 02115, USA
| | - Alexander Zvonok
- Center for Drug Discovery, Department of Pharmaceutical Sciences, Northeastern University, 116 Mugar Hall, 360 Huntington Ave, Boston, MA 02115, USA
| | - Alexandros Makriyannis
- Center for Drug Discovery, Department of Pharmaceutical Sciences, Northeastern University, 116 Mugar Hall, 360 Huntington Ave, Boston, MA 02115, USA
| |
Collapse
|
23
|
Ginsburg BC, Schulze DR, Hruba L, McMahon LR. JWH-018 and JWH-073: Δ⁹-tetrahydrocannabinol-like discriminative stimulus effects in monkeys. J Pharmacol Exp Ther 2012; 340:37-45. [PMID: 21965552 PMCID: PMC3251026 DOI: 10.1124/jpet.111.187757] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Accepted: 09/29/2011] [Indexed: 01/13/2023] Open
Abstract
Products containing naphthalen-1-yl-(1-pentylindol-3-yl) methanone (JWH-018) and naphthalen-1-yl-(1-butylindol-3-yl) methanone (JWH-073) are emerging drugs of abuse. Here, the behavioral effects of JWH-018 and JWH-073 were examined in one behavioral assay selective for cannabinoid agonism, rhesus monkeys (n = 4) discriminating Δ⁹-tetrahydrocannabinol (Δ⁹-THC; 0.1 mg/kg i.v.), and another assay sensitive to cannabinoid withdrawal, i.e., monkeys (n = 3) discriminating the cannabinoid antagonist rimonabant (1 mg/kg i.v.) during chronic Δ⁹-THC (1 mg/kg s.c. 12 h) treatment. Δ⁹-THC, JWH-018, and JWH-073 increased drug-lever responding in monkeys discriminating Δ⁹-THC; the ED₅₀ values were 0.044, 0.013, and 0.058 mg/kg, respectively and the duration of action was 4, 2, and 1 h, respectively. Rimonabant (0.32-3.2 mg/kg) produced surmountable antagonism of Δ⁹-THC, JWH-018, and JWH-073. Schild analyses and single-dose apparent affinity estimates yielded apparent pA₂/pK(B) values of 6.65, 6.68, and 6.79 in the presence of Δ⁹-THC, JWH-018, and JWH-073, respectively. In Δ⁹-THC-treated monkeys discriminating rimonabant, the training drug increased responding on the rimonabant lever; the ED₅₀ value of rimonabant was 0.20 mg/kg. Δ⁹-THC (1-10 mg/kg), JWH-018 (0.32-3.2 mg/kg), and JWH-073 (3.2-32 mg/kg) dose-dependently attenuated the rimonabant-discriminative stimulus (i.e., withdrawal). These results suggest that Δ⁹-THC, JWH-018, and JWH-073 act through the same receptors to produce Δ⁹-THC-like subjective effects and attenuate Δ⁹-THC withdrawal. The relatively short duration of action of JWH-018 and JWH-073 might lead to more frequent use, which could strengthen habitual use by increasing the frequency of stimulus-outcome pairings. This coupled with the possible greater efficacy of JWH-018 at cannabinoid 1 receptors could be associated with greater dependence liability than Δ⁹-THC.
Collapse
Affiliation(s)
- Brett C Ginsburg
- Department of Psychiatry, University of Texas Health Science Center, San Antonio, TX, USA.
| | | | | | | |
Collapse
|
24
|
Järbe TUC, Deng H, Vadivel SK, Makriyannis A. Cannabinergic aminoalkylindoles, including AM678=JWH018 found in 'Spice', examined using drug (Δ(9)-tetrahydrocannabinol) discrimination for rats. Behav Pharmacol 2011; 22:498-507. [PMID: 21836461 DOI: 10.1097/fbp.0b013e328349fbd5] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
We examined four different cannabinergic aminoalkylindole ligands, including one drug (AM678=JWH018) found in herbal 'Spice' concoctions, for their ability to substitute for Δ(9)-tetrahydrocannabinol (THC), and the ability of the cannabinoid receptor 1-selective antagonist/inverse agonist rimonabant to block the substitution, 30 and 90 min after intraperitoneal injection. Rats trained to discriminate the effects of vehicle from those produced by 3 mg/kg of THC were used. The order of potency was: AM5983≥AM678>AM2233>WIN55212-2 at both test intervals. AM5983 and AM678 appeared eight times more potent than THC, followed by AM2233 (about twice as potent as THC), and WIN55212-2 approximately THC at the 30-min test interval. The aminoalkylindoles showed reduced potency (i.e. an increased ED50 value) at the longer injection-to-test interval of 90 min compared with testing at 30 min. The rightward shifts by coadministration of rimonabant were approximately 8-fold to 12-fold for AM5983 and AM678, compared with an approximately 3-fold rightward shift for the WIN55212-2 curve. AM2233 (1.8 mg/kg) substitution was also blocked by 1 mg/kg of rimonabant. In conclusion, AM5983 and AM678=JWH018 are potent cannabimimetics derived from an aminoalkylindole template. WIN55212-2 seemed to interact differently with rimonabant, compared with either AM5983 or AM678, indicating potential differences in the mechanism(s) of action among cannabinergic aminoalkylindoles.
Collapse
Affiliation(s)
- Torbjörn U C Järbe
- Department of Psychology, Temple University, Philadelphia, Pennsylvania, USA.
| | | | | | | |
Collapse
|
25
|
Jutkiewicz EM, Brooks EA, Kynaston AD, Rice KC, Woods JH. Patterns of nicotinic receptor antagonism: nicotine discrimination studies. J Pharmacol Exp Ther 2011; 339:194-202. [PMID: 21730011 PMCID: PMC3186295 DOI: 10.1124/jpet.111.182170] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Accepted: 06/28/2011] [Indexed: 12/30/2022] Open
Abstract
Evaluation of the discriminative stimulus effects of drugs is a useful procedure for identification of receptor mediation of in vivo drug effects. This assay can be enhanced when the stimulus effects of different doses of agonist are evaluated. In the present study, rats were trained to discriminate small or large doses of nicotine from saline, and interactions of these effects with nicotinic receptor antagonists and partial agonists were determined. The insurmountable nicotine antagonist mecamylamine blocked both the discriminative stimulus and response rate-reducing effects of nicotine but was less effective against the large dose of nicotine. The α4β2*-selective, competitive antagonist dihydro-β-erythrodine (DHβE) antagonized the discriminative stimulus effects of both doses but was less effective against the larger training dose of nicotine. Schild analyses of DHβE suggested that different nicotinic receptor populations may be mediating the stimulus effects of large and small doses of nicotine. This suggestion was supported by observations that the discriminative stimulus effects of the partial agonist cytisine were more like those of the large dose than of the small dose of nicotine and that cytisine antagonized the effects of only the small nicotine dose. Varenicline produced nicotine-like effects in both training dose groups but reduced the discriminative stimulus effects of intermediate doses of nicotine in the group trained to the small dose of nicotine. Overall, these results suggest that small doses of nicotine produce their stimulus effects via α4β2* nicotine receptors, whereas larger doses of nicotine recruit additional nicotine receptor subtypes, as revealed by drug discrimination assays in rats.
Collapse
Affiliation(s)
- Emily M Jutkiewicz
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan 48109-5632, USA
| | | | | | | | | |
Collapse
|
26
|
Serrano A, Parsons LH. Endocannabinoid influence in drug reinforcement, dependence and addiction-related behaviors. Pharmacol Ther 2011; 132:215-41. [PMID: 21798285 DOI: 10.1016/j.pharmthera.2011.06.005] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Accepted: 06/17/2011] [Indexed: 12/12/2022]
Abstract
The endogenous cannabinoid system is an important regulatory system involved in physiological homeostasis. Endocannabinoid signaling is known to modulate neural development, immune function, metabolism, synaptic plasticity and emotional state. Accumulating evidence also implicates brain endocannabinoid signaling in the etiology of drug addiction which is characterized by compulsive drug seeking, loss of control in limiting drug intake, emergence of a negative emotional state in the absence of drug use and a persistent vulnerability toward relapse to drug use during protracted abstinence. In this review we discuss the effects of drug intake on brain endocannabinoid signaling, evidence implicating the endocannabinoid system in the motivation for drug consumption, and drug-induced alterations in endocannabinoid function that may contribute to various aspects of addiction including dysregulated synaptic plasticity, increased stress responsivity, negative affective states, drug craving and relapse to drug taking. Current knowledge of genetic variants in endocannabinoid signaling associated with addiction is also discussed.
Collapse
Affiliation(s)
- Antonia Serrano
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | |
Collapse
|
27
|
McMahon LR. Chronic Δ⁹-tetrahydrocannabinol treatment in rhesus monkeys: differential tolerance and cross-tolerance among cannabinoids. Br J Pharmacol 2011; 162:1060-73. [PMID: 21091643 PMCID: PMC3051379 DOI: 10.1111/j.1476-5381.2010.01116.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2010] [Revised: 09/17/2010] [Accepted: 10/06/2010] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND PURPOSE The extent to which behavioural effects vary as a function of CB₁ receptor agonist efficacy is not clear. These studies tested the hypothesis that cannabinoid tolerance and cross-tolerance depend upon the CB₁ agonist efficacy of drugs to which tolerance/cross-tolerance develops. EXPERIMENTAL APPROACH Sensitivity to cannabinoids, including the cannabinoid antagonist rimonabant, low efficacy agonist Δ⁹-tetrahydrocannabinol (Δ⁹-THC), and high efficacy agonists CP 55940 and WIN 55212-2, was determined before and after chronic Δ⁹-THC treatment in rhesus monkeys. Two measures of behavioural effect were assessed: effects of drugs to decrease fixed ratio responding for food presentation and stimulus-shock termination and discriminative stimulus effects in monkeys discriminating Δ⁹-THC (0.1 mg·kg⁻¹, i.v.). KEY RESULTS Δ⁹-THC decreased responding for both food presentation and stimulus-shock termination; these effects were antagonized by the CB₁ antagonist rimonabant. Chronic Δ⁹-THC (1 mg·kg⁻¹ per 12 h, s.c.) resulted in tolerance to the rate-decreasing effects of Δ⁹-THC and cross-tolerance to CP 55940 and WIN 55212-2; however, cross-tolerance was less than tolerance. Chronic Δ⁹-THC increased sensitivity to rimonabant without changing sensitivity to the non-cannabinoids midazolam and ketamine. In monkeys discriminating Δ⁹-THC (0.1 mg·kg⁻¹, i.v.), both CP 55940 and WIN 55212-2 produced high levels of drug-lever responding. Chronic Δ⁹-THC (1 mg·kg⁻¹ per day, s.c.) decreased sensitivity to Δ⁹-THC without producing cross-tolerance to CP 55940 or WIN 55212-2. CONCLUSIONS AND IMPLICATIONS In Δ⁹-THC-treated monkeys, the magnitude of tolerance and cross-tolerance to other CB₁ receptor agonists varied inversely with agonist efficacy, suggesting that CB₁ agonist efficacy is an important determinant of behavioural effects.
Collapse
Affiliation(s)
- Lance R McMahon
- Department of Pharmacology, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229-3900, USA.
| |
Collapse
|
28
|
Current approaches and issues in non-clinical evaluation of abuse and dependence. J Pharmacol Toxicol Methods 2011; 63:160-7. [DOI: 10.1016/j.vascn.2010.09.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2010] [Revised: 09/15/2010] [Accepted: 09/16/2010] [Indexed: 01/09/2023]
|
29
|
Substitution Profile of the Cannabinoid Agonist Nabilone in Human Subjects Discriminating Δ9-Tetrahydrocannabinol. Clin Neuropharmacol 2010; 33:235-42. [DOI: 10.1097/wnf.0b013e3181e77428] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
30
|
Stewart JL, McMahon LR. Rimonabant-induced Delta9-tetrahydrocannabinol withdrawal in rhesus monkeys: discriminative stimulus effects and other withdrawal signs. J Pharmacol Exp Ther 2010; 334:347-56. [PMID: 20375197 PMCID: PMC2912042 DOI: 10.1124/jpet.110.168435] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2010] [Accepted: 04/06/2010] [Indexed: 11/22/2022] Open
Abstract
Marijuana-dependent individuals report using marijuana to alleviate withdrawal, suggesting that pharmacotherapy of marijuana withdrawal could promote abstinence. To identify potential pharmacotherapies for marijuana withdrawal, this study first characterized rimonabant-induced Delta(9)-tetrahydrocannabinol (Delta(9)-THC) withdrawal in rhesus monkeys by using drug discrimination and directly observable signs. Second, drugs were examined for their capacity to modify cannabinoid withdrawal. Monkeys receiving chronic Delta(9)-THC (1 mg/kg/12 h s.c.) discriminated the cannabinoid antagonist rimonabant (1 mg/kg i.v.) under a fixed ratio schedule of stimulus-shock termination. The discriminative stimulus effects of rimonabant were dose-dependent (ED(50) = 0.25 mg/kg) and accompanied by head shaking. In the absence of chronic Delta(9)-THC treatment (i.e., in nondependent monkeys), a larger dose (3.2 mg/kg) of rimonabant produced head shaking and tachycardia. Temporary discontinuation of Delta(9)-THC treatment resulted in increased responding on the rimonabant lever, head shaking, and activity during the dark cycle. The rimonabant discriminative stimulus was attenuated fully by Delta(9)-THC (at doses larger than mg/kg/12 h) and the cannabinoid agonist CP 55940 [5-(1,1-dimethylheptyl)-2-[5-hydroxy-2-(3-hydroxypropyl)cyclohexyl]phenol], and partially by the cannabinoid agonist WIN 55212-2 [(R)-(+)-[2, 3-dihydro-5-methyl-3-(4-morpholinylmethyl)pyrrolo[1,2,3-de]-1,4-benzoxazin-6-yl]-1-naphthalenylmethanone mesylate] and the alpha(2)-adrenergic agonist clonidine. In contrast, a benzodiazepine (diazepam) and monoamine agonist (cocaine) did not attenuate the rimonabant discriminative stimulus. Head shaking was attenuated by all test compounds. These results show that the discriminative stimulus effects of rimonabant in Delta(9)-THC-treated monkeys are a more pharmacologically selective measure of cannabinoid withdrawal than rimonabant-induced head shaking. These results suggest that cannabinoid and noncannabinoid (alpha(2)-adrenergic) agonists are potentially useful therapeutics for marijuana dependence inasmuch as they attenuate the subjective experience of Delta(9)-THC withdrawal.
Collapse
Affiliation(s)
- Jennifer L Stewart
- Department of Pharmacology, The University of Texas Health Science Center, San Antonio, TX 78229-3900, USA
| | | |
Collapse
|
31
|
Järbe TUC, Li C, Vadivel SK, Makriyannis A. Discriminative stimulus functions of methanandamide and delta(9)-THC in rats: tests with aminoalkylindoles (WIN55,212-2 and AM678) and ethanol. Psychopharmacology (Berl) 2010; 208:87-98. [PMID: 19902182 PMCID: PMC3727230 DOI: 10.1007/s00213-009-1708-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2009] [Accepted: 10/22/2009] [Indexed: 02/07/2023]
Abstract
OBJECTIVE The aim of the study was to characterize in vivo the aminoalkylindoles WIN55,212-2 (WIN) and AM678 (naphthalen-1-yl(1-pentyl-1H-indol-3-yl)methanone) as cannabinoid receptor (CB(1)R) ligands using drug discrimination. Tests also involved delta(9)-tetrahydrocannabinol (THC) and R-(+)-methanandamide (mAEA), a metabolically stable analog of the endogenous ligand anandamide, as well as the CB(1)R selective antagonist/inverse agonist rimonabant; tests with ethanol assessed pharmacological specificity. We used two different drug discriminations (mAEA and THC) allowing us to explore potential differences in CB(1)R activation which could be attributed to variations in their respective CB(1)R signaling mechanisms. METHODS There were two concurrently trained groups of rats. One group discriminated between i.p. injected vehicle and 10 mg/kg mAEA. The other group was trained to discriminate between vehicle and 1.8 mg/kg THC. RESULTS Dose generalization curves for AM678, WIN55,212-2, THC, and mAEA suggested the following rank order of potency: AM678 > WIN55,212-2 > or = THC > mAEA in both drug discrimination groups. Challenge by 1 mg/kg rimonabant resulted in shifts to the right of the generalization curves for the two aminoalkylindoles (4.4-fold for AM678 and 11.3-fold for WIN in the mAEA group, whereas for the THC group, the corresponding values were 13 and 2.6, respectively), suggesting surmountable antagonism. Ethanol did not generalize in either of the two groups, suggesting pharmacological specificity. CONCLUSION Data are congruent with the general observation that there is substantial overlap in the discriminative stimulus effects of CB(1)R ligands across different chemical classes. However, the quantitative differences in the interactions between the two aminoalkylindoles and rimonabant in the two discrimination groups suggest subtle variations in the ligand-receptor activation(s).
Collapse
Affiliation(s)
- Torbjörn U C Järbe
- Department of Psychology, Temple University, 265-67 Weiss Hall, 1701 North 13th Street, Philadelphia, PA 19122, USA.
| | | | | | | |
Collapse
|
32
|
Discriminative stimulus functions in rats of AM1346, a high-affinity CB1R selective anandamide analog. Psychopharmacology (Berl) 2009; 203:229-39. [PMID: 18521574 PMCID: PMC3727224 DOI: 10.1007/s00213-008-1199-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2008] [Accepted: 05/02/2008] [Indexed: 10/22/2022]
Abstract
OBJECTIVE To characterize in vivo the high-affinity CB(1) cannabinoid receptor (CB(1)R) selective anandamide analog AM1346 [alkoxyacid amide of N-eicosa-tetraenylamine] using drug discrimination. Substitution tests involved Delta(9)-tetrahydrocannabinol (Delta(9)-THC) and R-(+)-methanandamide (mAEA), a metabolically stable analog of anandamide (AEA), as well as the CB(1)R antagonist/inverse agonist rimonabant; D: -amphetamine and morphine were also examined to assess pharmacological specificity. MATERIALS AND METHODS Rats were initially trained to discriminate between i.p.-injected vehicle and 3 mg/kg AM1346 (group 3 mg/kg; t' = 20 min); subsequently, the rats were retrained with 5.6 mg/kg AM1346 (group 5.6 mg/kg; t' = 20 min). RESULTS Dose-generalization curves of AM1346, Delta(9)-THC, and mAEA suggested the following order of potency: Delta(9)-THC > AM1346 > mAEA both for rats discriminating between 3 and 5.6 mg/kg AM1346 from vehicle. In group 3 mg/kg, challenge by 1 mg/kg rimonabant resulted in parallel shifts to the right of the dose-generalization curves for Delta(9)-THC and AM1346, suggesting surmountable antagonism. Surmountable antagonism was not demonstrated with rimonabant-mAEA combinations. A long duration of effect was indicated when 3 mg/kg AM1346 was examined after different time intervals following i.p. administration (group 3 mg/kg). The in vivo half-life was close to 5 h. Neither D: -amphetamine nor morphine generalized in either of groups 3 mg/kg and 5.6 mg/kg, suggesting pharmacological specificity. CONCLUSION Unlike mAEA, the surmountable antagonism between rimonabant and AM1346 showed that the structural features of AEA can be modified to produce novel ligands that reduce the dissociation between the discriminative stimulus and rate decreasing effects of CB(1)R agonists derived from an AEA template.
Collapse
|
33
|
Apparent affinity estimates of rimonabant in combination with anandamide and chemical analogs of anandamide in rhesus monkeys discriminating Delta9-tetrahydrocannabinol. Psychopharmacology (Berl) 2009; 203:219-28. [PMID: 18592221 PMCID: PMC4879883 DOI: 10.1007/s00213-008-1230-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2007] [Accepted: 06/04/2008] [Indexed: 10/21/2022]
Abstract
RATIONALE Anandamide and Delta(9)-tetrahydrocannabinol (Delta(9)-THC) sometimes produce different discriminative stimulus effects and, therefore, appear to differ in their mechanism of action. In order to understand the widespread use of cannabis and the therapeutic potential of cannabinoids, mechanisms responsible for behavioral effects need to be identified. OBJECTIVE Drug discrimination was used to compare the mechanism of action of Delta(9)-THC, anandamide, and two structural analogs of anandamide in rhesus monkeys. MATERIALS AND METHODS Monkeys discriminated Delta(9)-THC (0.1 mg/kg i.v.) from vehicle. Delta(9)-THC, anandamide, methanandamide, and arachidonylcyclopropylamide (ACPA) were administered i.v. alone and in combination with at least one dose of rimonabant. Schild analysis and single-dose apparent affinity estimates were used to estimate the potency of rimonabant as an antagonist of each cannabinoid; these values were compared to examine whether the same receptors mediated discriminative stimulus effects. RESULTS Delta(9)-THC, ACPA, methanandamide, and anandamide produced greater than 96% of responses on the Delta(9)-THC lever. The ED(50) values were 0.024 mg/kg for Delta(9)-THC, 0.14 mg/kg for ACPA, 0.28 mg/kg for methanandamide, and 1.7 mg/kg for anandamide. The duration of action of Delta(9)-THC was 4-6 h and longer than the duration of action ACPA, methanandamide, and anandamide (i.e., each less than 50 min). Rimonabant surmountably antagonized the discriminative stimulus effects of each agonist, and the apparent affinity estimates (pA (2) and pK (B) values) were 6.24-6.83. CONCLUSIONS Rimonabant can produce surmountable antagonism of the behavioral effects of not only Delta(9)-THC but also anandamide, methanandamide, and ACPA, and the interactions appear simple, competitive, and reversible. These cannabinoid agonists act at the same receptors to produce discriminative stimulus effects.
Collapse
|
34
|
Substitution profile of Delta9-tetrahydrocannabinol, triazolam, hydromorphone, and methylphenidate in humans discriminating Delta9-tetrahydrocannabinol. Psychopharmacology (Berl) 2009; 203:241-50. [PMID: 19018520 PMCID: PMC2712322 DOI: 10.1007/s00213-008-1393-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2008] [Accepted: 10/23/2008] [Indexed: 10/21/2022]
Abstract
RATIONALE Preclinical evidence suggests that non-cannabinoid neurotransmitter systems are involved in the behavioral and physiological effects of cannabinoids, but relatively little research has been conducted in humans. OBJECTIVES The aims of this study were to assess whether oral Delta(9)-tetrahydrocannabinol (Delta(9)-THC) would function as a discriminative stimulus in humans and to examine the substitution profile of drugs acting at opioid, GABA, and dopamine systems. METHODS Healthy subjects who reported moderate cannabis use were enrolled. Subjects learned to identify when they received oral 25 mg Delta(9)-THC or placebo under double-blind conditions. Once subjects acquired the discrimination (i.e., > or =80% drug-appropriate responding for four consecutive sessions), multiple doses of Delta(9)-THC, the GABA(A) positive modulator triazolam, the micro-opioid agonist hydromorphone and the dopamine reuptake inhibitor methylphenidate were tested to determine if they shared discriminative-stimulus effects with the training dose of Delta(9)-THC. RESULTS Eight subjects (N = 8) accurately discriminated Delta(9)-THC and completed the study. The training dose of Delta(9)-THC functioned as a discriminative stimulus and produced prototypical subject-rated drug effects. All of the drugs tested produced significant effects on the self-report questionnaires, but only Delta(9)-THC substituted for the training dose. CONCLUSION These results suggest that the discriminative-stimulus effects of Delta(9)-THC in humans are not directly mediated through central neurotransmitter systems acted upon by the drugs tested in this study.
Collapse
|
35
|
Interactions between Delta(9)-tetrahydrocannabinol and mu opioid receptor agonists in rhesus monkeys: discrimination and antinociception. Psychopharmacology (Berl) 2008; 199:199-208. [PMID: 18470505 PMCID: PMC3480084 DOI: 10.1007/s00213-008-1157-0] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2007] [Accepted: 04/03/2008] [Indexed: 10/22/2022]
Abstract
RATIONALE Opioid receptor agonists can enhance some effects of cannabinoid receptor agonists, and cannabinoid receptor agonists can enhance some effects of opioid receptor agonists; however, the generality of these interactions is not established. OBJECTIVE This study examined interactions between the discriminative stimulus and antinociceptive effects of mu opioid receptor agonists and Delta(9)-tetrahydrocannabinol (THC) in rhesus monkeys. RESULTS Neither heroin nor morphine (intravenous (i.v.) or subcutaneous (s.c.)) altered the discriminative stimulus effects of THC in monkeys (n = 5) discriminating 0.1 mg/kg THC i.v. In contrast, THC (s.c.) markedly attenuated the discriminative stimulus effect of morphine and heroin in nondependent monkeys (n = 4) discriminating 1.78 mg/kg morphine s.c. Doses of THC that attenuated the discriminative stimulus effects of morphine in nondependent monkeys failed to modify the discriminative stimulus effects of morphine in morphine-dependent (5.6 mg/kg/12 h) monkeys (n = 4) discriminating 0.0178 mg/kg naltrexone s.c. THC also failed to modify the discriminative stimulus effects of naltrexone in morphine-dependent monkeys or the effects of midazolam in monkeys (n = 4) discriminating 0.32 mg/kg midazolam s.c. Doses of THC (s.c.) that attenuated the discriminative stimulus effects of morphine in nondependent monkeys enhanced the antinociceptive effects of morphine (s.c.) in nondependent monkeys. While mu receptor agonists did not alter the discriminative stimulus effects of THC, THC altered the effects of mu receptor agonists in a context-dependent manner. CONCLUSION That the same doses of THC enhance, attenuate, or do not affect morphine, depending on the condition, suggests that attenuation of morphine by THC can result from perceptual masking rather than common pharmacodynamic mechanisms or pharmacokinetic interactions.
Collapse
|
36
|
McMahon LR, Ginsburg BC, Lamb RJ. Cannabinoid agonists differentially substitute for the discriminative stimulus effects of Delta(9)-tetrahydrocannabinol in C57BL/6J mice. Psychopharmacology (Berl) 2008; 198:487-95. [PMID: 17673980 PMCID: PMC3081656 DOI: 10.1007/s00213-007-0900-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2007] [Accepted: 07/11/2007] [Indexed: 10/23/2022]
Abstract
RATIONALE A variety of behavioral procedures have been developed to assess cannabinoid activity in mice; however, the feasibility of establishing Delta(9)-THC as a discriminative stimulus in mice has not been documented. OBJECTIVE One goal was to establish Delta(9)-THC as a discriminative stimulus in mice; after having done so, another goal was to examine the in vivo mechanism of action of Delta(9)-THC with other cannabinoids and noncannabinoids. MATERIALS AND METHODS C57BL/6J mice (n = 8) were trained to discriminate Delta(9)-THC (10 mg/kg i.p.) from vehicle while responding under a fixed ratio 30 schedule of food presentation. RESULTS Mice satisfied the discrimination criteria in 18-98 (median = 67) sessions and the discriminative stimulus effects of Delta(9)-THC were dose-dependent (ED(50) = 2.6 mg/kg). CP 55940 and WIN 55212-2 dose-dependently increased Delta(9)-THC-appropriate responding to 100% (ED(50) = 0.032 and 0.45 mg/kg, respectively), whereas methanandamide and a variety of noncannabinoids (cocaine, ethanol, and ketamine) produced a maximum of 34% Delta(9)-THC-appropriate responding. The cannabinoid CB(1) antagonist SR 141716A (rimonabant) surmountably antagonized the discriminative effects of Delta(9)-THC, CP 55940, and WIN 55212-2; methanandamide did not significantly modify the Delta(9)-THC discriminative stimulus. CONCLUSIONS The discriminative stimulus effects of Delta(9)-THC, CP 55940, and WIN 55212-2 are mediated by the same (i.e., CB(1)) receptors, whereas the effects of methanandamide or a metabolite of methanandamide are mediated at least in part by non-CB(1) receptors. The discriminative stimulus effects of Delta(9)-THC in mice could be used to evaluate mechanisms of cannabinoid activity with approaches (e.g., inducible knockouts) currently unavailable in nonmurine species.
Collapse
Affiliation(s)
- Lance R McMahon
- Department of Pharmacology, The University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, USA.
| | | | | |
Collapse
|
37
|
Järbe TUC, Li C, Vadivel SK, Makriyannis A. Discriminative stimulus effects of the cannabinoid CB1 receptor antagonist rimonabant in rats. Psychopharmacology (Berl) 2008; 198:467-78. [PMID: 18264696 PMCID: PMC3678952 DOI: 10.1007/s00213-008-1076-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2007] [Accepted: 01/06/2008] [Indexed: 10/22/2022]
Abstract
OBJECTIVE To examine the discriminative stimulus effects of the cannabinoid CB(1) receptor (CB(1)R) antagonist/inverse agonist rimonabant (SR141716A) using a discriminated taste aversion (DTA) procedure. MATERIALS AND METHODS Groups of rats were trained to discriminate between drug (5.6 or 3 mg/kg) and vehicle in DTA (t' = 20 min). The 30-min drinking opportunity after rimonabant pretreatment was followed by injection of lithium chloride (120 mg/kg) in the experimental (EXP) animals. When offered fluid after vehicle pretreatment, EXP animals subsequently were given intraperitoneal saline (NaCl, 10 ml/kg). Post-drinking treatment for controls (CONT) was NaCl irrespective of the pretreatment condition (rimonabant or vehicle). Tests examined other doses and drugs (t' = 20 min). RESULTS The rimonabant analog AM251 (1 to 5.6 mg/kg) substituted for rimonabant. AM281 also appeared to substitute, but interpretation is complicated by unconditioned effects (drinking suppressed also in the CONT group). The CB(2)R antagonists SR144528 (18 and 30 mg/kg), AM630 (1 to 10 mg/kg), and the CB(1)R agonist methanandamide (mAEA, 3 and 10 mg/kg) did not substitute. There was a dose-related attenuation of the rimonabant-induced suppression of saccharin drinking when Delta9-tetrahydrocannabinol (Delta9-THC; 0.3 to 5.6 mg/kg), but not mAEA (1 to 10 mg/kg), was given together with rimonabant (3 mg/kg). Unconditioned effects occurred with the mAEA-rimonabant combination, not evident for combinations of rimonabant and Delta9-THC. mAEA (10 mg/kg) plus AM251 (5.6 mg/kg) resulted in strong unconditioned effects. CONCLUSION Rimonabant induces a discriminative stimulus in DTA that continues to show potential for further examination of cannabinoid receptor antagonism.
Collapse
|
38
|
Trezza V, Vanderschuren LJMJ. Bidirectional cannabinoid modulation of social behavior in adolescent rats. Psychopharmacology (Berl) 2008; 197:217-27. [PMID: 18058088 DOI: 10.1007/s00213-007-1025-3] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2007] [Accepted: 11/18/2007] [Indexed: 11/26/2022]
Abstract
RATIONALE Marijuana use in adolescents is a highly social activity, and interacting endocannabinoid and opioid systems may modulate social reward. However, cannabinoid exposure has been reported to reduce social behavior. OBJECTIVES The aim of this study was to elucidate the mechanisms underlying the paradoxical relationship between cannabinoid exposure and sociability. MATERIALS AND METHODS We investigated the effect of cannabinoid agonists with a different mechanism of action on social play behavior in adolescent rats. In addition, we examined whether endocannabinoid neurotransmission interacts with opioid and dopaminergic neurotransmission in the modulation of social play behavior. RESULTS The direct CB1 cannabinoid receptor agonist WIN55,212-2 reduced social play. However, the indirect cannabinoid agonist URB597, which inhibits the hydrolysis of the endocannabinoid anandamide, enhanced social play. This effect of URB597 depended upon stimulation of opioid and dopamine receptors. The well-known stimulatory effect of morphine on social play was attenuated by the CB1 cannabinoid receptor antagonist SR141716A, but independent of dopamine receptor stimulation. Combined treatment with ineffective doses of URB597 and morphine increased social play. CONCLUSIONS Cannabinoid neurotransmission can both enhance and inhibit social interaction in adolescent rats depending on how the endocannabinoid system is stimulated. Activation of cannabinoid receptors throughout the brain, which occurs during cannabis use, inhibits sociability. In contrast, on-demand release of endocannabinoids facilitates social interaction, which is magnified by indirect cannabinoid agonists through an interaction with opioid and dopaminergic neurotransmission. These results shed light on the paradoxical relationship between cannabis exposure and sociability and suggest that endocannabinoid degradation inhibitors hold promise for the treatment of social dysfunctions.
Collapse
Affiliation(s)
- Viviana Trezza
- Rudolf Magnus Institute of Neuroscience, Department of Neuroscience and Pharmacology, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands
| | | |
Collapse
|
39
|
McMahon LR, Koek W. Differences in the relative potency of SR 141716A and AM 251 as antagonists of various in vivo effects of cannabinoid agonists in C57BL/6J mice. Eur J Pharmacol 2007; 569:70-6. [PMID: 17553486 PMCID: PMC2043376 DOI: 10.1016/j.ejphar.2007.04.054] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2007] [Revised: 04/11/2007] [Accepted: 04/25/2007] [Indexed: 10/23/2022]
Abstract
Although the cannabinoid CB(1) antagonist N-(piperidin-1-yl)-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide (SR 141716A) blocks many of the in vivo effects of cannabinoids, the antagonist activity of SR 141716A is limited under some conditions. The general aims of this study were to: 1) examine whether the limited antagonist activity of SR 141716A generalizes to the cannabinoid CB(1) antagonist N-(piperidin-1-yl)-5-(4-iodophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide (AM 251); and 2) examine mechanisms by which cannabinoids produce hypothermia, catalepsy, and hypoactivity in C57BL/6J mice. SR 141716A and AM 251 were administered alone and in combination with the cannabinoid agonists triangle up(9)-tetrahydrocannabinol (triangle up(9)-THC) and R-(+)-[2,3-dihydro-5-methyl-3-[(morpholinyl)-methyl]pyrrolol-[1,2,3-de]-1,4-benzoxazinyl]-(1-naphthalenyl) methanone (WIN 55212-2). triangle up(9)-THC and WIN 55212-2 produced catalepsy, hypothermia, and hypoactivity with similar potency; WIN 55212-2 produced greater hypothermia than triangle up(9)-THC, otherwise differences in maximal effect were not detected in the other assays. When administered alone, the antagonists did not produce catalepsy or alter body temperature and they decreased locomotor activity. SR 1417167A and AM 251 blocked catalepsy and hypothermia, and partially attenuated hypoactivity, produced by triangle up(9)-THC and WIN 55212-2. While the antagonists were equipotent in blocking agonist-induced hypothermia, SR 141716A was 6-fold more potent than AM 251 in blocking agonist-induced catalepsy. The results demonstrate that SR 141716A and AM 251 have strikingly similar behavioral activity, i.e., they block some and not other in vivo effects of cannabinoid agonists, and further demonstrate differences in the maximum effect of cannabinoid agonists that might be related to differences in agonist efficacy. While the results strongly suggest that cannabinoid CB(1) receptors mediate the hypothermic and cataleptic effects of cannabinoids, differences in the relative potency of antagonists suggest that mechanisms responsible for these effects are not identical.
Collapse
Affiliation(s)
- Lance R McMahon
- Department of Pharmacology, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA.
| | | |
Collapse
|