1
|
Mei F, Zhao C, Li S, Xue Z, Zhao Y, Xu Y, Ye R, You H, Yu P, Han X, Carr GV, Weinberger DR, Yang F, Lu B. Ngfr + cholinergic projection from SI/nBM to mPFC selectively regulates temporal order recognition memory. Nat Commun 2024; 15:7342. [PMID: 39187496 PMCID: PMC11347598 DOI: 10.1038/s41467-024-51707-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 08/13/2024] [Indexed: 08/28/2024] Open
Abstract
Acetylcholine regulates various cognitive functions through broad cholinergic innervation. However, specific cholinergic subpopulations, circuits and molecular mechanisms underlying recognition memory remain largely unknown. Here we show that Ngfr+ cholinergic neurons in the substantia innominate (SI)/nucleus basalis of Meynert (nBM)-medial prefrontal cortex (mPFC) circuit selectively underlies recency judgements. Loss of nerve growth factor receptor (Ngfr-/- mice) reduced the excitability of cholinergic neurons in the SI/nBM-mPFC circuit but not in the medial septum (MS)-hippocampus pathway, and impaired temporal order memory but not novel object and object location recognition. Expression of Ngfr in Ngfr-/- SI/nBM restored defected temporal order memory. Fiber photometry revealed that acetylcholine release in mPFC not only predicted object encounters but also mediated recency judgments of objects, and such acetylcholine release was absent in Ngfr-/- mPFC. Chemogenetic and optogenetic inhibition of SI/nBM projection to mPFC in ChAT-Cre mice diminished mPFC acetylcholine release and deteriorated temporal order recognition. Impaired cholinergic activity led to a depolarizing shift of GABAergic inputs to mPFC pyramidal neurons, due to disturbed KCC2-mediated chloride gradients. Finally, potentiation of acetylcholine signaling upregulated KCC2 levels, restored GABAergic driving force and rescued temporal order recognition deficits in Ngfr-/- mice. Thus, NGFR-dependent SI/nBM-mPFC cholinergic circuit underlies temporal order recognition memory.
Collapse
Affiliation(s)
- Fan Mei
- Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Chen Zhao
- School of Pharmaceutical Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China
| | - Shangjin Li
- School of Pharmaceutical Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China
| | - Zeping Xue
- Basic and Translational Medicine Center, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
- School of Basic Medicine, Capital Medical University, Beijing, China
- Laboratory of Cognitive and Behavioral Disorders, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
| | - Yueyang Zhao
- Basic and Translational Medicine Center, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Yihua Xu
- School of Pharmaceutical Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China
| | - Rongrong Ye
- School of Pharmaceutical Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China
| | - He You
- School of Pharmaceutical Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China
| | - Peng Yu
- School of Pharmaceutical Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China
| | - Xinyu Han
- School of Pharmaceutical Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China
| | - Gregory V Carr
- Department of Pharmacology and Molecular Sciences, Lieber Institute for Brain Development, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Daniel R Weinberger
- Department of Pharmacology and Molecular Sciences, Lieber Institute for Brain Development, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Feng Yang
- Basic and Translational Medicine Center, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China.
- Laboratory of Cognitive and Behavioral Disorders, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China.
| | - Bai Lu
- School of Pharmaceutical Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China.
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China.
| |
Collapse
|
2
|
Singh S, Agrawal N, Goyal A. Role of Alpha-7-Nicotinic Acetylcholine Receptor in Alzheimer's Disease. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:384-394. [PMID: 37366362 DOI: 10.2174/1871527322666230627123426] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/18/2023] [Accepted: 06/21/2023] [Indexed: 06/28/2023]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder affecting millions worldwide. One of the leading hypotheses for the underlying cause of AD is a reduction in nicotinic receptor levels in the brain. Among the nicotinic receptors, the alpha-7-nicotinic acetylcholine receptor (α7nAChR) has received particular attention due to its involvement in cognitive function.α7nAChR is a ligand-gated ion channel that is primarily found in the hippocampus and prefrontal cortex, areas of the brain responsible for learning, memory, and attention. Studies have shown that α7nAChR dysfunction is a key contributor to the pathogenesis of AD. The receptor is involved in regulating amyloidbeta (Aβ) production, a hallmark of AD pathology. Many drugs have been investigated as α7nAChR agonists or allosteric modulators to improve cognitive deficits in AD. Clinical studies have shown promising results with α7nAChR agonists, including improved memory and cognitive function. Although several studies have shown the significance of the α7 nAChR in AD, little is known about its function in AD pathogenesis. As a result, in this review, we have outlined the basic information of the α7 nAChR's structure, functions, cellular responses to its activation, and its role in AD's pathogenesis.
Collapse
Affiliation(s)
- Sushma Singh
- Institute of Pharmaceutical Research, GLA University, Mathura 281406, UP, India
- Pharmacy College, Azamgarh- 276128, UP, India
| | - Neetu Agrawal
- Institute of Pharmaceutical Research, GLA University, Mathura 281406, UP, India
| | - Ahsas Goyal
- Institute of Pharmaceutical Research, GLA University, Mathura 281406, UP, India
| |
Collapse
|
3
|
Mahmoudi R, Novella JL, Laurent-Badr S, Boulahrouz S, Tran D, Morrone I, Jaïdi Y. Cholinergic Antagonists and Behavioral Disturbances in Neurodegenerative Diseases. Int J Mol Sci 2023; 24:ijms24086921. [PMID: 37108085 PMCID: PMC10138684 DOI: 10.3390/ijms24086921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/26/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
Cholinergic antagonists interfere with synaptic transmission in the central nervous system and are involved in pathological processes in patients with neurocognitive disorders (NCD), such as behavioral and psychological symptoms of dementia (BPSD). In this commentary, we will briefly review the current knowledge on the impact of cholinergic burden on BPSD in persons with NCD, including the main pathophysiological mechanisms. Given the lack of clear consensus regarding symptomatic management of BPSD, special attention must be paid to this preventable, iatrogenic condition in patients with NCD, and de-prescription of cholinergic antagonists should be considered in patients with BPSD.
Collapse
Affiliation(s)
- Rachid Mahmoudi
- Department of Geriatric and Internal Medicine, Reims University Hospitals, Maison Blanche Hospital, 51092 Reims, France
- UR 3797 Vieillissement, Fragilité (VieFra), Faculty of Medicine, University of Reims Champagne-Ardenne, 51687 Reims, France
| | - Jean Luc Novella
- Department of Geriatric and Internal Medicine, Reims University Hospitals, Maison Blanche Hospital, 51092 Reims, France
- UR 3797 Vieillissement, Fragilité (VieFra), Faculty of Medicine, University of Reims Champagne-Ardenne, 51687 Reims, France
| | - Sarah Laurent-Badr
- Department of Geriatric and Internal Medicine, Reims University Hospitals, Maison Blanche Hospital, 51092 Reims, France
| | - Sarah Boulahrouz
- Department of Geriatric and Internal Medicine, Reims University Hospitals, Maison Blanche Hospital, 51092 Reims, France
- UR 3797 Vieillissement, Fragilité (VieFra), Faculty of Medicine, University of Reims Champagne-Ardenne, 51687 Reims, France
| | - David Tran
- Department of Geriatric and Internal Medicine, Reims University Hospitals, Maison Blanche Hospital, 51092 Reims, France
| | - Isabella Morrone
- Department of Geriatric and Internal Medicine, Reims University Hospitals, Maison Blanche Hospital, 51092 Reims, France
- Cognition Health and Society Laboratory (C2S-EA 6291), Faculty of Medicine, University of Reims Champagne-Ardenne, 51687 Reims, France
| | - Yacine Jaïdi
- Department of Geriatric and Internal Medicine, Reims University Hospitals, Maison Blanche Hospital, 51092 Reims, France
- UR 3797 Vieillissement, Fragilité (VieFra), Faculty of Medicine, University of Reims Champagne-Ardenne, 51687 Reims, France
| |
Collapse
|
4
|
The Antidepressant-like Activity, Effects on Recognition Memory Deficits, Bioavailability, and Safety after Chronic Administration of New Dual-Acting Small Compounds Targeting Neuropsychiatric Symptoms in Dementia. Int J Mol Sci 2022; 23:ijms231911452. [PMID: 36232749 PMCID: PMC9569954 DOI: 10.3390/ijms231911452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/20/2022] [Accepted: 09/24/2022] [Indexed: 11/22/2022] Open
Abstract
This study aimed to extend the body of preclinical research on prototype dual-acting compounds combining the pharmacophores relevant for inhibiting cyclic nucleotide phosphodiesterase 10 (PDE10A) and serotonin 5-HT1A/5-HT7 receptor (5-HT1AR/5-HT7R) activity into a single chemical entity (compounds PQA-AZ4 and PQA-AZ6). After i.v. administration of PQA-AZ4 and PQA-AZ6 to rats, the brain to plasma ratio was 0.9 and 8.60, respectively. After i.g. administration, the brain to plasma ratio was 5.7 and 5.3, respectively. An antidepressant-like effect was observed for PQA-AZ6 in the forced swim test, after chronic 21-day treatment via i.p. administration with 1 mg/kg/day. Both compounds revealed an increased level of brain-derived neurotrophic factor (Bdnf) mRNA in the hippocampus and prefrontal cortex. Moreover, PQA-AZ4 and PQA-AZ6 completely reversed (+)-MK801-induced memory disturbances comparable with the potent PDE10 inhibitor, compound PQ-10. In the safety profile that included measurements of plasma glucose, triglyceride, and total cholesterol concentration, liver enzyme activity, the total antioxidant activity of serum, together with weight gain, compounds exhibited no significant activity. However, the studied compounds had different effects on human normal fibroblast cells as revealed in in vitro assay. The pharmacokinetic and biochemical results support the notion that these novel dual-acting compounds might offer a promising therapeutic tool in CNS-related disorders.
Collapse
|
5
|
Kucwaj-Brysz K, Ali W, Kurczab R, Sudoł S, Wilczyńska-Zawal N, Jastrzębska-Więsek M, Satała G, Mordyl B, Żesławska E, Agnieszka-Olejarz-Maciej, Czarnota K, Latacz G, Partyka A, Wesołowska A, Nitek W, Handzlik J. An exit beyond the pharmacophore model for 5-HT6R agents - a new strategy to gain dual 5-HT6/5-HT2A action for triazine derivatives with procognitive potential. Bioorg Chem 2022; 121:105695. [DOI: 10.1016/j.bioorg.2022.105695] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 12/14/2021] [Accepted: 02/16/2022] [Indexed: 01/02/2023]
|
6
|
DePasquale C, Kemerer N, White N, Yost M, Wolfkill J, Sturgill J, Li X. The Influence of an Enriched Environment in Enhancing Recognition Memory in Zebrafish ( Danio rerio). Front Vet Sci 2021; 8:749746. [PMID: 34869723 PMCID: PMC8632956 DOI: 10.3389/fvets.2021.749746] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 10/04/2021] [Indexed: 11/16/2022] Open
Abstract
Environmental enrichment is used to increase social and physical stimulation for animals in captivity which can lead to enhanced cognition. Fundamental to the positive effect enrichment has on the brain is that it provides opportunities for captive animals to recognize and discriminate between different stimuli in the environment. In the wild, being able to discriminate between novel or familiar stimuli has implications for survival, for example finding food, hiding from predators, or even choosing a mate. The novel object recognition (NOR) test is a cognitive task that is used extensively in the rodent literature to assess object recognition and memory, where the amount of time an animal spends exploring a novel vs. familiar object is quantified. Enrichment has been shown to enhance object recognition in rodents. More recently, the use of the NOR test has been applied to another animal model, zebrafish (Danio rerio), however, the effects of enrichment have not yet been explored. In the current study we looked at the effects of enrichment on object recognition in zebrafish using the NOR test. Adult zebrafish were housed in either enriched conditions (gravel substrate, plastic plants, shelter, heater and a filter) or plain conditions (heater and filter only) for 6 months before behavioral NOR tests were conducted. Enriched fish showed a preference for a novel object over a familiar one at a distance but did not show a preference during close inspection. Control fish did not show a preference at either distance. Our results suggest that enrichment can enhance zebrafish ability to discriminate between novel and familiar objects, but distance from the object may be an important factor. Future research is needed to determine whether any enhancements in object recognition are a result of an increase in sensory stimulation from being reared with enrichment, or whether it is due to a reduction in stress reactivity.
Collapse
Affiliation(s)
- Cairsty DePasquale
- Department of Biology, Pennsylvania State University - Altoona, Altoona, PA, United States
| | - Nicole Kemerer
- Department of Biology, Pennsylvania State University - Altoona, Altoona, PA, United States
| | - Nathan White
- Department of Biology, Pennsylvania State University - Altoona, Altoona, PA, United States
| | - Monica Yost
- Department of Biology, Pennsylvania State University - Altoona, Altoona, PA, United States
| | - Jordan Wolfkill
- Department of Biology, Pennsylvania State University - Altoona, Altoona, PA, United States
| | - Jennifer Sturgill
- Department of Biology, Pennsylvania State University - Altoona, Altoona, PA, United States
| | - X Li
- Department of Mathematics and Statistics, Pennsylvania State University - Altoona, Altoona, PA, United States
| |
Collapse
|
7
|
The Phenoxyalkyltriazine Antagonists for 5-HT 6 Receptor with Promising Procognitive and Pharmacokinetic Properties In Vivo in Search for a Novel Therapeutic Approach to Dementia Diseases. Int J Mol Sci 2021; 22:ijms221910773. [PMID: 34639113 PMCID: PMC8509428 DOI: 10.3390/ijms221910773] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/16/2021] [Accepted: 09/28/2021] [Indexed: 11/28/2022] Open
Abstract
Among the serotonin receptors, one of the most recently discovered 5-HT6 subtype is an important protein target and its ligands may play a key role in the innovative treatment of cognitive disorders. However, none of its selective ligands have reached the pharmaceutical market yet. Recently, a new chemical class of potent 5-HT6 receptor agents, the 1,3,5-triazine-piperazine derivatives, has been synthesized. Three members, the ortho and meta dichloro- (1,2) and the unsubstituted phenyl (3) derivatives, proved to be of special interest due to their high affinities (1,2) and selectivity (3) toward 5-HT6 receptor. Thus, a broader pharmacological profile for 1–3, including comprehensive screening of the receptor selectivity and drug-like parameters in vitro as well as both, pharmacokinetic and pharmacodynamic properties in vivo, have been investigated within this study. A comprehensive analysis of the obtained results indicated significant procognitive-like activity together with beneficial drug-likeness in vitro and pharmacokinetics in vivo profiles for both, (RS)-4-[1-(2,3-dichlorophenoxy)propyl]-6-(4-methylpiperazin-1-yl)-1,3,5-triazin-2-amine (2) and (RS)-4-(4-methylpiperazin-1-yl)-6-(1-phenoxypropyl)-1,3,5-triazin-2-amine (3), but insensibly predominant for compound 2. Nevertheless, both compounds (2 and 3) seem to be good Central Nervous System drug candidates in search for novel therapeutic approach to dementia diseases, based on the 5-HT6 receptor target.
Collapse
|
8
|
Abstract
The α7-type nicotinic acetylcholine receptor is one of the most unique and interesting of all the members of the cys-loop superfamily of ligand-gated ion channels. Since it was first identified initially as a binding site for α-bungarotoxin in mammalian brain and later as a functional homomeric receptor with relatively high calcium permeability, it has been pursued as a potential therapeutic target for numerous indications, from Alzheimer disease to asthma. In this review, we discuss the history and state of the art for targeting α7 receptors, beginning with subtype-selective agonists and the basic pharmacophore for the selective activation of α7 receptors. A key feature of α7 receptors is their rapid desensitization by standard "orthosteric" agonist, and we discuss insights into the conformational landscape of α7 receptors that has been gained by the development of ligands binding to allosteric sites. Some of these sites are targeted by positive allosteric modulators that have a wide range of effects on the activation profile of the receptors. Other sites are targeted by direct allosteric agonist or antagonists. We include a perspective on the potential importance of α7 receptors for metabotropic as well as ionotropic signaling. We outline the challenges that exist for future development of drugs to target this important receptor and approaches that may be considered to address those challenges. SIGNIFICANCE STATEMENT: The α7-type nicotinic acetylcholine receptor (nAChR) is acknowledged as a potentially important therapeutic target with functional properties associated with both ionotropic and metabotropic signaling. The functional properties of α7 nAChR can be regulated in diverse ways with the variety of orthosteric and allosteric ligands described in this review.
Collapse
Affiliation(s)
- Roger L Papke
- Departments of Pharmacology and Therapeutics (R.L.P) and Chemistry (N.A.H.), University of Florida, Gainesville, FL
| | - Nicole A Horenstein
- Departments of Pharmacology and Therapeutics (R.L.P) and Chemistry (N.A.H.), University of Florida, Gainesville, FL
| |
Collapse
|
9
|
Higgins GA, Sellers EM. 5-HT 2A and 5-HT 2C receptors as potential targets for the treatment of nicotine use and dependence. PROGRESS IN BRAIN RESEARCH 2021; 259:229-263. [PMID: 33541678 DOI: 10.1016/bs.pbr.2021.01.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Nicotine use and dependence, typically achieved through cigarette smoking, but increasingly through vape products, is the leading cause of preventable death today. Despite a recognition that many current smokers would like to quit, the success rate at doing so is low and indicative of the persistent nature of nicotine dependence and the high urge to relapse. There are currently three main forms of pharmacotherapy approved as aids to treat nicotine dependence: a variety of nicotine replacement products (NRT's), the mixed NA/DA reuptake inhibitor bupropion (Zyban®), and the preferential nicotinic α4β2 receptor agonist drug, varenicline (Chantix®); the latter being generally recognized to be the most effective. However, each of these approaches afford only limited efficacy, and various other pharmacological approaches are being explored. This chapter focusses on approaches targeted to the serotonin (5-HT) system, namely, selective serotonin reuptake inhibitors (SSRI's) which served a pioneer role in the investigation of serotoninergic modulators in human smoking cessation trials; and secondly drugs selectively interacting with the 5-HT2A and 5-HT2C receptor systems. From an efficacy perspective, measured as smoking abstinence, the 5-HT2A agonist psychedelics, namely psilocybin, seem to show the most promise; although as the article highlights, these findings are both preliminary and there are significant challenges to the route to approval, and therapeutic use of this class should they reach approval status. Additional avenues include 5-HT2C receptor agonists, which until recently was pioneered by lorcaserin, and 5-HT2A receptor antagonists represented by pimavanserin. Each of these approaches has distinct profiles across preclinical tests of nicotine dependence, and may have therapeutic potential. It is anticipated as diagnostic and predictive biomarkers emerge, they may provide opportunities for subject stratification and opportunities for personalizing smoking cessation treatment. The clinical assessment of SSRI, 5-HT2A and/or 5-HT2C receptor-based treatments may be best served by this process.
Collapse
Affiliation(s)
- Guy A Higgins
- Intervivo Solutions Inc, Fergus, ON, Canada; Department of Pharmacology & Toxicology, University of Toronto, Toronto, ON, Canada.
| | - Edward M Sellers
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, ON, Canada; Department of Medicine and Psychiatry, University of Toronto, Toronto, ON, Canada; DL Global Partners Inc., Toronto, ON, Canada
| |
Collapse
|
10
|
Juza R, Vlcek P, Mezeiova E, Musilek K, Soukup O, Korabecny J. Recent advances with 5-HT 3 modulators for neuropsychiatric and gastrointestinal disorders. Med Res Rev 2020; 40:1593-1678. [PMID: 32115745 DOI: 10.1002/med.21666] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 11/10/2019] [Accepted: 02/11/2020] [Indexed: 12/17/2022]
Abstract
Serotonin (5-hydroxytryptophan [5-HT]) is a biologically active amine expressed in platelets, in gastrointestinal (GI) cells and, to a lesser extent, in the central nervous system (CNS). This biogenic compound acts through the activation of seven 5-HT receptors (5-HT1-7 Rs). The 5-HT3 R is a ligand-gated ion channel belonging to the Cys-loop receptor family. There is a wide variety of 5-HT3 R modulators, but only receptor antagonists (known as setrons) have been used clinically for chemotherapy-induced nausea and vomiting and irritable bowel syndrome treatment. However, since the discovery of the setrons in the mid-1980s, a large number of studies have been published exploring new potential applications due their potency in the CNS and mild side effects. The results of these studies have revealed new potential applications, including the treatment of neuropsychiatric disorders such as schizophrenia, depression, anxiety, and drug abuse. In this review, we provide information related to therapeutic potential of 5-HT3 R antagonists on GI and neuropsychiatric disorders. The major attention is paid to the structure, function, and pharmacology of novel 5-HT3 R modulators developed over the past 10 years.
Collapse
Affiliation(s)
- Radomir Juza
- National Institute of Mental Health, Klecany, Czech Republic
- Department of Chemistry, University of Hradec Kralove, Hradec Kralove, Czech Republic
| | - Premysl Vlcek
- National Institute of Mental Health, Klecany, Czech Republic
- Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Eva Mezeiova
- Biomedical Research Centre, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Kamil Musilek
- Department of Chemistry, University of Hradec Kralove, Hradec Kralove, Czech Republic
- Biomedical Research Centre, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Ondrej Soukup
- Biomedical Research Centre, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Jan Korabecny
- National Institute of Mental Health, Klecany, Czech Republic
- Biomedical Research Centre, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| |
Collapse
|
11
|
Zeng XX, Deng J, Xiang J, Dong YT, Cao K, Liu XH, Chen D, Ran LY, Yang Y, Guan ZZ. Protections against toxicity in the brains of rat with chronic fluorosis and primary neurons exposed to fluoride by resveratrol involves nicotinic acetylcholine receptors. J Trace Elem Med Biol 2020; 60:126475. [PMID: 32142957 DOI: 10.1016/j.jtemb.2020.126475] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 01/28/2020] [Accepted: 02/08/2020] [Indexed: 01/08/2023]
Abstract
Protection of Resveratrol (RSV) against the neurotoxicity induced by high level of fluoride was investigated. Sprague-Dawley (SD) rats and their offspring, as well as cultures of primary neurons were divided randomly into four groups: untreated (control); treated with 50 mg RSV/kg/ (once daily by gavage) or (20 M in the cultured medium); exposed to 50 ppm F- in drinking water or 4 mmol/l in the cultured medium; and exposed to fluoride then RSV as above. The adult rats were treated for 7 months and the offspring sacrificed at 28 days of age; the cultured neurons for 48 h. For general characterization, dental fluorosis was assessed and the fluoride content of the urine measured (by fluoride-electrode) in the rates and the survival of cultured neurons monitored with the CCK-8 test. The spatial learning and memory of rats were assessed with the Morris water maze test. The levels of α7 and α4 nicotinic acetylcholine receptors (nAChRs) were quantified by Western blotting; and the activities of superoxide dismutase (SOD) and catalase (CAT), and the levels of malondialdehyde (MDA) and H2O2 assayed biochemically. The results showed that chronic fluorosis resulted in the impaired learning and memory in rats and their offspring, and more oxidative stress in both rat brains and cultured neurons, which may be associated the lower levels of α7 and α4 nAChR subunits. Interestingly, RSV attenuated all of these toxic effects by fluorosis, indicating that protection against the neurotoxicity of fluoride by RSV might be in mechanism involved enhancing the expressions of these nAChRs.
Collapse
Affiliation(s)
- Xiao-Xiao Zeng
- Departments of Pathology at Guizhou Medical University and the Affiliated Hospital of Guizhou Medical University, PR China; Key Laboratory of Endemic and Ethnic Diseases, (Guizhou Medical University) of the Ministry of Education, PR China; Provincial Key Laboratory of Medical Molecular Biology, Guiyang, 550004, Guizhou, PR China
| | - Jie Deng
- Key Laboratory of Endemic and Ethnic Diseases, (Guizhou Medical University) of the Ministry of Education, PR China; Provincial Key Laboratory of Medical Molecular Biology, Guiyang, 550004, Guizhou, PR China
| | - Jie Xiang
- Departments of Pathology at Guizhou Medical University and the Affiliated Hospital of Guizhou Medical University, PR China; Key Laboratory of Endemic and Ethnic Diseases, (Guizhou Medical University) of the Ministry of Education, PR China
| | - Yang-Ting Dong
- Key Laboratory of Endemic and Ethnic Diseases, (Guizhou Medical University) of the Ministry of Education, PR China; Provincial Key Laboratory of Medical Molecular Biology, Guiyang, 550004, Guizhou, PR China
| | - Kun Cao
- Departments of Pathology at Guizhou Medical University and the Affiliated Hospital of Guizhou Medical University, PR China; Key Laboratory of Endemic and Ethnic Diseases, (Guizhou Medical University) of the Ministry of Education, PR China
| | - Xian-Hong Liu
- Key Laboratory of Endemic and Ethnic Diseases, (Guizhou Medical University) of the Ministry of Education, PR China; Provincial Key Laboratory of Medical Molecular Biology, Guiyang, 550004, Guizhou, PR China
| | - Dan Chen
- Departments of Pathology at Guizhou Medical University and the Affiliated Hospital of Guizhou Medical University, PR China; Key Laboratory of Endemic and Ethnic Diseases, (Guizhou Medical University) of the Ministry of Education, PR China
| | - Long-Yan Ran
- Departments of Pathology at Guizhou Medical University and the Affiliated Hospital of Guizhou Medical University, PR China; Key Laboratory of Endemic and Ethnic Diseases, (Guizhou Medical University) of the Ministry of Education, PR China
| | - Ye Yang
- Key Laboratory of Endemic and Ethnic Diseases, (Guizhou Medical University) of the Ministry of Education, PR China; Provincial Key Laboratory of Medical Molecular Biology, Guiyang, 550004, Guizhou, PR China
| | - Zhi-Zhong Guan
- Departments of Pathology at Guizhou Medical University and the Affiliated Hospital of Guizhou Medical University, PR China; Key Laboratory of Endemic and Ethnic Diseases, (Guizhou Medical University) of the Ministry of Education, PR China; Provincial Key Laboratory of Medical Molecular Biology, Guiyang, 550004, Guizhou, PR China.
| |
Collapse
|
12
|
Terry AV, Callahan PM. α7 nicotinic acetylcholine receptors as therapeutic targets in schizophrenia: Update on animal and clinical studies and strategies for the future. Neuropharmacology 2020; 170:108053. [PMID: 32188568 DOI: 10.1016/j.neuropharm.2020.108053] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 03/10/2020] [Accepted: 03/11/2020] [Indexed: 10/24/2022]
Abstract
Schizophrenia is a devastating mental illness and its effective treatment is among the most challenging issues in psychiatry. The symptoms of schizophrenia are heterogeneous ranging from positive symptoms (e.g., delusions, hallucinations) to negative symptoms (e.g., anhedonia, social withdrawal) to cognitive dysfunction. Antipsychotics are effective at ameliorating positive symptoms in some patients; however, they are not reliably effective at improving the negative symptoms or cognitive impairments. The inability to address the cognitive impairments is a particular concern since they have the greatest long-term impact on functional outcomes. While decades of research have been devoted to the development of pro-cognitive agents for schizophrenia, to date, no drug has been approved for clinical use. Converging behavioral, neurobiological, and genetic evidence led to the identification of the α7-nicotinic acetylcholine receptor (α7-nAChR) as a therapeutic target several years ago and there is now extensive preclinical evidence that α7-nAChR ligands have pro-cognitive effects and other properties that should be beneficial to schizophrenia patients. However, like the other pro-cognitive strategies, no α7-nAChR ligand has been approved for clinical use in schizophrenia thus far. In this review, several topics are discussed that may impact the success of α7-nAChR ligands as pro-cognitive agents for schizophrenia including the translational value of the animal models used, clinical trial design limitations, confounding effects of polypharmacy, dose-effect relationships, and chronic versus intermittent dosing considerations. Determining the most optimal pharmacologic strategy at α7-nAChRs: agonist, positive allosteric modulator, or potentially even receptor antagonist is also discussed. article is part of the special issue on 'Contemporary Advances in Nicotine Neuropharmacology'.
Collapse
Affiliation(s)
- Alvin V Terry
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, 30912, Georgia; Small Animal Behavior Core, Medical College of Georgia, Augusta University, Augusta, 30912, Georgia.
| | - Patrick M Callahan
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, 30912, Georgia; Small Animal Behavior Core, Medical College of Georgia, Augusta University, Augusta, 30912, Georgia
| |
Collapse
|
13
|
Azam S, Haque ME, Jakaria M, Jo SH, Kim IS, Choi DK. G-Protein-Coupled Receptors in CNS: A Potential Therapeutic Target for Intervention in Neurodegenerative Disorders and Associated Cognitive Deficits. Cells 2020; 9:cells9020506. [PMID: 32102186 PMCID: PMC7072884 DOI: 10.3390/cells9020506] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 02/15/2020] [Accepted: 02/18/2020] [Indexed: 12/17/2022] Open
Abstract
Neurodegenerative diseases are a large group of neurological disorders with diverse etiological and pathological phenomena. However, current therapeutics rely mostly on symptomatic relief while failing to target the underlying disease pathobiology. G-protein-coupled receptors (GPCRs) are one of the most frequently targeted receptors for developing novel therapeutics for central nervous system (CNS) disorders. Many currently available antipsychotic therapeutics also act as either antagonists or agonists of different GPCRs. Therefore, GPCR-based drug development is spreading widely to regulate neurodegeneration and associated cognitive deficits through the modulation of canonical and noncanonical signals. Here, GPCRs’ role in the pathophysiology of different neurodegenerative disease progressions and cognitive deficits has been highlighted, and an emphasis has been placed on the current pharmacological developments with GPCRs to provide an insight into a potential therapeutic target in the treatment of neurodegeneration.
Collapse
Affiliation(s)
- Shofiul Azam
- Department of Applied Life Science & Integrated Bioscience, Graduate School, Konkuk University, Chungju 27478, Korea; (S.A.); (M.E.H.); (M.J.); (S.-H.J.)
| | - Md. Ezazul Haque
- Department of Applied Life Science & Integrated Bioscience, Graduate School, Konkuk University, Chungju 27478, Korea; (S.A.); (M.E.H.); (M.J.); (S.-H.J.)
| | - Md. Jakaria
- Department of Applied Life Science & Integrated Bioscience, Graduate School, Konkuk University, Chungju 27478, Korea; (S.A.); (M.E.H.); (M.J.); (S.-H.J.)
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Song-Hee Jo
- Department of Applied Life Science & Integrated Bioscience, Graduate School, Konkuk University, Chungju 27478, Korea; (S.A.); (M.E.H.); (M.J.); (S.-H.J.)
| | - In-Su Kim
- Department of Integrated Bioscience & Biotechnology, College of Biomedical and Health Science, and Research Institute of Inflammatory Disease (RID), Konkuk University, Chungju 27478, Korea
- Correspondence: (I.-S.K.); (D.-K.C.); Tel.: +82-010-3876-4773 (I.-S.K.); +82-43-840-3610 (D.-K.C.); Fax: +82-43-840-3872 (D.-K.C.)
| | - Dong-Kug Choi
- Department of Applied Life Science & Integrated Bioscience, Graduate School, Konkuk University, Chungju 27478, Korea; (S.A.); (M.E.H.); (M.J.); (S.-H.J.)
- Department of Integrated Bioscience & Biotechnology, College of Biomedical and Health Science, and Research Institute of Inflammatory Disease (RID), Konkuk University, Chungju 27478, Korea
- Correspondence: (I.-S.K.); (D.-K.C.); Tel.: +82-010-3876-4773 (I.-S.K.); +82-43-840-3610 (D.-K.C.); Fax: +82-43-840-3872 (D.-K.C.)
| |
Collapse
|
14
|
Lykhmus O, Kalashnyk O, Uspenska K, Skok M. Positive Allosteric Modulation of Alpha7 Nicotinic Acetylcholine Receptors Transiently Improves Memory but Aggravates Inflammation in LPS-Treated Mice. Front Aging Neurosci 2020; 11:359. [PMID: 31998114 PMCID: PMC6966166 DOI: 10.3389/fnagi.2019.00359] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 12/10/2019] [Indexed: 12/11/2022] Open
Abstract
Neuroinflammation accompanies or even precedes the development of cognitive changes in many brain pathologies, including Alzheimer’s disease. Therefore, dampening inflammatory reactions within the brain is a promising strategy for supporting cognitive functions in elderly people and for preventing the development of neurodegenerative disorders. Nicotinic acetylcholine receptors containing α7 subunits (α7 nAChRs) are involved in regulating cell survival, inflammation, and memory. The aim of our study was to evaluate the efficiency of α7-specific therapy at different stages of inflammation and to compare the effects of orthosteric agonist PNU282987 and type 2 positive allosteric modulator (PAM) PNU120596 in mice after a single injection of lipopolysaccharide (LPS). The data presented demonstrate that PNU282987 protected mice from LPS-induced impairment of episodic memory by decreasing IL-6 levels in the blood, stabilizing the brain mitochondria and up-regulating the brain α7-, α3-, and α4-containing nAChRs. Such treatment was efficient when given simultaneously with LPS or a week after LPS injection and was not efficient if LPS had been injected 2 months before. PNU120596 also decreased IL-6, stabilized mitochondria and up-regulated the brain nAChRs. However, its memory-improving effect was transient and disappeared after the end of the injection cycle. Moreover, cessation of PNU120596 treatment resulted in a sharp increase in IL-1β and IL-6 levels in the blood. It is concluded that activating α7 nAChRs protects the mouse brain from the pathogenic effect of LPS in the early stages of inflammation but is not efficient when irreversible changes have already occurred. The use of a PAM does not improve the effect of the agonist, possibly potentiates the effect of endogenous agonists, and results in undesirable effects after treatment cessation.
Collapse
Affiliation(s)
- Olena Lykhmus
- Immunology of Cellular Receptors, Department of Molecular Immunology, Palladin Institute of Biochemistry, Kyiv, Ukraine
| | - Olena Kalashnyk
- Immunology of Cellular Receptors, Department of Molecular Immunology, Palladin Institute of Biochemistry, Kyiv, Ukraine
| | - Kateryna Uspenska
- Immunology of Cellular Receptors, Department of Molecular Immunology, Palladin Institute of Biochemistry, Kyiv, Ukraine
| | - Maryna Skok
- Immunology of Cellular Receptors, Department of Molecular Immunology, Palladin Institute of Biochemistry, Kyiv, Ukraine
| |
Collapse
|
15
|
Monte AS, da Silva FER, Lima CNDC, Vasconcelos GS, Gomes NS, Miyajima F, Vasconcelos SMM, Gama CS, Seeman MV, de Lucena DF, Macedo DS. Sex influences in the preventive effects of N-acetylcysteine in a two-hit animal model of schizophrenia. J Psychopharmacol 2020; 34:125-136. [PMID: 31556775 DOI: 10.1177/0269881119875979] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND Schizophrenia (SCZ) is a neurodevelopmental disorder influenced by patient sex. Mechanisms underlying sex differences in SCZ remain unknown. A two-hit model of SCZ combines the exposure to perinatal infection (first-hit) with peripubertal unpredictable stress (PUS, second-hit). N-acetylcysteine (NAC) has been tested in SCZ because of the involvement of glutathione mechanisms in its neurobiology. AIMS We aim to investigate whether NAC administration to peripubertal rats of both sexes could prevent behavioral and neurochemical changes induced by the two-hit model. METHODS Wistar rats were exposed to polyinosinic:polycytidylic acid (a viral mimetic) or saline on postnatal days (PND) 5-7. On PND30-59 they received saline or NAC 220 mg/kg and between PND40-48 were subjected to PUS or left undisturbed. On PND60 behavioral and oxidative alterations were evaluated in the prefrontal cortex (PFC) and striatum. Mechanisms of hippocampal memory regulation such as immune expression of G protein-coupled estrogen receptor 1 (GPER), α7-nAChR and parvalbumin were also evaluated. RESULTS NAC prevented sensorimotor gating deficits only in females, while it prevented alterations in social interaction, working memory and locomotor activity in both sexes. Again, in rats of both sexes, NAC prevented the following neurochemical alterations: glutathione (GSH) and nitrite levels in the PFC and lipid peroxidation in the PFC and striatum. Striatal oxidative alterations in GSH and nitrite were observed in females and prevented by NAC. Two-hit induced hippocampal alterations in females, namely expression of GPER-1, α7-nAChR and parvalbumin, were prevented by NAC. CONCLUSION Our results highlights the influences of sex in NAC preventive effects in rats exposed to a two-hit schizophrenia model.
Collapse
Affiliation(s)
- Aline Santos Monte
- Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceara, Fortaleza, CE, Brazil
| | - Francisco Eliclécio Rodrigues da Silva
- Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceara, Fortaleza, CE, Brazil
| | - Camila Nayane de Carvalho Lima
- Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceara, Fortaleza, CE, Brazil
| | - Germana Silva Vasconcelos
- Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceara, Fortaleza, CE, Brazil
| | - Nayana Soares Gomes
- Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceara, Fortaleza, CE, Brazil
| | - Fábio Miyajima
- Fundação Oswaldo Cruz (Fiocruz-CE), Fortaleza, Ceara, Brazil
| | - Silvania Maria Mendes Vasconcelos
- Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceara, Fortaleza, CE, Brazil
| | - Clarissa S Gama
- Laboratory of Molecular Psychiatry, Hospital de Clínicas de Porto Alegre, Programa de Pós-Graduação em Psiquiatria e Ciências do Comportamento, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Mary V Seeman
- Department of Psychiatry, University of Toronto, ON, Canada
| | - David Freitas de Lucena
- Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceara, Fortaleza, CE, Brazil
| | - Danielle S Macedo
- Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceara, Fortaleza, CE, Brazil
- National Institute for Translational Medicine (INCT-TM, CNPq), Ribeirão Preto, SP, Brazil
| |
Collapse
|
16
|
Fakhfouri G, Rahimian R, Dyhrfjeld-Johnsen J, Zirak MR, Beaulieu JM. 5-HT 3 Receptor Antagonists in Neurologic and Neuropsychiatric Disorders: The Iceberg Still Lies beneath the Surface. Pharmacol Rev 2019; 71:383-412. [PMID: 31243157 DOI: 10.1124/pr.118.015487] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
5-HT3 receptor antagonists, first introduced to the market in the mid-1980s, are proven efficient agents to counteract chemotherapy-induced emesis. Nonetheless, recent investigations have shed light on unappreciated dimensions of this class of compounds in conditions with an immunoinflammatory component as well as in neurologic and psychiatric disorders. The promising findings from multiple studies have unveiled several beneficial effects of these compounds in multiple sclerosis, stroke, Alzheimer disease, and Parkinson disease. Reports continue to uncover important roles for 5-HT3 receptors in the physiopathology of neuropsychiatric disorders, including depression, anxiety, drug abuse, and schizophrenia. This review addresses the potential of 5-HT3 receptor antagonists in neurology- and neuropsychiatry-related disorders. The broad therapeutic window and high compliance observed with these agents position them as suitable prototypes for the development of novel pharmacotherapeutics with higher efficacy and fewer adverse effects.
Collapse
Affiliation(s)
- Gohar Fakhfouri
- Department of Psychiatry and Neuroscience, Faculty of Medicine, CERVO Brain Research Centre, Laval University, Quebec, Quebec, Canada (G.F., R.R.); Sensorion SA, Montpellier, France (J.D.-J.); Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran (M.R.Z.); and Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada (J.-M.B.)
| | - Reza Rahimian
- Department of Psychiatry and Neuroscience, Faculty of Medicine, CERVO Brain Research Centre, Laval University, Quebec, Quebec, Canada (G.F., R.R.); Sensorion SA, Montpellier, France (J.D.-J.); Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran (M.R.Z.); and Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada (J.-M.B.)
| | - Jonas Dyhrfjeld-Johnsen
- Department of Psychiatry and Neuroscience, Faculty of Medicine, CERVO Brain Research Centre, Laval University, Quebec, Quebec, Canada (G.F., R.R.); Sensorion SA, Montpellier, France (J.D.-J.); Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran (M.R.Z.); and Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada (J.-M.B.)
| | - Mohammad Reza Zirak
- Department of Psychiatry and Neuroscience, Faculty of Medicine, CERVO Brain Research Centre, Laval University, Quebec, Quebec, Canada (G.F., R.R.); Sensorion SA, Montpellier, France (J.D.-J.); Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran (M.R.Z.); and Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada (J.-M.B.)
| | - Jean-Martin Beaulieu
- Department of Psychiatry and Neuroscience, Faculty of Medicine, CERVO Brain Research Centre, Laval University, Quebec, Quebec, Canada (G.F., R.R.); Sensorion SA, Montpellier, France (J.D.-J.); Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran (M.R.Z.); and Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada (J.-M.B.)
| |
Collapse
|
17
|
Terry AV, Callahan PM. Nicotinic Acetylcholine Receptor Ligands, Cognitive Function, and Preclinical Approaches to Drug Discovery. Nicotine Tob Res 2019; 21:383-394. [PMID: 30137518 PMCID: PMC6379039 DOI: 10.1093/ntr/nty166] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 08/20/2018] [Indexed: 12/15/2022]
Abstract
Interest in nicotinic acetylcholine receptor (nAChR) ligands as potential therapeutic agents for cognitive disorders began more than 30 years ago when it was first demonstrated that the tobacco alkaloid nicotine could improve cognitive function in nicotine-deprived smokers as well as nonsmokers. Numerous animal and human studies now indicate that nicotine and a variety of nAChR ligands have the potential to improve multiple domains of cognition including attention, spatial learning, working memory, recognition memory, and executive function. The purpose of this review is to (1) discuss several pharmacologic strategies that have been developed to enhance nAChR activity (eg, agonist, partial agonist, and positive allosteric modulator) and improve cognitive function, (2) provide a brief overview of some of the more common rodent behavioral tasks with established translational validity that have been used to evaluate nAChR ligands for effects on cognitive function, and (3) briefly discuss some of the topics of debate regarding the development of optimal therapeutic strategies using nAChR ligands. Because of their densities in the mammalian brain and the amount of literature available, the review primarily focuses on ligands of the high-affinity α4β2* nAChR ("*" indicates the possible presence of additional subunits in the complex) and the low-affinity α7 nAChR. The behavioral task discussion focuses on representative methods that have been designed to model specific domains of cognition that are relevant to human neuropsychiatric disorders and often evaluated in human clinical trials. IMPLICATIONS The preclinical literature continues to grow in support of the development of nAChR ligands for a variety of illnesses that affect humans. However, to date, no new nAChR ligand has been approved for any condition other than nicotine dependence. As discussed in this review, the studies conducted to date provide the impetus for continuing efforts to develop new nAChR strategies (ie, beyond simple agonist and partial agonist approaches) as well as to refine current behavioral strategies and create new animal models to address translational gaps in the drug discovery process.
Collapse
Affiliation(s)
- Alvin V Terry
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA
- Small Animal Behavior Core Laboratory, Augusta University, Augusta, GA
| | - Patrick M Callahan
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA
- Small Animal Behavior Core Laboratory, Augusta University, Augusta, GA
| |
Collapse
|
18
|
Papke RL, Peng C, Kumar A, Stokes C. NS6740, an α7 nicotinic acetylcholine receptor silent agonist, disrupts hippocampal synaptic plasticity. Neurosci Lett 2018; 677:6-13. [PMID: 29679680 DOI: 10.1016/j.neulet.2018.04.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 03/29/2018] [Accepted: 04/16/2018] [Indexed: 01/06/2023]
Abstract
Long-term potentiation (LTP) in the dentate gyrus was previously shown to be enhanced by nicotine, an effect dependent on both homomeric α7 and heteromeric α2β2 nicotinic acetylcholine receptors (nAChR). In our experiments, bath-applied nicotine produced no significant enhancement of LTP. The α7 nAChR silent agonist NS6740, a weak activator of α7 nAChR ion channels but an effective modulator of the cholinergic anti-inflammatory pathway, decreased LTP and, additionally, produced a substantial reduction in the baseline synaptic function prior to the high frequency stimulation used to induce LTP. The effects of NS6740 on the various ligand-gated ion channels associated with the generation and modulation of dentate LTP were evaluated with receptors expressed in Xenopus oocytes. A 60 s pre-application of 5 μM NS6740 to α7 receptors blocked the response to subsequent applications of acetylcholine (ACh). In contrast, the responses of α2β2 nAChR to control applications of ACh were not significantly affected by NS6740. Likewise, responses of cells expressing GluR1 + GluR2 AMPA-type glutamate receptor subunits or GABAA α1, β2, and γ2L subunits to control agonist applications (100 μM kainic acid or 10 μM GABA, respectively), were unaffected by NS6740. The effects of NS6740 on α7 were inconsistent with simple antagonism since, while unresponsive to ACh, the receptors exposed to NS6740 were effectively activated by the positive allosteric modulator PNU-120596. The results support the hypothesis that NS6740 switches the mode of α7 signaling in a channel-independent manner that can reduce synaptic function.
Collapse
Affiliation(s)
- Roger L Papke
- Department of Pharmacology and Therapeutics, University of Florida, PO Box 100267, Gainesville, FL 32610, United States.
| | - Can Peng
- Department of Pharmacology and Therapeutics, University of Florida, PO Box 100267, Gainesville, FL 32610, United States
| | - Ashok Kumar
- Department of Neuroscience, University of Florida, PO Box 100244, Gainesville, FL 32610, United States
| | - Clare Stokes
- Department of Pharmacology and Therapeutics, University of Florida, PO Box 100267, Gainesville, FL 32610, United States
| |
Collapse
|
19
|
Bagdas D, Meade JA, Alkhlaif Y, Muldoon PP, Carroll FI, Damaj MI. Effect of nicotine and alpha-7 nicotinic modulators on visceral pain-induced conditioned place aversion in mice. Eur J Pain 2018; 22:10.1002/ejp.1231. [PMID: 29633429 PMCID: PMC6179949 DOI: 10.1002/ejp.1231] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/29/2018] [Indexed: 12/20/2022]
Abstract
BACKGROUND Preclinical assays of affective and sensorial aspects of nociception play a key role in research on both the neurobiology of pain and the development of novel analgesics. Therefore, we investigated the effects of nicotine and alpha-7 nicotinic acetylcholine receptor (nAChR) modulators in the negative affective and sensory components of visceral pain in mice. METHODS AND RESULTS Intraperitoneal acetic acid (AA) administration resulted in a robust stretching behaviour and conditioned place aversion (CPA) in mice. We observed a dose-dependent reduction in AA-induced stretching and CPA by the nonselective nAChRs agonist nicotine. Mecamylamine, a nonselective nAChRs agonist, was able to block its effects; however, hexamethonium, a peripherally restricted nonselective nicotinic antagonist, was able to block nicotine's effect on stretching behaviour but not on CPA. In addition, systemic administration of α7 nAChR full agonists PHA543613 and PNU282987 was failed to block stretching and CPA behaviour induced by AA. However, the α7 nAChR-positive allosteric modulator PNU120596 blocked AA-induced CPA in a dose-dependent manner without reducing stretching behaviours. CONCLUSIONS Our data revealed that while nonselective nAChR activation induces antinociceptive properties on the sensorial and affective signs of visceral pain in mice, α7 nAChRS activation has no effect on these responses. In addition, nonselective nAChR activation-induced antinociceptive effect on stretching behaviour was mediated by central and peripheral mechanisms. However, the effect of nonselective nAChR activation on CPA was mediated centrally. Furthermore, our data suggest a pivotal role of allosteric modulation of α7 nAChRS in the negative affective, but not sensory, component of visceral pain. SIGNIFICANCE The present results suggest that allosteric modulation of α7 nAChR may provide new strategies in affective aspects of nociception.
Collapse
Affiliation(s)
- Deniz Bagdas
- Department of Pharmacology and Toxicology, Medical College of Virginia, Virginia Commonwealth University, Richmond, VA 23298-0613
- The Center for the Study for Tobacco Products, Virginia Commonwealth University, Richmond, VA, USA
| | - Julie A. Meade
- Department of Pharmacology and Toxicology, Medical College of Virginia, Virginia Commonwealth University, Richmond, VA 23298-0613
| | - Yasmin Alkhlaif
- Department of Pharmacology and Toxicology, Medical College of Virginia, Virginia Commonwealth University, Richmond, VA 23298-0613
| | - Pretal P. Muldoon
- Department of Pharmacology and Toxicology, Medical College of Virginia, Virginia Commonwealth University, Richmond, VA 23298-0613
| | - F. Ivy Carroll
- Center for Drug Discovery, Research Triangle Institute, PO Box 12194, Research Triangle Park, NC 27709-2194
| | - M. Imad Damaj
- Department of Pharmacology and Toxicology, Medical College of Virginia, Virginia Commonwealth University, Richmond, VA 23298-0613
| |
Collapse
|
20
|
Geerts H, Spiros A, Roberts P. Impact of amyloid-beta changes on cognitive outcomes in Alzheimer's disease: analysis of clinical trials using a quantitative systems pharmacology model. Alzheimers Res Ther 2018; 10:14. [PMID: 29394903 PMCID: PMC5797372 DOI: 10.1186/s13195-018-0343-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 01/15/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND Despite a tremendous amount of information on the role of amyloid in Alzheimer's disease (AD), almost all clinical trials testing this hypothesis have failed to generate clinically relevant cognitive effects. METHODS We present an advanced mechanism-based and biophysically realistic quantitative systems pharmacology computer model of an Alzheimer-type neuronal cortical network that has been calibrated with Alzheimer Disease Assessment Scale, cognitive subscale (ADAS-Cog) readouts from historical clinical trials and simulated the differential impact of amyloid-beta (Aβ40 and Aβ42) oligomers on glutamate and nicotinic neurotransmission. RESULTS Preclinical data suggest a beneficial effect of shorter Aβ forms within a limited dose range. Such a beneficial effect of Aβ40 on glutamate neurotransmission in human patients is absolutely necessary to reproduce clinical data on the ADAS-Cog in minimal cognitive impairment (MCI) patients with and without amyloid load, the effect of APOE genotype effect on the slope of the cognitive trajectory over time in placebo AD patients and higher sensitivity to cholinergic manipulation with scopolamine associated with higher Aβ in MCI subjects. We further derive a relationship between units of Aβ load in our model and the standard uptake value ratio from amyloid imaging. When introducing the documented clinical pharmacodynamic effects on Aβ levels for various amyloid-related clinical interventions in patients with low Aβ baseline, the platform predicts an overall significant worsening for passive vaccination with solanezumab, beta-secretase inhibitor verubecestat and gamma-secretase inhibitor semagacestat. In contrast, all three interventions improved cognition in subjects with moderate to high baseline Aβ levels, with verubecestat anticipated to have the greatest effect (around ADAS-Cog value 1.5 points), solanezumab the lowest (0.8 ADAS-Cog value points) and semagacestat in between. This could explain the success of many amyloid interventions in transgene animals with an artificial high level of Aβ, but not in AD patients with a large variability of amyloid loads. CONCLUSIONS If these predictions are confirmed in post-hoc analyses of failed clinical amyloid-modulating trials, one should question the rationale behind testing these interventions in early and prodromal subjects with low or zero amyloid load.
Collapse
Affiliation(s)
- Hugo Geerts
- In Silico Biosciences, 686 Westwind Dr, Berwyn, PA, 1312, USA.
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Athan Spiros
- In Silico Biosciences, 686 Westwind Dr, Berwyn, PA, 1312, USA
| | - Patrick Roberts
- In Silico Biosciences, 686 Westwind Dr, Berwyn, PA, 1312, USA
- Amazon AI AWS, Portland, OR, USA
| |
Collapse
|
21
|
Matera C, Dondio G, Braida D, Ponzoni L, De Amici M, Sala M, Dallanoce C. In vivo and in vitro ADMET profiling and in vivo pharmacodynamic investigations of a selective α7 nicotinic acetylcholine receptor agonist with a spirocyclic Δ 2 -isoxazoline molecular skeleton. Eur J Pharmacol 2018; 820:265-273. [DOI: 10.1016/j.ejphar.2017.12.047] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 12/19/2017] [Accepted: 12/20/2017] [Indexed: 10/18/2022]
|
22
|
López-Sánchez N, Fontán-Lozano Á, Pallé A, González-Álvarez V, Rábano A, Trejo JL, Frade JM. Neuronal tetraploidization in the cerebral cortex correlates with reduced cognition in mice and precedes and recapitulates Alzheimer's-associated neuropathology. Neurobiol Aging 2017; 56:50-66. [DOI: 10.1016/j.neurobiolaging.2017.04.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Revised: 03/28/2017] [Accepted: 04/09/2017] [Indexed: 01/14/2023]
|
23
|
Potasiewicz A, Nikiforuk A, Hołuj M, Popik P. Stimulation of nicotinic acetylcholine alpha7 receptors rescue schizophrenia-like cognitive impairments in rats. J Psychopharmacol 2017; 31:260-271. [PMID: 28168926 DOI: 10.1177/0269881116675509] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Alpha7 nicotinic acetylcholine receptor (α7 nAChR) dysfunction plays an important role in schizophrenia. Positive allosteric modulators of α7 nAChR have emerged as a promising therapeutic approach to manage cognitive deficits that are inadequately treated in schizophrenic patients. The aim of the present study was to evaluate the ability of type I (CCMI) and type II (PNU120596) α7 nAChR positive allosteric modulators to counteract MK-801-induced cognitive and sensorimotor gating deficits. The activity of these compounds was compared with the action of the α7 nAChR agonist A582941. CCMI, PNU120596 and A582941 reversed the sensorimotor gating impairment evoked by MK-801 based on the prepulse inhibition of the startle response. Additionally, no MK-801-evoked working memory deficits were observed with α7 nAChR ligand pretreatment as assessed in a discrete paired-trial delayed alternation task. However, these compounds did not affect the rats' attentional performances in the five-choice serial reaction time test. The α7 nAChR agents demonstrated a beneficial effect on sensorimotor gating and some aspects of cognition tested in a rat model of schizophrenia. Therefore, these results support the use of α7 nAChR positive allosteric modulators as a potential treatment strategy in schizophrenia.
Collapse
Affiliation(s)
- Agnieszka Potasiewicz
- 1 Department of Behavioural Neuroscience and Drug Development, Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Agnieszka Nikiforuk
- 1 Department of Behavioural Neuroscience and Drug Development, Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Małgorzata Hołuj
- 1 Department of Behavioural Neuroscience and Drug Development, Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Piotr Popik
- 1 Department of Behavioural Neuroscience and Drug Development, Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland.,2 Faculty of Health Sciences, Jagiellonian University Medical College, Krakow, Poland
| |
Collapse
|
24
|
Kitamura Y, Kanemoto E, Sugimoto M, Machida A, Nakamura Y, Naito N, Kanzaki H, Miyazaki I, Asanuma M, Sendo T. Influence of nicotine on doxorubicin and cyclophosphamide combination treatment-induced spatial cognitive impairment and anxiety-like behavior in rats. Naunyn Schmiedebergs Arch Pharmacol 2017; 390:369-378. [PMID: 28064347 DOI: 10.1007/s00210-016-1338-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 12/29/2016] [Indexed: 01/05/2023]
Abstract
In the present study, we examined the effects of nicotine on cognitive impairment, anxiety-like behavior, and hippocampal cell proliferation in rats treated with a combination of doxorubicin and cyclophosphamide. Combined treatment with doxorubicin and cyclophosphamide produced cognitive impairment and anxiety-like behavior in rats. Nicotine treatment reversed the inhibition of novel location recognition induced by the combination treatment. This effect of nicotine was blocked by methyllycaconitine, a selective α7 nicotinic acetylcholine receptor (nAChR) antagonist, and dihydro-β-erythroidine, a selective α4β2 nAChR antagonist. In addition, nicotine normalized the amount of spontaneous alternation seen during the Y-maze task, which had been reduced by the combination treatment. This effect of nicotine was inhibited by dihydro-β-erythroidine. In comparison, nicotine did not affect the anxiety-like behavior induced by the combination treatment. Furthermore, the combination treatment reduced the number of proliferating cells in the subgranular zone of the hippocampal dentate gyrus, and this was also prevented by nicotine. Finally, the combination of doxorubicin and cyclophosphamide significantly reduced hippocampal α7 nAChR mRNA expression. These results suggest that nicotine inhibits doxorubicin and cyclophosphamide-induced cognitive impairment via α7 nAChR and α4β2 nAChR, and also enhances hippocampal neurogenesis.
Collapse
Affiliation(s)
- Yoshihisa Kitamura
- Department of Clinical Pharmacy; Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho; Kita-ku, Okayama, 700-8558, Japan.
| | - Erika Kanemoto
- Department of Clinical Pharmacy; Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho; Kita-ku, Okayama, 700-8558, Japan
| | - Misaki Sugimoto
- Department of Clinical Pharmacy; Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho; Kita-ku, Okayama, 700-8558, Japan
| | - Ayumi Machida
- Department of Clinical Pharmacy; Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho; Kita-ku, Okayama, 700-8558, Japan
| | - Yuka Nakamura
- Department of Clinical Pharmacy; Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho; Kita-ku, Okayama, 700-8558, Japan
| | - Nanami Naito
- Department of Clinical Pharmacy; Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho; Kita-ku, Okayama, 700-8558, Japan
| | - Hirotaka Kanzaki
- Department of Clinical Pharmacy; Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho; Kita-ku, Okayama, 700-8558, Japan
| | - Ikuko Miyazaki
- Department of Medical Neurobiology; Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho; Kita-ku, Okayama, 700-8558, Japan
| | - Masato Asanuma
- Department of Medical Neurobiology; Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho; Kita-ku, Okayama, 700-8558, Japan
| | - Toshiaki Sendo
- Department of Clinical Pharmacy; Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho; Kita-ku, Okayama, 700-8558, Japan
| |
Collapse
|
25
|
Cholinergic Protection in Ischemic Brain Injury. SPRINGER SERIES IN TRANSLATIONAL STROKE RESEARCH 2017. [DOI: 10.1007/978-3-319-45345-3_17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
26
|
Foucault-Fruchard L, Antier D. Therapeutic potential of α7 nicotinic receptor agonists to regulate neuroinflammation in neurodegenerative diseases. Neural Regen Res 2017; 12:1418-1421. [PMID: 29089979 PMCID: PMC5649454 DOI: 10.4103/1673-5374.215244] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Neurodegenerative diseases, such as Alzheimer's, Parkinson's and Huntington's diseases, are all characterized by a component of innate immunity called neuroinflammation. Neuronal loss and neuroinflammation are two phenomena closely linked. Hence, the neuroinflammation is a relevant target for the management of the neurodegenerative diseases given that, to date, there is no treatment to stop neuronal loss. Several studies have investigated the potential effects of activators of alpha 7 nicotinic acetylcholine receptors in animal models of neurodegenerative diseases. These receptors are widely distributed in the central nervous system. After activation, they seem to mediate the cholinergic anti-inflammatory pathway in the brain. This anti-inflammatory pathway, first described in periphery, regulates activation of microglial cells considered as the resident macrophage population of the central nervous system. In this article, we shortly review the agonists of the alpha 7 nicotinic acetylcholine receptors that have been evaluated in vivo and we focused on the selective positive allosteric modulators of these receptors. These compounds represent a key element to enhance receptor activity only in the presence of the endogenous agonist.
Collapse
Affiliation(s)
- Laura Foucault-Fruchard
- UMR INSERM U930, Université François Rabelais, Tours, France.,CHRU de Tours, Hôpital Bretonneau, Tours, France
| | - Daniel Antier
- UMR INSERM U930, Université François Rabelais, Tours, France.,CHRU de Tours, Hôpital Bretonneau, Tours, France
| |
Collapse
|
27
|
Cook J, Zusi FC, McDonald IM, King D, Hill MD, Iwuagwu C, Mate RA, Fang H, Zhao R, Wang B, Cutrone J, Ma B, Gao Q, Knox RJ, Matchett M, Gallagher L, Ferrante M, Post-Munson D, Molski T, Easton A, Miller R, Jones K, Digavalli S, Healy F, Lentz K, Benitex Y, Clarke W, Natale J, Siuciak JA, Lodge N, Zaczek R, Denton R, Morgan D, Bristow LJ, Macor JE, Olson RE. Design and Synthesis of a New Series of 4-Heteroarylamino-1'-azaspiro[oxazole-5,3'-bicyclo[2.2.2]octanes as α7 Nicotinic Receptor Agonists. 1. Development of Pharmacophore and Early Structure-Activity Relationship. J Med Chem 2016; 59:11171-11181. [PMID: 27958732 DOI: 10.1021/acs.jmedchem.6b01506] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The design and synthesis of a series of quinuclidine-containing spirooxazolidines ("spiroimidates") and their utility as α7 nicotinic acetylcholine receptor partial agonists are described. Selected members of the series demonstrated excellent selectivity for α7 over the highly homologous 5-HT3A receptor. Modification of the N-spiroimidate heterocycle substituent led to (1S,2R,4S)-N-isoquinolin-3-yl)-4'H-4-azaspiro[bicyclo[2.2.2]octane-2,5'oxazol]-2'-amine (BMS-902483), a potent α7 partial agonist, which improved cognition in preclinical rodent models.
Collapse
Affiliation(s)
- James Cook
- Research and Development, Bristol-Myers Squibb , 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - F Christopher Zusi
- Research and Development, Bristol-Myers Squibb , 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Ivar M McDonald
- Research and Development, Bristol-Myers Squibb , 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Dalton King
- Research and Development, Bristol-Myers Squibb , 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Matthew D Hill
- Research and Development, Bristol-Myers Squibb , 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Christiana Iwuagwu
- Research and Development, Bristol-Myers Squibb , 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Robert A Mate
- Research and Development, Bristol-Myers Squibb , 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Haiquan Fang
- Research and Development, Bristol-Myers Squibb , 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Rulin Zhao
- Research and Development, Bristol-Myers Squibb , 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Bei Wang
- Research and Development, Bristol-Myers Squibb , 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Jingfang Cutrone
- Research and Development, Bristol-Myers Squibb , 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Baoqing Ma
- Research and Development, Bristol-Myers Squibb , 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Qi Gao
- Research and Development, Bristol-Myers Squibb , 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Ronald J Knox
- Research and Development, Bristol-Myers Squibb , 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Michele Matchett
- Research and Development, Bristol-Myers Squibb , 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Lizbeth Gallagher
- Research and Development, Bristol-Myers Squibb , 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Meredith Ferrante
- Research and Development, Bristol-Myers Squibb , 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Debra Post-Munson
- Research and Development, Bristol-Myers Squibb , 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Thaddeus Molski
- Research and Development, Bristol-Myers Squibb , 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Amy Easton
- Research and Development, Bristol-Myers Squibb , 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Regina Miller
- Research and Development, Bristol-Myers Squibb , 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Kelli Jones
- Research and Development, Bristol-Myers Squibb , 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Siva Digavalli
- Research and Development, Bristol-Myers Squibb , 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Francine Healy
- Research and Development, Bristol-Myers Squibb , 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Kimberley Lentz
- Research and Development, Bristol-Myers Squibb , 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Yulia Benitex
- Research and Development, Bristol-Myers Squibb , 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Wendy Clarke
- Research and Development, Bristol-Myers Squibb , 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Joanne Natale
- Research and Development, Bristol-Myers Squibb , 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Judith A Siuciak
- Research and Development, Bristol-Myers Squibb , 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Nicholas Lodge
- Research and Development, Bristol-Myers Squibb , 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Robert Zaczek
- Research and Development, Bristol-Myers Squibb , 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Rex Denton
- Research and Development, Bristol-Myers Squibb , 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Daniel Morgan
- Research and Development, Bristol-Myers Squibb , 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Linda J Bristow
- Research and Development, Bristol-Myers Squibb , 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - John E Macor
- Research and Development, Bristol-Myers Squibb , 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Richard E Olson
- Research and Development, Bristol-Myers Squibb , 5 Research Parkway, Wallingford, Connecticut 06492, United States
| |
Collapse
|
28
|
Golli NE, Dallagi Y, Rahali D, Rejeb I, Fazaa SE. Neurobehavioral assessment following e-cigarette refill liquid exposure in adult rats. Toxicol Mech Methods 2016; 26:435-42. [DOI: 10.1080/15376516.2016.1193585] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Narges El Golli
- Department of Biology, Faculty of Sciences, LMBA, El Manar University, Tunis, Tunisia
| | - Yosra Dallagi
- Department of Biology, Faculty of Sciences, LMBA, El Manar University, Tunis, Tunisia
| | - Dalila Rahali
- Department of Biology, Faculty of Sciences, LMBA, El Manar University, Tunis, Tunisia
| | - Ines Rejeb
- Department of Biology, Faculty of Sciences, LMBA, El Manar University, Tunis, Tunisia
| | - Saloua El Fazaa
- Department of Biology, Faculty of Sciences, LMBA, El Manar University, Tunis, Tunisia
| |
Collapse
|
29
|
Parikh V, Kutlu MG, Gould TJ. nAChR dysfunction as a common substrate for schizophrenia and comorbid nicotine addiction: Current trends and perspectives. Schizophr Res 2016; 171:1-15. [PMID: 26803692 PMCID: PMC4762752 DOI: 10.1016/j.schres.2016.01.020] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 01/07/2016] [Accepted: 01/10/2016] [Indexed: 11/18/2022]
Abstract
INTRODUCTION The prevalence of tobacco use in the population with schizophrenia is enormously high. Moreover, nicotine dependence is found to be associated with symptom severity and poor outcome in patients with schizophrenia. The neurobiological mechanisms that explain schizophrenia-nicotine dependence comorbidity are not known. This study systematically reviews the evidence highlighting the contribution of nicotinic acetylcholine receptors (nAChRs) to nicotine abuse in schizophrenia. METHODS Electronic data bases (Medline, Google Scholar, and Web of Science) were searched using the selected key words that match the aims set forth for this review. A total of 276 articles were used for the qualitative synthesis of this review. RESULTS Substantial evidence from preclinical and clinical studies indicated that dysregulation of α7 and β2-subunit containing nAChRs account for the cognitive and affective symptoms of schizophrenia and nicotine use may represent a strategy to remediate these symptoms. Additionally, recent meta-analyses proposed that early tobacco use may itself increase the risk of developing schizophrenia. Genetic studies demonstrating that nAChR dysfunction that may act as a shared vulnerability factor for comorbid tobacco dependence and schizophrenia were found to support this view. The development of nAChR modulators was considered an effective therapeutic strategy to ameliorate psychiatric symptoms and to promote smoking cessation in schizophrenia patients. CONCLUSIONS The relationship between schizophrenia and smoking is complex. While the debate for the self-medication versus addiction vulnerability hypothesis continues, it is widely accepted that a dysfunction in the central nAChRs represent a common substrate for various symptoms of schizophrenia and comorbid nicotine dependence.
Collapse
Affiliation(s)
- Vinay Parikh
- Department of Psychology and Neuroscience Program, Temple University, Philadelphia, PA 19112, United States.
| | - Munir Gunes Kutlu
- Department of Psychology and Neuroscience Program, Temple University, Philadelphia, PA 19112, United States
| | - Thomas J Gould
- Department of Psychology and Neuroscience Program, Temple University, Philadelphia, PA 19112, United States
| |
Collapse
|
30
|
Sadigh-Eteghad S, Mahmoudi J, Babri S, Talebi M. Effect of alpha-7 nicotinic acetylcholine receptor activation on beta-amyloid induced recognition memory impairment. Possible role of neurovascular function. Acta Cir Bras 2015; 30:736-42. [DOI: 10.1590/s0102-865020150110000003] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 10/05/2015] [Indexed: 11/22/2022] Open
|
31
|
Medial prefrontal cortex role in recognition memory in rodents. Behav Brain Res 2015; 292:241-51. [DOI: 10.1016/j.bbr.2015.06.030] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 06/17/2015] [Accepted: 06/19/2015] [Indexed: 11/18/2022]
|
32
|
Sadigh-Eteghad S, Talebi M, Mahmoudi J, Babri S, Shanehbandi D. Selective activation of α7 nicotinic acetylcholine receptor by PHA-543613 improves Aβ25–35-mediated cognitive deficits in mice. Neuroscience 2015; 298:81-93. [DOI: 10.1016/j.neuroscience.2015.04.017] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Revised: 04/07/2015] [Accepted: 04/08/2015] [Indexed: 12/22/2022]
|
33
|
Hall FS, Der-Avakian A, Gould TJ, Markou A, Shoaib M, Young JW. Negative affective states and cognitive impairments in nicotine dependence. Neurosci Biobehav Rev 2015; 58:168-85. [PMID: 26054790 DOI: 10.1016/j.neubiorev.2015.06.004] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 02/13/2015] [Accepted: 06/03/2015] [Indexed: 10/23/2022]
Abstract
Smokers have substantial individual differences in quit success in response to current treatments for nicotine dependence. This observation may suggest that different underlying motivations for continued tobacco use across individuals and nicotine cessation may require different treatments in different individuals. Although most animal models of nicotine dependence emphasize the positive reinforcing effects of nicotine as the major motivational force behind nicotine use, smokers generally report that other consequences of nicotine use, including the ability of nicotine to alleviate negative affective states or cognitive impairments, as reasons for continued smoking. These states could result from nicotine withdrawal, but also may be associated with premorbid differences in affective and/or cognitive function. Effects of nicotine on cognition and affect may alleviate these impairments regardless of their premorbid or postmorbid origin (e.g., before or after the development of nicotine dependence). The ability of nicotine to alleviate these symptoms would thus negatively reinforce behavior, and thus maintain subsequent nicotine use, contributing to the initiation of smoking, the progression to dependence and relapse during quit attempts. The human and animal studies reviewed here support the idea that self-medication for pre-morbid and withdrawal-induced impairments may be more important factors in nicotine addiction and relapse than has been previously appreciated in preclinical research into nicotine dependence. Given the diverse beneficial effects of nicotine under these conditions, individuals might smoke for quite different reasons. This review suggests that inter-individual differences in the diverse effects of nicotine associated with self-medication and negative reinforcement are an important consideration in studies attempting to understand the causes of nicotine addiction, as well as in the development of effective, individualized nicotine cessation treatments.
Collapse
Affiliation(s)
- F Scott Hall
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, USA.
| | - Andre Der-Avakian
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Thomas J Gould
- Department of Psychology, Temple University, Philadelphia, PA, USA
| | - Athina Markou
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Mohammed Shoaib
- Institute of Neuroscience, Newcastle University, Newcastle, UK
| | - Jared W Young
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA; Research Service, VA San Diego Healthcare System, San Diego, CA, USA
| |
Collapse
|
34
|
Arunrungvichian K, Boonyarat C, Fokin VV, Taylor P, Vajragupta O. Cognitive Improvements in a Mouse Model with Substituted 1,2,3-Triazole Agonists for Nicotinic Acetylcholine Receptors. ACS Chem Neurosci 2015; 6:1331-40. [DOI: 10.1021/acschemneuro.5b00059] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Affiliation(s)
- Kuntarat Arunrungvichian
- Center
of Excellence for Innovation in Drug Design and Discovery, Faculty
of Pharmacy, Mahidol University, 447 Sri-Ayudhya Road, Bangkok 10400, Thailand
| | - Chantana Boonyarat
- Department
of Pharmaceutical Chemistry, Faculty of Pharmaceutical Science, KhonKaen University, 123 Muang, KhonKaen 40002, Thailand
| | - Valery V. Fokin
- Department
of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Palmer Taylor
- Department
of Pharmacology, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0650, United States
| | - Opa Vajragupta
- Center
of Excellence for Innovation in Drug Design and Discovery, Faculty
of Pharmacy, Mahidol University, 447 Sri-Ayudhya Road, Bangkok 10400, Thailand
| |
Collapse
|
35
|
Shanmugasundaram B, Sase A, Miklosi AG, Sialana FJ, Subramaniyan S, Aher YD, Gröger M, Höger H, Bennett KL, Lubec G. Frontal cortex and hippocampus neurotransmitter receptor complex level parallels spatial memory performance in the radial arm maze. Behav Brain Res 2015; 289:157-68. [PMID: 25930220 DOI: 10.1016/j.bbr.2015.04.043] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 04/21/2015] [Accepted: 04/23/2015] [Indexed: 12/14/2022]
Abstract
Several neurotransmitter receptors have been proposed to be involved in memory formation. However, information on receptor complexes (RCs) in the radial arm maze (RAM) is missing. It was therefore the aim of this study to determine major neurotransmitter RCs levels that are modulated by RAM training because receptors are known to work in homo-or heteromeric assemblies. Immediate early gene Arc expression was determined by immunohistochemistry to show if prefrontal cortices (PFC) and hippocampi were activated following RAM training as these regions are known to be mainly implicated in spatial memory. Twelve rats per group, trained and untrained in the twelve arm RAM were used, frontal cortices and hippocampi were taken, RCs in membrane protein were quantified by blue-native PAGE immunoblotting. RCs components were characterised by co-immunoprecipitation followed by mass spectrometrical analysis and by the use of the proximity ligation assay. Arc expression was significantly higher in PFC of trained as compared to untrained rats whereas it was comparable in hippocampi. Frontal cortical levels of RCs containing AMPA receptors GluA1, GluA2, NMDA receptors GluN1 and GluN2A, dopamine receptor D1, acetylcholine nicotinic receptor alpha 7 (nAChR-α7) and hippocampal levels of RCs containing D1, GluN1, GluN2B and nAChR-α7 were increased in the trained group; phosphorylated dopamine transporter levels were decreased in the trained group. D1 and GluN1 receptors were shown to be in the same complex. Taken together, distinct RCs were paralleling performance in the RAM which is relevant for interpretation of previous and design of future work on RCs in memory studies.
Collapse
Affiliation(s)
| | - Ajinkya Sase
- Department of Pediatrics, Medical University of Vienna, Währinger Gürtel 18, 1090 Vienna, Austria
| | - András G Miklosi
- Department of Pediatrics, Medical University of Vienna, Währinger Gürtel 18, 1090 Vienna, Austria
| | - Fernando J Sialana
- Department of Pediatrics, Medical University of Vienna, Währinger Gürtel 18, 1090 Vienna, Austria; CeMM Research Center for Molecular Medicine of the Austrian Academy of Science, Lazarettgasse 14, AKH BT 25.3, A-1090 Vienna, Austria
| | - Saraswathi Subramaniyan
- Department of Pediatrics, Medical University of Vienna, Währinger Gürtel 18, 1090 Vienna, Austria
| | - Yogesh D Aher
- Department of Pediatrics, Medical University of Vienna, Währinger Gürtel 18, 1090 Vienna, Austria
| | - Marion Gröger
- Core Facility, Medical University of Vienna, Lazarettegasse 14, A-1090 Vienna, Austria
| | - Harald Höger
- Core Unit of Biomedical Research, Division of Laboratory Animal Science and Genetics, Medical University of Vienna, Brauhausgasse 34, A-2325 Himberg, Austria
| | - Keiryn L Bennett
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Science, Lazarettgasse 14, AKH BT 25.3, A-1090 Vienna, Austria
| | - Gert Lubec
- Department of Pediatrics, Medical University of Vienna, Währinger Gürtel 18, 1090 Vienna, Austria.
| |
Collapse
|
36
|
Tian S, Pan S, You Y. Nicotine enhances the reconsolidation of novel object recognition memory in rats. Pharmacol Biochem Behav 2015; 129:14-8. [DOI: 10.1016/j.pbb.2014.11.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 11/24/2014] [Accepted: 11/29/2014] [Indexed: 12/23/2022]
|
37
|
Ménard C, Gaudreau P, Quirion R. Signaling pathways relevant to cognition-enhancing drug targets. Handb Exp Pharmacol 2015; 228:59-98. [PMID: 25977080 DOI: 10.1007/978-3-319-16522-6_3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Aging is generally associated with a certain cognitive decline. However, individual differences exist. While age-related memory deficits can be observed in humans and rodents in the absence of pathological conditions, some individuals maintain intact cognitive functions up to an advanced age. The mechanisms underlying learning and memory processes involve the recruitment of multiple signaling pathways and gene expression, leading to adaptative neuronal plasticity and long-lasting changes in brain circuitry. This chapter summarizes the current understanding of how these signaling cascades could be modulated by cognition-enhancing agents favoring memory formation and successful aging. It focuses on data obtained in rodents, particularly in the rat as it is the most common animal model studied in this field. First, we will discuss the role of the excitatory neurotransmitter glutamate and its receptors, downstream signaling effectors [e.g., calcium/calmodulin-dependent protein kinase II (CaMKII), protein kinase C (PKC), extracellular signal-regulated kinases (ERK), mammalian target of rapamycin (mTOR), cAMP response element-binding protein (CREB)], associated immediate early gene (e.g., Homer 1a, Arc and Zif268), and growth factors [insulin-like growth factors (IGFs) and brain-derived neurotrophic factor (BDNF)] in synaptic plasticity and memory formation. Second, the impact of the cholinergic system and related modulators on memory will be briefly reviewed. Finally, since dynorphin neuropeptides have recently been associated with memory impairments in aging, it is proposed as an attractive target to develop novel cognition-enhancing agents.
Collapse
Affiliation(s)
- Caroline Ménard
- Douglas Mental Health University Institute, McGill University, Perry Pavilion, 6875 LaSalle Boulevard, Montreal, QC, Canada, H4H 1R3
| | | | | |
Collapse
|
38
|
Fan H, Gu R, Wei D. The α7 nAChR selective agonists as drug candidates for Alzheimer's disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 827:353-65. [PMID: 25387975 DOI: 10.1007/978-94-017-9245-5_21] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The nicotinic acetylcholine receptors (nAChRs) are ion channels distribute in the central or peripheral nervous system. They are receptors of the neurotransmitter acetylcholine and activation of them by agonists mediates synaptic transmission in the neuron and muscle contraction in the neuromuscular junction. Current studies reveal relationship between the nAChRs and the learning and memory as well as cognation deficit in various neurological disorders such as Alzheimer's disease, Parkinson's disease, schizophrenia and drug addiction. There are various subtypes in the nAChR family and the α7 nAChR is one of the most abundant subtypes in the brain. The α7 nAChR is significantly reduced in the patients of Alzheimer's disease and is believed to interact with the Aβ amyloid. Aβ amyloid is co-localized with α7 nAChR in the senile plaque and interaction between them induces neuron apoptosis and reduction of the α7 nAChR expression. Treatment with α7 agonist in vivo shows its neuron protective and procognation properties and significantly improves the learning and memory ability of the animal models. Therefore, the α7 nAChR agonists are excellent drug candidates for Alzheimer's disease and we summarized here the current agonists that have selectivity of the α7 nAChR over the other nAChR, introduced recent molecular modeling works trying to explain the molecular mechanism of their selectivity and described the design of novel allosteric modulators in our lab.
Collapse
Affiliation(s)
- Huaimeng Fan
- State Key Laboratory of Microbial Metabolism, College of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | | | | |
Collapse
|
39
|
The novel α7 nicotinic acetylcholine receptor agonist EVP-6124 enhances dopamine, acetylcholine, and glutamate efflux in rat cortex and nucleus accumbens. Psychopharmacology (Berl) 2014; 231:4541-51. [PMID: 24810107 DOI: 10.1007/s00213-014-3596-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Accepted: 04/20/2014] [Indexed: 10/25/2022]
Abstract
BACKGROUND Alpha7 and α4β2 nicotinic acetylcholine receptor (nAChR) agonists have been shown to improve cognition in various animal models of cognitive impairment and are of interest as treatments for schizophrenia, Alzheimer's disease, and other cognitive disorders. Increased release of dopamine (DA), acetylcholine (ACh), glutamate (Glu), and γ-aminobutyric acid (GABA) in cerebral cortex, hippocampus, and nucleus accumbens (NAC) has been suggested to contribute to their beneficial effects on cognition. RESULTS Using in vivo microdialysis, we found that EVP-6124 [(R)-7-chloro-N-quinuclidin-3-yl)benzo[b]thiophene-2-carboxamide], a high-affinity α7 nAChR partial agonist, at 0.1 mg/kg, s.c., increased DA efflux in the medial prefrontal cortex (mPFC) and NAC. EVP-6124, 0.1 and 0.3 mg/kg, also increased efflux of ACh in the mPFC but not in the NAC. Similarly, EVP-6124, 0.1 mg/kg, but not 0.03 and 0.3 mg/kg, significantly increased mPFC Glu efflux. Thus, EVP-6124 produced an inverted U-shaped curve for DA and Glu release, as previously reported for other α7 nAChR agonists. The three doses of EVP-6124 did not produce a significant effect on GABA efflux in either region. Pretreatment with the selective α7 nAChR antagonist, methyllycaconitine (MLA, 1.0 mg/kg), significantly blocked cortical DA and Glu efflux induced by EVP-6124 (0.1 mg/kg), suggesting that the effects of EVP-6124 on these neurotransmitters were due to α7 nAChR agonism. MLA only partially blocked the effects of EVP-6124 on ACh efflux in the mPFC. CONCLUSION These results suggest increased cortical DA, ACh, and Glu release, which may contribute to the ability of the α7 nAChR agonist, EVP-6124, to treat cognitive impairment and possibly other dimensions of psychopathology.
Collapse
|
40
|
Burke DA, Heshmati P, Kholdebarin E, Levin ED. Decreasing nicotinic receptor activity and the spatial learning impairment caused by the NMDA glutamate antagonist dizocilpine in rats. Eur J Pharmacol 2014; 741:132-9. [PMID: 25064338 PMCID: PMC4184962 DOI: 10.1016/j.ejphar.2014.07.030] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 07/15/2014] [Accepted: 07/16/2014] [Indexed: 12/12/2022]
Abstract
Nicotinic systems have been shown by a variety of studies to be involved in cognitive function. Nicotinic receptors have an inherent property to become desensitized after activation. The relative role of nicotinic receptor activation vs. net receptor inactivation by desensitization in the cognitive effects of nicotinic drugs remains to be fully understood. In these studies, we tested the effects of the α7 nicotinic receptor antagonist methyllycaconitine (MLA), the α4β2 nicotinic receptor antagonist dihydro-β-erythroidine (DHβE), the nonspecific nicotinic channel blocker mecamylamine and the α4β2 nicotinic receptor desensitizing agent sazetidine-A on learning in a repeated acquisition test. Adult female Sprague-Dawley rats were trained on a repeated acquisition learning procedure in an 8-arm radial maze. MLA (1-4mg/kg), DHβE (1-4mg/kg), mecamylamine (0.125-0.5mg/kg) or sazetidine-A (1 and 3mg/kg) were administered in four different studies either alone or together with the NMDA glutamate antagonist dizocilpine (0.05 and 0.10mg/kg). MLA significantly counteracted the learning impairment caused by dizocilpine. The overall choice accuracy impairment caused by dizocilpine was significantly attenuated by co-administration of DHβE. Low doses of the non-specific nicotinic antagonist mecamylamine also reduced dizocilpine-induced repeated acquisition impairment. Sazetidine-A reversed the accuracy impairment caused by dizocilpine. These studies provide evidence that a net decrease in nicotinic receptor activity can improve learning by attenuating learning impairment induced by NMDA glutamate blockade. This adds to evidence in cognitive tests that nicotinic antagonists can improve cognitive function. Further research characterizing the efficacy and mechanisms underlying nicotinic antagonist and desensitization induced cognitive improvement is warranted.
Collapse
|
41
|
Andriambeloson E, Huyard B, Poiraud E, Wagner S. Methyllycaconitine- and scopolamine-induced cognitive dysfunction: differential reversal effect by cognition-enhancing drugs. Pharmacol Res Perspect 2014; 2:e00048. [PMID: 25505596 PMCID: PMC4186438 DOI: 10.1002/prp2.48] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 03/26/2014] [Indexed: 12/14/2022] Open
Abstract
There is a growing body of evidence pointing to the pivotal role of alpha-7 nicotinic acetylcholine receptor (α7 nAchR) dysfunction in cognitive disorders such as Alzheimer’s disease or schizophrenia. This study was undertaken to establish and characterize an in vivo model for cognitive disorder secondary to the blockade of α7 nAChR by its specific antagonist, methyllycaconitine (MLA). The results show that MLA elicited cognitive dysfunction as assessed by reduced spontaneous alternation of mice in the T-maze. The maximal effect of MLA produced 25–30% reduction in the spontaneous alternation of mice, a level comparable with that induced by the muscarinic antagonism of scopolamine. Donepezil and galantamine fully reversed both MLA and scopolamine-induced cognitive dysfunction. However, the ED50 of donepezil and galantamine was significantly shifted to the left in the MLA- compared to scopolamine-treated mice (0.0005 and 0.002 mg/kg for donepezil; 0.0003 and 0.7 mg/kg for galantamine). Moreover, memantine elicited marked reversion of cognitive dysfunction (up to 70%) in MLA-treated mice while only a weak reversal effect at high dose of memantine (less than 20%) was observed in scopolamine-treated mice. The above findings indicate that MLA-induced cognitive dysfunction in the mouse is highly sensitive and more responsive to the current procognitive drugs than the traditional scopolamine-based assay. Thus, it can be of value for the preclinical screening and profiling of cognition-enhancing drugs.
Collapse
Affiliation(s)
- Emile Andriambeloson
- Neurofit SAS boulevard Sébastien Brant, Bioparc Parc d'Innovation, 674.00, Illkirch, France
| | - Bertrand Huyard
- Neurofit SAS boulevard Sébastien Brant, Bioparc Parc d'Innovation, 674.00, Illkirch, France
| | - Etienne Poiraud
- Neurofit SAS boulevard Sébastien Brant, Bioparc Parc d'Innovation, 674.00, Illkirch, France
| | - Stéphanie Wagner
- Neurofit SAS boulevard Sébastien Brant, Bioparc Parc d'Innovation, 674.00, Illkirch, France
| |
Collapse
|
42
|
Microwave-assisted parallel synthesis of benzofuran-2-carboxamide derivatives bearing anti-inflammatory, analgesic and antipyretic agents. Tetrahedron Lett 2014. [DOI: 10.1016/j.tetlet.2014.02.116] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
43
|
Anderson G, Berk M, Maes M. Biological phenotypes underpin the physio-somatic symptoms of somatization, depression, and chronic fatigue syndrome. Acta Psychiatr Scand 2014; 129:83-97. [PMID: 23952563 DOI: 10.1111/acps.12182] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/19/2013] [Indexed: 12/26/2022]
Abstract
OBJECTIVE Somatization is a symptom cluster characterized by 'psychosomatic' symptoms, that is, medically unexplained symptoms, and is a common component of other conditions, including depression and myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). This article reviews the data regarding the pathophysiological foundations of 'psychosomatic' symptoms and the implications that this has for conceptualization of what may more appropriately be termed physio-somatic symptoms. METHOD This narrative review used papers published in PubMed, Scopus, and Google Scholar electronic databases using the keywords: depression and chronic fatigue, depression and somatization, somatization and chronic fatigue syndrome, each combined with inflammation, inflammatory, tryptophan, and cell-mediated immune (CMI). RESULTS The physio-somatic symptoms of depression, ME/CFS, and somatization are associated with specific biomarkers of inflammation and CMI activation, which are correlated with, and causally linked to, changes in the tryptophan catabolite (TRYCAT) pathway. Oxidative and nitrosative stress induces damage that increases neoepitopes and autoimmunity that contribute to the immuno-inflammatory processes. These pathways are all known to cause physio-somatic symptoms, including fatigue, malaise, autonomic symptoms, hyperalgesia, intestinal hypermotility, peripheral neuropathy, etc. CONCLUSION Biological underpinnings, such as immune-inflammatory pathways, may explain, at least in part, the occurrence of physio-somatic symptoms in depression, somatization, or myalgic encephalomyelitis/chronic fatigue syndrome and thus the clinical overlap among these disorders.
Collapse
|
44
|
Pidoplichko VI, Prager EM, Aroniadou-Anderjaska V, Braga MFM. α7-Containing nicotinic acetylcholine receptors on interneurons of the basolateral amygdala and their role in the regulation of the network excitability. J Neurophysiol 2013; 110:2358-69. [PMID: 24004528 DOI: 10.1152/jn.01030.2012] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The basolateral amygdala (BLA) plays a key role in fear-related learning and memory, in the modulation of cognitive functions, and in the overall regulation of emotional behavior. Pathophysiological alterations involving hyperexcitability in this brain region underlie anxiety and other emotional disorders as well as some forms of epilepsy. GABAergic interneurons exert a tight inhibitory control over the BLA network; understanding the mechanisms that regulate their activity is necessary for understanding physiological and disordered BLA functions. The BLA receives dense cholinergic input from the basal forebrain, affecting both normal functions and dysfunctions of the amygdala, but the mechanisms involved in the cholinergic regulation of inhibitory activity in the BLA are unclear. Using whole cell recordings in rat amygdala slices, here we demonstrate that the α(7)-containing nicotinic acetylcholine receptors (α(7)-nAChRs) are present on somatic or somatodendritic regions of BLA interneurons. These receptors are active in the basal state enhancing GABAergic inhibition, and their further, exogenous activation produces a transient but dramatic increase of spontaneous inhibitory postsynaptic currents in principal BLA neurons. In the absence of AMPA/kainate receptor antagonists, activation of α(7)-nAChRs in the BLA network increases both GABAergic and glutamatergic spontaneous currents in BLA principal cells, but the inhibitory currents are enhanced significantly more than the excitatory currents, reducing overall excitability. The anxiolytic effects of nicotine as well as the role of the α(7)-nAChRs in seizure activity involving the amygdala and in mental illnesses, such as schizophrenia and Alzheimer's disease, may be better understood in light of the present findings.
Collapse
Affiliation(s)
- Volodymyr I Pidoplichko
- Department of Anatomy, Physiology, and Genetics, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | | | | | | |
Collapse
|
45
|
Sun F, Jin K, Uteshev VV. A type-II positive allosteric modulator of α7 nAChRs reduces brain injury and improves neurological function after focal cerebral ischemia in rats. PLoS One 2013; 8:e73581. [PMID: 23951360 PMCID: PMC3739732 DOI: 10.1371/journal.pone.0073581] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Accepted: 07/26/2013] [Indexed: 11/19/2022] Open
Abstract
In the absence of clinically-efficacious therapies for ischemic stroke there is a critical need for development of new therapeutic concepts and approaches for prevention of brain injury secondary to cerebral ischemia. This study tests the hypothesis that administration of PNU-120596, a type-II positive allosteric modulator (PAM-II) of α7 nicotinic acetylcholine receptors (nAChRs), as long as 6 hours after the onset of focal cerebral ischemia significantly reduces brain injury and neurological deficits in an animal model of ischemic stroke. Focal cerebral ischemia was induced by a transient (90 min) middle cerebral artery occlusion (MCAO). Animals were then subdivided into two groups and injected intravenously (i.v.) 6 hours post-MCAO with either 1 mg/kg PNU-120596 (treated group) or vehicle only (untreated group). Measurements of cerebral infarct volumes and neurological behavioral tests were performed 24 hrs post-MCAO. PNU-120596 significantly reduced cerebral infarct volume and improved neurological function as evidenced by the results of Bederson, rolling cylinder and ladder rung walking tests. These results forecast a high therapeutic potential for PAMs-II as effective recruiters and activators of endogenous α7 nAChR-dependent cholinergic pathways to reduce brain injury and improve neurological function after cerebral ischemic stroke.
Collapse
Affiliation(s)
- Fen Sun
- University of North Texas Health Science Center, Department of Pharmacology and Neuroscience, Fort Worth, TX, United States of America
| | - Kunlin Jin
- University of North Texas Health Science Center, Department of Pharmacology and Neuroscience, Fort Worth, TX, United States of America
| | - Victor V. Uteshev
- University of North Texas Health Science Center, Department of Pharmacology and Neuroscience, Fort Worth, TX, United States of America
- * E-mail:
| |
Collapse
|
46
|
PDE2 and PDE10, but not PDE5, inhibition affect basic auditory information processing in rats. Behav Brain Res 2013; 250:251-6. [DOI: 10.1016/j.bbr.2013.05.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 05/06/2013] [Accepted: 05/07/2013] [Indexed: 01/08/2023]
|
47
|
Pandya AA, Yakel JL. Activation of the α7 nicotinic ACh receptor induces anxiogenic effects in rats which is blocked by a 5-HT₁a receptor antagonist. Neuropharmacology 2013; 70:35-42. [PMID: 23321689 PMCID: PMC3640667 DOI: 10.1016/j.neuropharm.2013.01.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Revised: 12/19/2012] [Accepted: 01/06/2013] [Indexed: 12/13/2022]
Abstract
The α7 nicotinic acetylcholine receptor (nAChR) is highly expressed in different regions of the brain and is associated with cognitive function as well as anxiety. Agonists and positive allosteric modulators (PAMs) of the α7 subtype of nAChRs have been shown to improve cognition. Previously nicotine, which activates both α7 and non-α7 subtypes of nAChRs, has been shown to have an anxiogenic effect in behavioral tests. In this study, we compared the effects of the α7-selective agonist (PNU-282987) and PAM (PNU-120596) in a variety of behavioral tests in Sprague Dawley rats to look at their effects on learning and memory as well as anxiety. We found that neither PNU-282987 nor PNU-120596 improved spatial-learning or episodic memory by themselves. However when cognitive impairment was induced in the rats with scopolamine (1 mg/kg), both PNU-120596 and PNU-282987 were able to reverse this memory impairment and restore it back to normal levels. While PNU-120596 reversed the scopolamine-induced cognitive impairment, it did not have any adverse effect on anxiety. PNU-282987 on the other hand displayed an increase in anxiety-like behavior at a higher dose (10 mg/kg) that was significantly reduced by the serotonin 5-HT₁a receptor antagonist WAY-100135. However the α7 receptor antagonist methyllycaconitine was unable to reverse these anxiety-like effects seen with PNU-282987. These results suggest that α7 nAChR PAMs are pharmacologically advantageous over agonists, and should be considered for further development as therapeutic drugs targeting the α7 receptors.
Collapse
Affiliation(s)
- Anshul A Pandya
- Laboratory of Neurobiology, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, MD F2-08, PO Box 12233, NC 27709, USA.
| | | |
Collapse
|
48
|
Boess FG, de Vry J, Erb C, Flessner T, Hendrix M, Luithle J, Methfessel C, Schnizler K, van der Staay FJ, van Kampen M, Wiese WB, König G. Pharmacological and behavioral profile of N-[(3R)-1-azabicyclo[2.2.2]oct-3-yl]-6-chinolincarboxamide (EVP-5141), a novel α7 nicotinic acetylcholine receptor agonist/serotonin 5-HT3 receptor antagonist. Psychopharmacology (Berl) 2013; 227:1-17. [PMID: 23241647 DOI: 10.1007/s00213-012-2933-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Accepted: 11/22/2012] [Indexed: 02/06/2023]
Abstract
RATIONALE AND OBJECTIVE Agonists of α7 nicotinic acetylcholine receptors (nAChRs) may have therapeutic potential for the treatment of cognitive deficits. This study describes the in vitro pharmacology of the novel α7 nAChR agonist/serotonin 5-HT3 receptor (5-HT3R) antagonist N-[(3R)-1-azabicyclo[2.2.2]oct-3-yl]-6-chinolincarboxamide (EVP-5141) and its behavioral effects. RESULTS EVP-5141 bound to α7 nAChRs in rat brain membranes (K i = 270 nM) and to recombinant human serotonin 5-HT3Rs (K i = 880 nM) but had low affinity for α4β2 nAChRs (K i > 100 μM). EVP-5141 was a potent agonist at recombinant rat and human α7 nAChRs expressed in Xenopus oocytes. EVP-5141 acted as 5-HT3R antagonist but did not block α3β4, α4β2, and muscle nAChRs. Rats trained to discriminate nicotine from vehicle did not generalize to EVP-5141 (0.3-30 mg kg(-1), p.o.), suggesting that the nicotine cue is not mediated by the α7 nAChR and that EVP-5141 may not share the abuse liability of nicotine. EVP-5141 (0.3-3 mg kg(-1)) improved performance in the rat social recognition test. EVP-5141 (0.3 mg kg(-1), p.o.) ameliorated scopolamine-induced retention deficits in the passive avoidance task in rats. EVP-5141 (1 mg kg(-1), i.p.) improved spatial working memory of aged (26- to 32-month-old) rats in a water maze repeated acquisition task. In addition, EVP-5141 improved both object and social recognition memory in mice (0.3 mg kg(-1), p.o.). CONCLUSIONS EVP-5141 improved performance in several learning and memory tests in both rats and mice, supporting the hypothesis that α7 nAChR agonists may provide a novel therapeutic strategy for the treatment of cognitive deficits in Alzheimer's disease or schizophrenia.
Collapse
Affiliation(s)
- Frank G Boess
- Pharma Research CNS, Bayer Healthcare AG, 42096, Wuppertal, Germany.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Virtual screening for alpha7 nicotinic acetylcholine receptor for treatment of Alzheimer's disease. J Mol Graph Model 2013; 39:98-107. [DOI: 10.1016/j.jmgm.2012.11.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Revised: 11/19/2012] [Accepted: 11/20/2012] [Indexed: 11/18/2022]
|
50
|
Jacklin DL, Goel A, Clementino KJ, Hall AWM, Talpos JC, Winters BD. Severe cross-modal object recognition deficits in rats treated sub-chronically with NMDA receptor antagonists are reversed by systemic nicotine: implications for abnormal multisensory integration in schizophrenia. Neuropsychopharmacology 2012; 37:2322-31. [PMID: 22669170 PMCID: PMC3422496 DOI: 10.1038/npp.2012.84] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Schizophrenia is a complex and debilitating disorder, characterized by positive, negative, and cognitive symptoms. Among the cognitive deficits observed in patients with schizophrenia, recent work has indicated abnormalities in multisensory integration, a process that is important for the formation of comprehensive environmental percepts and for the appropriate guidance of behavior. Very little is known about the neural bases of such multisensory integration deficits, partly because of the lack of viable behavioral tasks to assess this process in animal models. In this study, we used our recently developed rodent cross-modal object recognition (CMOR) task to investigate multisensory integration functions in rats treated sub-chronically with one of two N-methyl-D-aspartate receptor (NMDAR) antagonists, MK-801, or ketamine; such treatment is known to produce schizophrenia-like symptoms. Rats treated with the NMDAR antagonists were impaired on the standard spontaneous object recognition (SOR) task, unimodal (tactile or visual only) versions of SOR, and the CMOR task with intermediate to long retention delays between acquisition and testing phases, but they displayed a selective CMOR task deficit when mnemonic demand was minimized. This selective impairment in multisensory information processing was dose-dependently reversed by acute systemic administration of nicotine. These findings suggest that persistent NMDAR hypofunction may contribute to the multisensory integration deficits observed in patients with schizophrenia and highlight the valuable potential of the CMOR task to facilitate further systematic investigation of the neural bases of, and potential treatments for, this hitherto overlooked aspect of cognitive dysfunction in schizophrenia.
Collapse
Affiliation(s)
- Derek L Jacklin
- Department of Psychology and Collaborative Neuroscience Program, University of Guelph, Guelph, ON, Canada
| | - Amit Goel
- Department of Psychology and Collaborative Neuroscience Program, University of Guelph, Guelph, ON, Canada
| | - Kyle J Clementino
- Department of Psychology and Collaborative Neuroscience Program, University of Guelph, Guelph, ON, Canada
| | - Alexander W M Hall
- Department of Psychology and Collaborative Neuroscience Program, University of Guelph, Guelph, ON, Canada
| | - John C Talpos
- Translational Research, Janssen Pharmaceutical Companies of Johnson & Johnson, Beerse, Belgium
| | - Boyer D Winters
- Department of Psychology and Collaborative Neuroscience Program, University of Guelph, Guelph, ON, Canada,Department of Psychology, University of Guelph, Guelph, ON, Canada N1G 2W1, Tel: +519 824 4120 (52163), Fax: +519 837 8629, E-mail:
| |
Collapse
|