1
|
Barghi Lish A, Foroumadi A, Kolvari E, Safari F. Synthesis and Biological Evaluation of 12-Aryl-11-hydroxy-5,6-dihydropyrrolo[2″,1″:3',4']pyrazino[1',2':1,5]pyrrolo[2,3- d]pyridazine-8(9 H)-one Derivatives as Potential Cytotoxic Agents. ACS OMEGA 2023; 8:42212-42224. [PMID: 38024677 PMCID: PMC10653054 DOI: 10.1021/acsomega.3c04167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 10/11/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023]
Abstract
In the present paper, a facile and efficient synthetic procedure has been applied to obtain dihydrodipyrrolo[1,2-a:2',1'-c]pyrazine-2,3-dicarboxylates (5a-s), which have subsequently gone through the cyclization in the presence of hydrazine hydrate to afford 12-aryl-11-hydroxy-5,6-dihydropyrrolo[2″,1″:3',4']pyrazino[1',2':1,5]pyrrolo[2,3-d]pyridazine-8(9H)-ones (7a-q). The molecular structures of these novel compounds were extensively examined through the analysis of spectroscopic data in combination with X-ray crystallography techniques. Following that, the in vitro cytotoxic activities of all derivatives against three human cancer cell lines (Panc-1, PC3, and MDA-MB-231) were comprehensively evaluated alongside the assessment on normal human dermal fibroblast (HDF) cells using the MTT assay. Among the compounds, the 3-nitrophenyl derivative (7m) from the second series showed the best antiproliferative activity against all tested cell lines, particularly against Panc-1 cell line, (IC50 = 12.54 μM), being nearly twice as potent as the standard drug etoposide. The induction of apoptosis and sub-G1 cell cycle arrest in Panc-1 cancer cells by compound 7m was confirmed through further assessment. Moreover, the inhibition of kinases and the induction of cellular apoptosis by compound 7m in Panc-1 cancer cells were validated using the Western blotting assay.
Collapse
Affiliation(s)
- Azam Barghi Lish
- Department
of Chemistry, Semnan University, Semnan 35351-19111, Iran
| | - Alireza Foroumadi
- Department
of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran1417614411, Iran
- Drug
Design and Development Research Center, The Institute of Pharmaceutical
Sciences (TIPS), Tehran University of Medical
Sciences, Tehran 1417614411, Iran
| | - Eskandar Kolvari
- Department
of Chemistry, Semnan University, Semnan 35351-19111, Iran
| | - Fatemeh Safari
- Department
of Biology, Faculty of Science, University
of Guilan, Rasht 4193833697, Iran
| |
Collapse
|
2
|
Fujii T, Sugimoto K, Noda T, Shimizu T, Matsuya Y, Sakai H. Inhibition of gastric H +,K +-ATPase by new dihydropyrazole derivative KYY-008. Biochem Biophys Res Commun 2021; 567:177-182. [PMID: 34166915 DOI: 10.1016/j.bbrc.2021.06.056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 06/16/2021] [Indexed: 12/12/2022]
Abstract
The gastric proton pump (H+,K+-ATPase) responsible for the H+ secretion of gastric acid is an essential therapeutic target for acid-related diseases. H+,K+-ATPase belongs to a P2-type ATPase family. Here, we examined the effects of a newly synthesized dihydropyrazole derivative KYY-008 on the H+,K+-ATPase. KYY-008 concentration-dependently inhibited the enzyme activity of the ATPase in the membrane fractions prepared from isolated hog gastric mucosa and from human kidney HEK293 cells in which gastric H+,K+-ATPase is exogenously expressed. The IC50 values in these samples were 3.4 μM and 3.7 μM, respectively. In addition, KYY-008 significantly inhibited the H+,K+-ATPase-derived H+ uptake into the tightly sealed vesicles prepared from the hog gastric mucosa. In contrast, KYY-008 has no effect on the activities of other P2-type ATPases such as Na+,K+-ATPase and Ca2+-ATPase. KYY-008 did not change the ionic currents of voltage-dependent Ca2+ channels, that were potential targets for some dihydropyrazole derivatives. Together, we discovered a new dihydropyrazole derivative which acts as a selective inhibitor of gastric H+,K+-ATPase.
Collapse
Affiliation(s)
- Takuto Fujii
- Department of Pharmaceutical Physiology, Faculty of Pharmaceutical Sciences, University of Toyama, Toyama, 930-0194, Japan.
| | - Kenji Sugimoto
- Department of Synthetic and Medicinal Chemistry, Faculty of Pharmaceutical Sciences, University of Toyama, Toyama, 930-0194, Japan
| | - Takafumi Noda
- Department of Pharmaceutical Physiology, Faculty of Pharmaceutical Sciences, University of Toyama, Toyama, 930-0194, Japan
| | - Takahiro Shimizu
- Department of Pharmaceutical Physiology, Faculty of Pharmaceutical Sciences, University of Toyama, Toyama, 930-0194, Japan
| | - Yuji Matsuya
- Department of Synthetic and Medicinal Chemistry, Faculty of Pharmaceutical Sciences, University of Toyama, Toyama, 930-0194, Japan
| | - Hideki Sakai
- Department of Pharmaceutical Physiology, Faculty of Pharmaceutical Sciences, University of Toyama, Toyama, 930-0194, Japan
| |
Collapse
|
3
|
Identification of a novel fluoropyrrole derivative as a potassium-competitive acid blocker with long duration of action. Bioorg Med Chem 2017; 25:3298-3314. [DOI: 10.1016/j.bmc.2017.04.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Revised: 04/09/2017] [Accepted: 04/11/2017] [Indexed: 12/12/2022]
|
4
|
Wang RH. From reflux esophagitis to Barrett’s esophagus and esophageal adenocarcinoma. World J Gastroenterol 2015; 21:5210-5219. [PMID: 25954094 PMCID: PMC4419061 DOI: 10.3748/wjg.v21.i17.5210] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 01/19/2015] [Accepted: 02/11/2015] [Indexed: 02/06/2023] Open
Abstract
The occurrence of gastroesophageal reflux disease is common in the human population. Almost all cases of esophageal adenocarcinoma are derived from Barrett’s esophagus, which is a complication of esophageal adenocarcinoma precancerous lesions. Chronic exposure of the esophagus to gastroduodenal intestinal fluid is an important determinant factor in the development of Barrett’s esophagus. The replacement of normal squamous epithelium with specific columnar epithelium in the lower esophagus induced by the chronic exposure to gastroduodenal fluid could lead to intestinal metaplasia, which is closely associated with the development of esophageal adenocarcinoma. However, the exact mechanism of injury is not completely understood. Various animal models of the developmental mechanisms of disease, and theoretical and clinical effects of drug treatment have been widely used in research. Recently, animal models employed in studies on gastroesophageal reflux injury have allowed significant progress. The advantage of using animal models lies in the ability to accurately control the experimental conditions for better evaluation of results. In this article, various modeling methods are reviewed, with discussion of the major findings on the developmental mechanism of Barrett’s esophagus, which should help to develop better prevention and treatment strategies for Barrett’s esophagus.
Collapse
|
5
|
Arikawa Y, Hasuoka A, Nishida H, Hirase K, Inatomi N, Takagi T, Tarui N, Kawamoto M, Imanishi A, Itoh F, Kajino M. Synthetic studies of five-membered heteroaromatic derivatives as potassium-competitive acid blockers (P-CABs). Bioorg Med Chem Lett 2015; 25:2037-40. [PMID: 25891103 DOI: 10.1016/j.bmcl.2015.03.094] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 03/26/2015] [Accepted: 03/31/2015] [Indexed: 11/25/2022]
Abstract
On the basis of a series of novel and potent potassium-competitive acid blockers represented by 1-sulfonylpyrrole derivative 7, we prepared several five-membered heterocyclic analogues (8) and evaluated their H(+),K(+)-ATPase activities in vitro. We also assessed the role of the methylaminomethyl side chain by comparison with methylamino and ethylamino derivatives. We observed that the five-membered core ring and its orientation affect inhibitory activity and that the methylaminomethyl moiety is the best side chain. On the basis of potency and ligand-lipophilicity efficiency, compound 7 remains the most drug-like of the compounds studied to date. This study revealed the factors necessary for potent H(+),K(+)-ATPase inhibition, such as differences in electron density, the properties of the lone pair at each apical position of the heteroaromatic ring, and the geometry of the substituents.
Collapse
Affiliation(s)
- Yasuyoshi Arikawa
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Ltd, 26-1, Muraokahigashi-2-chome, Fujisawa, Kanagawa 251-8555, Japan.
| | - Atsushi Hasuoka
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Ltd, 26-1, Muraokahigashi-2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Haruyuki Nishida
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Ltd, 26-1, Muraokahigashi-2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Keizo Hirase
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Ltd, 26-1, Muraokahigashi-2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Nobuhiro Inatomi
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Ltd, 26-1, Muraokahigashi-2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Terufumi Takagi
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Ltd, 26-1, Muraokahigashi-2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Naoki Tarui
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Ltd, 26-1, Muraokahigashi-2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Makiko Kawamoto
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Ltd, 26-1, Muraokahigashi-2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Akio Imanishi
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Ltd, 26-1, Muraokahigashi-2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Fumio Itoh
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Ltd, 26-1, Muraokahigashi-2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Masahiro Kajino
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Ltd, 26-1, Muraokahigashi-2-chome, Fujisawa, Kanagawa 251-8555, Japan
| |
Collapse
|
6
|
Rogoza LN, Salakhutdinov NF. Anti-ulcer agents: chemical aspect of solving the problem. RUSSIAN CHEMICAL REVIEWS 2015. [DOI: 10.1070/rcr4430] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
7
|
Shin JM, Sachs G. Long lasting inhibitors of the gastric H,K-ATPase. Expert Rev Clin Pharmacol 2014; 2:461-468. [PMID: 21132072 DOI: 10.1586/ecp.09.33] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Proton pump inhibitors (PPIs) are acid-activated prodrugs which covalently bind to the gastric H,K-ATPase on its luminal surface. Only active pumps can be inhibited. The short plasma residence time of current PPIs prevents inhibition of pumps synthesized or activated after the PPI has disappeared, limiting the degree of acid inhibition even with BID administration. PPIs with a longer residence time should improve acid control. Various K(+) competitive inhibitors of the pump are being developed (APAs or PCABs), with the advantage of complete inhibition of acid secretion independent of pump activity. Early data on these suggest that twice a day administration would improve acid control compared to PPIs.
Collapse
Affiliation(s)
- Jai Moo Shin
- Department of Physiology, David Geffen School of Medicine, University of California at Los Angeles, and VA Greater Los Angeles Healthcare System, Los Angeles, CA 90073
| | | |
Collapse
|
8
|
Sali A, Many GM, Gordish-Dressman H, van der Meulen JH, Phadke A, Spurney CF, Cnaan A, Hoffman EP, Nagaraju K. The proton pump inhibitor lansoprazole improves the skeletal phenotype in dystrophin deficient mdx mice. PLoS One 2013; 8:e66617. [PMID: 23843959 PMCID: PMC3699610 DOI: 10.1371/journal.pone.0066617] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Accepted: 05/08/2013] [Indexed: 12/17/2022] Open
Abstract
Background In Duchenne muscular dystrophy (DMD), loss of the membrane stabilizing protein dystrophin results in myofiber damage. Microinjury to dystrophic myofibers also causes secondary imbalances in sarcolemmic ion permeability and resting membrane potential, which modifies excitation-contraction coupling and increases proinflammatory/apoptotic signaling cascades. Although glucocorticoids remain the standard of care for the treatment of DMD, there is a need to investigate the efficacy of other pharmacological agents targeting the involvement of imbalances in ion flux on dystrophic pathology. Methodology/Principal Findings We designed a preclinical trial to investigate the effects of lansoprazole (LANZO) administration, a proton pump inhibitor, on the dystrophic muscle phenotype in dystrophin deficient (mdx) mice. Eight to ten week-old female mice were assigned to one of four treatment groups (n = 12 per group): (1) vehicle control; (2) 5 mg/kg/day LANZO; (3) 5 mg/kg/day prednisolone; and (4) combined treatment of 5 mg/kg/day prednisolone (PRED) and 5 mg/kg/day LANZO. Treatment was administered orally 5 d/wk for 3 months. At the end of the study, behavioral (Digiscan) and functional outcomes (grip strength and Rotarod) were assessed prior to sacrifice. After sacrifice, body, tissue and organ masses, muscle histology, in vitro muscle force, and creatine kinase levels were measured. Mice in the combined treatment groups displayed significant reductions in the number of degenerating muscle fibers and number of inflammatory foci per muscle field relative to vehicle control. Additionally, mice in the combined treatment group displayed less of a decline in normalized forelimb and hindlimb grip strength and declines in in vitro EDL force after repeated eccentric contractions. Conclusions/Significance Together our findings suggest that combined treatment of LANZO and prednisolone attenuates some components of dystrophic pathology in mdx mice. Our findings warrant future investigation of the clinical efficacy of LANZO and prednisolone combined treatment regimens in dystrophic pathology.
Collapse
MESH Headings
- Animals
- Dose-Response Relationship, Drug
- Drug Evaluation, Preclinical
- Drug Synergism
- Dystrophin/deficiency
- Dystrophin/genetics
- Female
- Gene Expression
- Glucocorticoids/pharmacology
- Lansoprazole/pharmacology
- Mice
- Mice, Inbred mdx
- Muscle Strength/drug effects
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Muscular Dystrophy, Animal/drug therapy
- Muscular Dystrophy, Animal/genetics
- Muscular Dystrophy, Animal/metabolism
- Muscular Dystrophy, Animal/pathology
- Prednisolone/pharmacology
- Proton Pump Inhibitors/pharmacology
Collapse
Affiliation(s)
- Arpana Sali
- Center for Genetic Medicine Research, Children’s National Medical Center, Department of Integrative Systems Biology, George Washington University School of Medicine and Health Sciences, Washington, DC, United States of America
| | - Gina M. Many
- Center for Genetic Medicine Research, Children’s National Medical Center, Department of Integrative Systems Biology, George Washington University School of Medicine and Health Sciences, Washington, DC, United States of America
| | - Heather Gordish-Dressman
- Center for Genetic Medicine Research, Children’s National Medical Center, Department of Integrative Systems Biology, George Washington University School of Medicine and Health Sciences, Washington, DC, United States of America
| | - Jack H. van der Meulen
- Center for Genetic Medicine Research, Children’s National Medical Center, Department of Integrative Systems Biology, George Washington University School of Medicine and Health Sciences, Washington, DC, United States of America
| | - Aditi Phadke
- Center for Genetic Medicine Research, Children’s National Medical Center, Department of Integrative Systems Biology, George Washington University School of Medicine and Health Sciences, Washington, DC, United States of America
| | - Christopher F. Spurney
- Center for Genetic Medicine Research, Children’s National Medical Center, Department of Integrative Systems Biology, George Washington University School of Medicine and Health Sciences, Washington, DC, United States of America
- Division of Cardiology, Children’s National Medical Center, Washington, DC, United States of America
| | - Avital Cnaan
- Center for Genetic Medicine Research, Children’s National Medical Center, Department of Integrative Systems Biology, George Washington University School of Medicine and Health Sciences, Washington, DC, United States of America
| | - Eric P. Hoffman
- Center for Genetic Medicine Research, Children’s National Medical Center, Department of Integrative Systems Biology, George Washington University School of Medicine and Health Sciences, Washington, DC, United States of America
| | - Kanneboyina Nagaraju
- Center for Genetic Medicine Research, Children’s National Medical Center, Department of Integrative Systems Biology, George Washington University School of Medicine and Health Sciences, Washington, DC, United States of America
- * E-mail:
| |
Collapse
|
9
|
Arikawa Y, Nishida H, Kurasawa O, Hasuoka A, Hirase K, Inatomi N, Hori Y, Matsukawa J, Imanishi A, Kondo M, Tarui N, Hamada T, Takagi T, Takeuchi T, Kajino M. Discovery of a novel pyrrole derivative 1-[5-(2-fluorophenyl)-1-(pyridin-3-ylsulfonyl)-1H-pyrrol-3-yl]-N-methylmethanamine fumarate (TAK-438) as a potassium-competitive acid blocker (P-CAB). J Med Chem 2012; 55:4446-56. [PMID: 22512618 DOI: 10.1021/jm300318t] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In our pursuit of developing a novel and potent potassium-competitive acid blocker (P-CAB), we synthesized pyrrole derivatives focusing on compounds with low log D and high ligand-lipophilicity efficiency (LLE) values. Among the compounds synthesized, the compound 13e exhibited potent H(+),K(+)-ATPase inhibitory activity and potent gastric acid secretion inhibitory action in vivo. Its maximum efficacy was more potent and its duration of action was much longer than those of proton pump inhibitors (PPIs). Therefore, compound 13e (1-[5-(2-fluorophenyl)-1-(pyridin-3-ylsulfonyl)-1H-pyrrol-3-yl]-N-methylmethanamine fumarate, TAK-438) was selected as a drug candidate for the treatment of gastroesophageal reflux disease (GERD), peptic ulcer, and other acid-related diseases.
Collapse
Affiliation(s)
- Yasuyoshi Arikawa
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Ltd., 26-1, Muraokahigashi-2-chome, Fujisawa, Kanagawa 251-8555, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Nishida H, Hasuoka A, Arikawa Y, Kurasawa O, Hirase K, Inatomi N, Hori Y, Sato F, Tarui N, Imanishi A, Kondo M, Takagi T, Kajino M. Discovery, synthesis, and biological evaluation of novel pyrrole derivatives as highly selective potassium-competitive acid blockers. Bioorg Med Chem 2012; 20:3925-38. [PMID: 22579619 DOI: 10.1016/j.bmc.2012.04.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Revised: 04/05/2012] [Accepted: 04/06/2012] [Indexed: 01/24/2023]
Abstract
To discover a gastric antisecretory agent more potent than existing proton pump inhibitors, novel pyrrole derivatives were synthesized, and their H(+),K(+)-ATPase inhibitory activities and inhibitory action on histamine-stimulated gastric acid secretion in rats were evaluated. Among the compounds synthesized, compound 17a exhibited selective and potent H(+),K(+)-ATPase inhibitory activity through reversible and K(+)-competitive ionic binding; furthermore, compound 17c exhibited potent inhibitory action on histamine-stimulated gastric acid secretion in rats and Heidenhain pouch dogs.
Collapse
Affiliation(s)
- Haruyuki Nishida
- Pharmaceutical Research Division, Takeda Pharmaceutical Company, Ltd., 26-1, Muraokahigashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
New pharmacologic approaches in gastroesophageal reflux disease. Thorac Surg Clin 2011; 21:557-74. [PMID: 22040637 DOI: 10.1016/j.thorsurg.2011.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This article highlights current and emerging pharmacological treatments for gastroesophageal reflux disease (GERD), opportunities for improving medical treatment, the extent to which improvements may be achieved with current therapy, and where new therapies may be required. These issues are discussed in the context of current thinking on the pathogenesis of GERD and its various manifestations and on the pharmacologic basis of current treatments.
Collapse
|
12
|
Hori Y, Matsukawa J, Takeuchi T, Nishida H, Kajino M, Inatomi N. A Study Comparing the Antisecretory Effect of TAK-438, a Novel Potassium-Competitive Acid Blocker, with Lansoprazole in Animals. J Pharmacol Exp Ther 2011; 337:797-804. [DOI: 10.1124/jpet.111.179556] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
13
|
Abstract
This article highlights current and emerging pharmacological treatments for gastroesophageal reflux disease (GERD), opportunities for improving medical treatment, the extent to which improvements may be achieved with current therapy, and where new therapies may be required. These issues are discussed in the context of current thinking on the pathogenesis of GERD and its various manifestations and on the pharmacologic basis of current treatments.
Collapse
|
14
|
Hori Y, Imanishi A, Matsukawa J, Tsukimi Y, Nishida H, Arikawa Y, Hirase K, Kajino M, Inatomi N. 1-[5-(2-Fluorophenyl)-1-(pyridin-3-ylsulfonyl)-1H-pyrrol-3-yl]-N-methylmethanamine monofumarate (TAK-438), a novel and potent potassium-competitive acid blocker for the treatment of acid-related diseases. J Pharmacol Exp Ther 2010; 335:231-8. [PMID: 20624992 DOI: 10.1124/jpet.110.170274] [Citation(s) in RCA: 155] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Proton pump inhibitors (PPIs) are widely used in the treatment of acid-related diseases. However, several unmet medical needs, such as suppression of night-time acid secretion and rapid symptom relief, remain. In this study, we investigated the pharmacological effects of 1-[5-(2-fluorophenyl)-1-(pyridin-3-ylsulfonyl)-1H-pyrrol-3-yl]-N-methylmethanamine monofumarate (TAK-438), a novel potassium-competitive acid blocker (P-CAB), on gastric acid secretion in comparison with lansoprazole, a typical PPI, and SCH28080 [3-(cyanomethyl)-2-methyl,8-(phenylmethoxy)imidazo(1,2-a)pyridine], a prototype of P-CAB. TAK-438, SCH28080, and lansoprazole inhibited H(+),K(+)-ATPase activity in porcine gastric microsomes with IC(50) values of 0.019, 0.14, and 7.6 μM, respectively, at pH 6.5. The inhibitory activity of TAK-438 was unaffected by ambient pH, whereas the inhibitory activities of SCH28080 and lansoprazole were weaker at pH 7.5. The inhibition by TAK-438 and SCH28080 was reversible and achieved in a K(+)-competitive manner, quite different from that by lansoprazole. TAK-438, at a dose of 4 mg/kg (as the free base) orally, completely inhibited basal and 2-deoxy-d-glucose-stimulated gastric acid secretion in rats, and its effect on both was stronger than that of lansoprazole. TAK-438 increased the pH of gastric perfusate to a higher value than did lansoprazole or SCH28080, and the effect of TAK-438 was sustained longer than that of lansoprazole or SCH28080. These results indicate that TAK-438 exerts a more potent and longer-lasting inhibitory action on gastric acid secretion than either lansoprazole or SCH28080. TAK-438 is a novel antisecretory drug that may provide a new option for the patients with acid-related disease that is refractory to, or inadequately controlled by, treatment with PPIs.
Collapse
Affiliation(s)
- Yasunobu Hori
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Osaka, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Ito K, Kinoshita K, Yamamura N, Tomizawa A, Inaba F, Morikawa-Inomata Y, Tabata K, Shibakawa N. Pharmacodynamic and pharmacokinetic evaluation of CS-526 in cynomolgus monkeys. Biol Pharm Bull 2009; 32:2010-7. [PMID: 19952420 DOI: 10.1248/bpb.32.2010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In the present study, we evaluated the effect of the novel acid pump antagonist 7-(4-fluorobenzyloxy)-2,3-dimethyl-1-{[(1S,2S)-2-methylcyclopropyl]methyl}-1H-pyrrolo[2,3-d]pyridazine (CS-526) on the intragastric acidity of cynomolgus monkeys. The study was performed in a crossover manner with five male animals. CS-526 was administered orally or intravenously at doses of 3.0, 10 and 30 mg/kg, or 0.3, 1.0 and 3.0 mg/kg, respectively. The time period in which the intragastric pH was 4.0 or more (Time(pH > or = 4.0)) and the median pH were calculated for 24 h after the administration. The intragastric pH was elevated after CS-526 treatment. The Time(pH > or = 4.0) was increased in a dose-dependent manner (p = 0.0292) in the oral administration, and the median pH was also increased in a dose-dependent fashion (p = 0.0491) in the intravenous administration. The plasma concentration of CS-526 and its metabolite R-130185 was increased after oral and intravenous administration of CS-526, except for one animal which did not show any detectable amount of R-130185 after intravenous administration at the lowest dose. The area under the time-concentration curve of the active component was increased in the dose proportional manner after oral and intravenous administration. The absolute bioavailability of the active component was estimated to be approximately 1%. Correlation between the pharmacodynamic parameters and the pharmacokinetic parameters was observed in oral (p = 0.0029-0.0745), but not in intravenous administration (p = 0.0558-0.2789). In conclusion, oral and intravenous administration of CS-526 showed inhibition on gastric acidity in cynomolgus monkeys using intragastric pH-metry and some pharmacokinetic and pharmacodynamic parameters were well correlated.
Collapse
Affiliation(s)
- Keiichi Ito
- R&D Operations Department, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawaku, Tokyo 140-8710, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Bamford M. 3 H+/K+ ATPase Inhibitors in the Treatment of Acid-Related Disorders. PROGRESS IN MEDICINAL CHEMISTRY 2009; 47:75-162. [DOI: 10.1016/s0079-6468(08)00203-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
17
|
Shin JM, Munson K, Vagin O, Sachs G. The gastric HK-ATPase: structure, function, and inhibition. Pflugers Arch 2008; 457:609-22. [PMID: 18536934 DOI: 10.1007/s00424-008-0495-4] [Citation(s) in RCA: 168] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2008] [Revised: 03/07/2008] [Accepted: 03/11/2008] [Indexed: 02/06/2023]
Abstract
The gastric H,K-ATPase, a member of the P(2)-type ATPase family, is the integral membrane protein responsible for gastric acid secretion. It is an alpha,beta-heterodimeric enzyme that exchanges cytoplasmic hydronium with extracellular potassium. The catalytic alpha subunit has ten transmembrane segments with a cluster of intramembranal carboxylic amino acids located in the middle of the transmembrane segments TM4, TM5,TM6, and TM8. Comparison to the known structure of the SERCA pump, mutagenesis, and molecular modeling has identified these as constituents of the ion binding domain. The beta subunit has one transmembrane segment with N terminus in cytoplasmic region. The extracellular domain of the beta subunit contains six or seven N-linked glycosylation sites. N-glycosylation is important for the enzyme assembly, maturation, and sorting. The enzyme pumps acid by a series of conformational changes from an E(1) (ion site in) to an E(2) (ion site out) configuration following binding of MgATP and phosphorylation. Several experimental observations support the hypothesis that expulsion of the proton at 160 mM (pH 0.8) results from movement of lysine 791 into the ion binding site in the E(2)P configuration. Potassium access from the lumen depends on activation of a K and Cl conductance via a KCNQ1/KCNE2 complex and Clic6. K movement through the luminal channel in E(2)P is proposed to displace the lysine along with dephosphorylation to return the enzyme to the E(1) configuration. This enzyme is inhibited by the unique proton pump inhibitor class of drug, allowing therapy of acid-related diseases.
Collapse
Affiliation(s)
- Jai Moo Shin
- Department of Physiology, David Geffen School of Medicine, University of California at Los Angeles and VA Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA
| | | | | | | |
Collapse
|
18
|
Ito K, Kinoshita K, Tomizawa A, Morikawa-Inomata Y, Inaba F, Fujita Y, Tabata K, Shibakawa N. The Effect of Subchronic Administration of 7-(4-Fluorobenzyloxy)-2,3-dimethyl-1-{[(1S,2S)-2-methylcyclopropyl]methyl}-1H-pyrrolo[2,3-d]pyridazine (CS-526), a Novel Acid Pump Antagonist, on Gastric Acid Secretion and Gastrin Levels in Rats. J Pharmacol Exp Ther 2008; 326:163-70. [DOI: 10.1124/jpet.108.137299] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|