1
|
Wigenstam E, Bucht A, Thors L. Cellular responses following ex vivo lung exposure to the nerve agent VX - Potential for additional treatment targets? Chem Biol Interact 2024; 403:111225. [PMID: 39233266 DOI: 10.1016/j.cbi.2024.111225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 08/12/2024] [Accepted: 09/02/2024] [Indexed: 09/06/2024]
Abstract
Following inhalation exposure to organophosphorus nerve agents, symptoms rapidly develop and severe respiratory symptoms, such as bronchorrhea and bronchoconstriction are the leading causes of lethality. Nerve agent-induced lung injury is little investigated and the standard treatment for symptomatic relief targets the enzyme acetylcholinesterase and muscarinic acetylcholine and GABAergic receptors. In the present study, cellular responses in lung tissue during the acute (40 min) and extended phase (24 h) following severe exposure to the nerve agent VX have been investigated using an ex vivo rat precision-cut lung slice model including electrostimulation to induce a cholinergic response. Changes in protein amount, cell viability, together with, inflammatory and oxidative stress markers have been determined in both the lung tissue and incubation medium. During the acute phase, VX caused significantly increased airway contraction and decreased airway relaxation. Five micromolar of VX did not affect the sample protein levels and cell viability in lung tissue. Among seven markers of cellular responses investigated in the lung tissue, increased levels of heme oxygenase-1 and matrix metalloproteinase-9 together with decreased levels of glutathione in the incubation medium were observed in the acute phase following VX-exposure compared to electrostimulation only. No difference in cellular response was observed following VX-exposure for 24 h compared to the air control. In comparison, LPS-exposure resulted in time-dependent changes in all markers of inflammation and oxidative response. In conclusion, the present study demonstrated VX-specific patterns of oxidative responses in the lung, as well as, signs of inflammatory response and remodelling of extracellular matrix. These potential mechanisms of tissue injury should be further investigated for their potential as additional therapeutic targets during the acute phase of intoxication.
Collapse
Affiliation(s)
| | - Anders Bucht
- Swedish Defence Research Agency, CBRN Defence and Security, Umeå, Sweden
| | - Lina Thors
- Swedish Defence Research Agency, CBRN Defence and Security, Umeå, Sweden.
| |
Collapse
|
2
|
Bogguri C, George VK, Amiri B, Ladd A, Hum NR, Sebastian A, Enright HA, Valdez CA, Mundhenk TN, Cadena J, Lam D. Biphasic response of human iPSC-derived neural network activity following exposure to a sarin-surrogate nerve agent. Front Cell Neurosci 2024; 18:1378579. [PMID: 39301218 PMCID: PMC11410629 DOI: 10.3389/fncel.2024.1378579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 08/16/2024] [Indexed: 09/22/2024] Open
Abstract
Organophosphorus nerve agents (OPNA) are hazardous environmental exposures to the civilian population and have been historically weaponized as chemical warfare agents (CWA). OPNA exposure can lead to several neurological, sensory, and motor symptoms that can manifest into chronic neurological illnesses later in life. There is still a large need for technological advancement to better understand changes in brain function following OPNA exposure. The human-relevant in vitro multi-electrode array (MEA) system, which combines the MEA technology with human stem cell technology, has the potential to monitor the acute, sub-chronic, and chronic consequences of OPNA exposure on brain activity. However, the application of this system to assess OPNA hazards and risks to human brain function remains to be investigated. In a concentration-response study, we have employed a human-relevant MEA system to monitor and detect changes in the electrical activity of engineered neural networks to increasing concentrations of the sarin surrogate 4-nitrophenyl isopropyl methylphosphonate (NIMP). We report a biphasic response in the spiking (but not bursting) activity of neurons exposed to low (i.e., 0.4 and 4 μM) versus high concentrations (i.e., 40 and 100 μM) of NIMP, which was monitored during the exposure period and up to 6 days post-exposure. Regardless of the NIMP concentration, at a network level, communication or coordination of neuronal activity decreased as early as 60 min and persisted at 24 h of NIMP exposure. Once NIMP was removed, coordinated activity was no different than control (0 μM of NIMP). Interestingly, only in the high concentration of NIMP did coordination of activity at a network level begin to decrease again at 2 days post-exposure and persisted on day 6 post-exposure. Notably, cell viability was not affected during or after NIMP exposure. Also, while the catalytic activity of AChE decreased during NIMP exposure, its activity recovered once NIMP was removed. Gene expression analysis suggests that human iPSC-derived neurons and primary human astrocytes resulted in altered genes related to the cell's interaction with the extracellular environment, its intracellular calcium signaling pathways, and inflammation, which could have contributed to how neurons communicated at a network level.
Collapse
Affiliation(s)
- Chandrakumar Bogguri
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, United States
| | - Vivek Kurien George
- Engineering Directorate, Lawrence Livermore National Laboratory, Livermore, CA, United States
| | - Beheshta Amiri
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, United States
| | - Alexander Ladd
- Engineering Directorate, Lawrence Livermore National Laboratory, Livermore, CA, United States
| | - Nicholas R Hum
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, United States
| | - Aimy Sebastian
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, United States
| | - Heather A Enright
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, United States
| | - Carlos A Valdez
- Global Security Directorate, Lawrence Livermore National Laboratory, Livermore, CA, United States
| | - T Nathan Mundhenk
- Engineering Directorate, Lawrence Livermore National Laboratory, Livermore, CA, United States
| | - Jose Cadena
- Engineering Directorate, Lawrence Livermore National Laboratory, Livermore, CA, United States
| | - Doris Lam
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, United States
| |
Collapse
|
3
|
Aracava Y, Albuquerque EX, Pereira EFR. (R,S)-trihexyphenidyl, acting via a muscarinic receptor-independent mechanism, inhibits hippocampal glutamatergic and GABAergic synaptic transmissions: Potential relevance for treatment of organophosphorus intoxication. Neuropharmacology 2023; 239:109684. [PMID: 37549771 PMCID: PMC10590273 DOI: 10.1016/j.neuropharm.2023.109684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 08/03/2023] [Accepted: 08/04/2023] [Indexed: 08/09/2023]
Abstract
Preclinical studies have reported that, compared to the muscarinic receptor (mAChR) antagonist atropine, (R,S)-trihexyphenidyl (THP) more effectively counters the cholinergic crisis, seizures, and neuropathology triggered by organophosphorus (OP)-induced acetylcholinesterase (AChE) inhibition. The greater effectiveness of THP was attributed to its ability to block mAChRs and N-methyl-d-aspartate-type glutamatergic receptors (NMDARs) in the brain. However, THP also inhibits α7 nicotinic receptors (nAChRs). The present study examined whether THP-induced inhibition of mAChRs, α7 nAChRs, and NMDARs is required to suppress glutamatergic synaptic transmission, whose overstimulation sustains OP-induced seizures. In primary hippocampal cultures, THP (1-30 μM) suppressed the frequency of excitatory and inhibitory postsynaptic currents (EPSCs and IPSCs, respectively) recorded from neurons in nominally Mg2+-free solution. A single sigmoidal function adequately fit the overlapping concentration-response relationships for THP-induced suppression of IPSC and EPSC frequencies yielding an IC50 of 6.3 ± 1.3 μM. Atropine (1 μM), the NMDAR antagonist d,l-2-amino-5-phosphonopentanoic acid (D,L-AP5, 50 μM), and the α7 nAChR antagonist methyllycaconitine (MLA, 10 nM) did not prevent THP-induced inhibition of synaptic transmission. THP (10 μM) did not affect the probability of transmitter release because it had no effect on the frequency of miniature IPSCs and EPSCs recorded in the presence of tetrodotoxin. Additionally, THP had no effect on the amplitudes and decay-time constants of miniature IPSCs and EPSCs; therefore, it did not affect the activity of postsynaptic GABAA and glutamate receptors. This study provides the first demonstration that THP can suppress action potential-dependent synaptic transmission via a mechanism independent of NMDAR, mAChR, and α7 nAChR inhibition.
Collapse
Affiliation(s)
- Yasco Aracava
- Division of Translational Toxicology, Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Edson X Albuquerque
- Division of Translational Toxicology, Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Edna F R Pereira
- Division of Translational Toxicology, Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
4
|
González EA, Calsbeek JJ, Tsai YH, Tang MY, Andrew P, Vu J, Berg EL, Saito NH, Harvey DJ, Supasai S, Gurkoff GG, Silverman JL, Lein PJ. Sex-specific acute and chronic neurotoxicity of acute diisopropylfluorophosphate (DFP)-intoxication in juvenile Sprague-Dawley rats. Curr Res Toxicol 2021; 2:341-356. [PMID: 34622217 PMCID: PMC8484742 DOI: 10.1016/j.crtox.2021.09.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/06/2021] [Accepted: 09/09/2021] [Indexed: 12/12/2022] Open
Abstract
Preclinical efforts to improve medical countermeasures against organophosphate (OP) chemical threat agents have largely focused on adult male models. However, age and sex have been shown to influence the neurotoxicity of repeated low-level OP exposure. Therefore, to determine the influence of sex and age on outcomes associated with acute OP intoxication, postnatal day 28 Sprague-Dawley male and female rats were exposed to the OP diisopropylfluorophosphate (DFP; 3.4 mg/kg, s.c.) or an equal volume of vehicle (∼80 µL saline, s.c.) followed by atropine sulfate (0.1 mg/kg, i.m.) and pralidoxime (2-PAM; 25 mg/kg, i.m.). Seizure activity was assessed during the first 4 h post-exposure using behavioral criteria and electroencephalographic (EEG) recordings. At 1 d post-exposure, acetylcholinesterase (AChE) activity was measured in cortical tissue, and at 1, 7, and 28 d post-exposure, brains were collected for neuropathologic analyses. At 1 month post-DFP, animals were analyzed for motor ability, learning and memory, and hippocampal neurogenesis. Acute DFP intoxication triggered more severe seizure behavior in males than females, which was supported by EEG recordings. DFP caused significant neurodegeneration and persistent microglial activation in numerous brain regions of both sexes, but astrogliosis occurred earlier and was more severe in males compared to females. DFP males and females exhibited pronounced memory deficits relative to sex-matched controls. In contrast, acute DFP intoxication altered hippocampal neurogenesis in males, but not females. These findings demonstrate that acute DFP intoxication triggers seizures in juvenile rats of both sexes, but the seizure severity varies by sex. Some, but not all, chronic neurotoxic outcomes also varied by sex. The spatiotemporal patterns of neurological damage suggest that microglial activation may be a more important factor than astrogliosis or altered neurogenesis in the pathogenesis of cognitive deficits in juvenile rats acutely intoxicated with OPs.
Collapse
Key Words
- 2-PAM, pralidoxime
- AChE, acetylcholinesterase
- AS, atropine-sulfate
- BChE, butyrylcholinesterase
- CT, computed tomography
- ChE, cholinesterase
- Cognitive deficits
- DFP, diisopropylfluorophosphate
- EEG, electroencephalogram
- FJC, Fluoro-Jade C
- Neurodegeneration
- Neurogenesis
- Neuroinflammation
- OP, organophosphate
- PBS, phosphate-buffered saline
- ROI, region of interest
- SE, status epilepticus
- Seizures
- Sex differences
- T2w, T2-weighted
- VEH, vehicle
- i.m., intramuscular
- i.p., intraperitoneal
- s.c., subcutaneous
Collapse
Affiliation(s)
- Eduardo A. González
- Department of Molecular Biosciences, University of California, Davis, School of Veterinary Medicine, 1089 Veterinary Medicine Drive, Davis, CA 95616, USA
| | - Jonas J. Calsbeek
- Department of Molecular Biosciences, University of California, Davis, School of Veterinary Medicine, 1089 Veterinary Medicine Drive, Davis, CA 95616, USA
| | - Yi-Hua Tsai
- Department of Molecular Biosciences, University of California, Davis, School of Veterinary Medicine, 1089 Veterinary Medicine Drive, Davis, CA 95616, USA
| | - Mei-Yun Tang
- Department of Molecular Biosciences, University of California, Davis, School of Veterinary Medicine, 1089 Veterinary Medicine Drive, Davis, CA 95616, USA
| | - Peter Andrew
- Department of Molecular Biosciences, University of California, Davis, School of Veterinary Medicine, 1089 Veterinary Medicine Drive, Davis, CA 95616, USA
| | - Joan Vu
- Department of Molecular Biosciences, University of California, Davis, School of Veterinary Medicine, 1089 Veterinary Medicine Drive, Davis, CA 95616, USA
| | - Elizabeth L. Berg
- Department of Psychiatry, University of California, Davis, School of Medicine, 2230, Stockton Boulevard, Sacramento, CA 95817, USA
| | - Naomi H. Saito
- Department of Public Health Sciences, University of California, Davis, One Shields Avenue, School of Medicine, Davis, CA 95616, USA
| | - Danielle J. Harvey
- Department of Public Health Sciences, University of California, Davis, One Shields Avenue, School of Medicine, Davis, CA 95616, USA
| | - Suangsuda Supasai
- Department of Molecular Biosciences, University of California, Davis, School of Veterinary Medicine, 1089 Veterinary Medicine Drive, Davis, CA 95616, USA
| | - Gene G. Gurkoff
- Department of Neurological Surgery, University of California, Davis, School of Medicine, 4860 Y Street, Sacramento, CA 95817, USA
- Center for Neuroscience, University of California, Davis, 1544 Newton Court, Davis, CA 95618, USA
| | - Jill L. Silverman
- Department of Psychiatry, University of California, Davis, School of Medicine, 2230, Stockton Boulevard, Sacramento, CA 95817, USA
- MIND Institute, University of California, Davis, 2825 50th Street, Sacramento, CA 95817, USA
| | - Pamela J. Lein
- Department of Molecular Biosciences, University of California, Davis, School of Veterinary Medicine, 1089 Veterinary Medicine Drive, Davis, CA 95616, USA
- MIND Institute, University of California, Davis, 2825 50th Street, Sacramento, CA 95817, USA
| |
Collapse
|
5
|
Lumley L, Du F, Marrero-Rosado B, Stone M, Keith ZM, Schultz C, Whitten K, Walker K, Acon-Chen C, Wright L, Shih TM. Soman-induced toxicity, cholinesterase inhibition and neuropathology in adult male Göttingen minipigs. Toxicol Rep 2021; 8:896-907. [PMID: 33996503 PMCID: PMC8095108 DOI: 10.1016/j.toxrep.2021.04.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/09/2021] [Accepted: 04/16/2021] [Indexed: 01/05/2023] Open
Abstract
Animal models are essential for evaluating the toxicity of chemical warfare nerve agents (CWNAs) to extrapolate to human risk and are necessary to evaluate the efficacy of medical countermeasures. The Göttingen minipig is increasingly used for toxicological studies because it has anatomical and physiological characteristics that are similar to those of humans. Our objective was to determine whether the minipig would be a useful large animal model to evaluate the toxic effects of soman (GD). We determined the intramuscular (IM) median lethal dose (LD50) of GD in adult male Göttingen minipigs using an up-and-down dosing method. In addition to lethality estimates, we characterized the observable signs of toxicity, blood and tissue cholinesterase (ChE) activity and brain pathology following GD exposure. The 24 h LD50 of GD was estimated to be 4.7 μg/kg, with 95 % confidence limits of 3.6 and 6.3 μg/kg. As anticipated, GD inhibited ChE activity in blood and several tissues. Neurohistopathological analysis showed neurodegeneration and neuroinflammation in survivors exposed to 4.7 μg/kg of GD, including in the primary visual cortex and various thalamic nuclei. These findings suggest that the minipig will be a useful large animal model for assessing drugs to mitigate neuropathological effects of exposure to CWNAs.
Collapse
Affiliation(s)
- Lucille Lumley
- U.S. Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD, United States
| | - Fu Du
- FD NeuroTechnologies, Inc., Columbia, MD, United States
| | - Brenda Marrero-Rosado
- U.S. Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD, United States
| | - Michael Stone
- U.S. Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD, United States
| | - Zora-Maya Keith
- U.S. Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD, United States
| | - Caroline Schultz
- U.S. Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD, United States
| | - Kimberly Whitten
- U.S. Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD, United States
| | - Katie Walker
- U.S. Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD, United States
| | - Cindy Acon-Chen
- U.S. Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD, United States
| | - Linnzi Wright
- U.S. Army Combat Capabilities Development Command Chemical Biological Center, Aberdeen Proving Ground, MD, United States
| | - Tsung-Ming Shih
- U.S. Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD, United States
| |
Collapse
|
6
|
Kentrop J, Savransky V, Klaassen SD, van Groningen T, Bohnert S, Cornelissen AS, Cochrane L, Barry J, Joosen MJA. Pharmacokinetics and efficacy of atropine sulfate/obidoxime chloride co-formulation against VX in a guinea pig model. Regul Toxicol Pharmacol 2020; 119:104823. [PMID: 33212192 DOI: 10.1016/j.yrtph.2020.104823] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 11/11/2020] [Indexed: 11/19/2022]
Abstract
Nerve agent exposure is generally treated by an antidote formulation composed of a muscarinic antagonist, atropine sulfate (ATR), and a reactivator of acetylcholinesterase (AChE) such as pralidoxime, obidoxime (OBI), methoxime, trimedoxime or HI-6 and an anticonvulsant. Organophosphates (OPs) irreversibly inhibit AChE, the enzyme responsible for termination of acetylcholine signal transduction. Inhibition of AChE leads to overstimulation of the central and peripheral nervous system with convulsive seizures, respiratory distress and death as result. The present study evaluated the efficacy and pharmacokinetics (PK) of ATR/OBI following exposure to two different VX dose levels. The PK of ATR and OBI administered either as a single drug, combined treatment but separately injected, or administered as the ATR/OBI co-formulation, was determined in plasma of naïve guinea pigs and found to be similar for all formulations. Following subcutaneous VX exposure, ATR/OBI-treated animals showed significant improvement in survival rate and progression of clinical signs compared to untreated animals. Moreover, AChE activity after VX exposure in both blood and brain tissue was significantly higher in ATR/OBI-treated animals compared to vehicle-treated control. In conclusion, ATR/OBI has been proven to be efficacious against exposure to VX and there were no PK interactions between ATR and OBI when administered as a co-formulation.
Collapse
Affiliation(s)
- Jiska Kentrop
- TNO Defence, Safety & Security, CBRN Protection, Lange Kleiweg 137, NL-2288, GJ Rijswijk, the Netherlands
| | - Vladimir Savransky
- Emergent BioSolutions Inc, 300 Professional Drive, Gaithersburg, MD, 20879, USA
| | - Steven D Klaassen
- TNO Defence, Safety & Security, CBRN Protection, Lange Kleiweg 137, NL-2288, GJ Rijswijk, the Netherlands
| | - Tomas van Groningen
- TNO Defence, Safety & Security, CBRN Protection, Lange Kleiweg 137, NL-2288, GJ Rijswijk, the Netherlands
| | - Sara Bohnert
- Defense Research and Development Canada - Suffield Research Centre, Casualty Management Section, PO Box 4000 Station Main, Medicine Hat, Alberta, T1A 8K6, Canada
| | - Alex S Cornelissen
- TNO Defence, Safety & Security, CBRN Protection, Lange Kleiweg 137, NL-2288, GJ Rijswijk, the Netherlands
| | - Laura Cochrane
- Emergent BioSolutions Inc, 300 Professional Drive, Gaithersburg, MD, 20879, USA
| | - John Barry
- Emergent BioSolutions Inc, 300 Professional Drive, Gaithersburg, MD, 20879, USA
| | - Marloes J A Joosen
- TNO Defence, Safety & Security, CBRN Protection, Lange Kleiweg 137, NL-2288, GJ Rijswijk, the Netherlands.
| |
Collapse
|
7
|
Izquierdo PG, O'Connor V, Green AC, Holden-Dye L, Tattersall JEH. C. elegans pharyngeal pumping provides a whole organism bio-assay to investigate anti-cholinesterase intoxication and antidotes. Neurotoxicology 2020; 82:50-62. [PMID: 33176172 DOI: 10.1016/j.neuro.2020.11.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 10/30/2020] [Accepted: 11/03/2020] [Indexed: 10/23/2022]
Abstract
Inhibition of acetylcholinesterase by either organophosphates or carbamates causes anti-cholinesterase poisoning. This arises through a wide range of neurotoxic effects triggered by the overstimulation of the cholinergic receptors at synapses and neuromuscular junctions. Without intervention, this poisoning can lead to profound toxic effects, including death, and the incomplete efficacy of the current treatments, particularly for oxime-insensitive agents, provokes the need to find better antidotes. Here we show how the non-parasitic nematode Caenorhabditis elegans offers an excellent tool for investigating the acetylcholinesterase intoxication. The C. elegans neuromuscular junctions show a high degree of molecular and functional conservation with the cholinergic transmission that operates in the autonomic, central and neuromuscular synapses in mammals. In fact, the anti-cholinesterase intoxication of the worm's body wall neuromuscular junction has been unprecedented in understanding molecular determinants of cholinergic function in nematodes and other organisms. We extend the use of the model organism's feeding behaviour as a tool to investigate carbamate and organophosphate mode of action. We show that inhibition of the cholinergic-dependent rhythmic pumping of the pharyngeal muscle correlates with the inhibition of the acetylcholinesterase activity caused by aldicarb, paraoxons and DFP exposure. Further, this bio-assay allows one to address oxime dependent reversal of cholinesterase inhibition in the context of whole organism recovery. Interestingly, the recovery of the pharyngeal function after such anti-cholinesterase poisoning represents a sensitive and easily quantifiable phenotype that is indicative of the spontaneous recovery or irreversible modification of the worm acetylcholinesterase after inhibition. These observations highlight the pharynx of C. elegans as a new tractable approach to explore anti-cholinesterase intoxication and recovery with the potential to resolve critical genetic determinants of these neurotoxins' mode of action.
Collapse
Affiliation(s)
- Patricia G Izquierdo
- Biological Sciences, Institute for Life Sciences, University of Southampton, Southampton, United Kingdom.
| | - Vincent O'Connor
- Biological Sciences, Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
| | - A Christopher Green
- Dstl, Defence Science and Technology Laboratory, Porton Down, Salisbury, Wiltshire, SP4 0JQ, United Kingdom
| | - Lindy Holden-Dye
- Biological Sciences, Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
| | - John E H Tattersall
- Dstl, Defence Science and Technology Laboratory, Porton Down, Salisbury, Wiltshire, SP4 0JQ, United Kingdom
| |
Collapse
|
8
|
Gestational exposures to organophosphorus insecticides: From acute poisoning to developmental neurotoxicity. Neuropharmacology 2020; 180:108271. [PMID: 32814088 DOI: 10.1016/j.neuropharm.2020.108271] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 07/03/2020] [Accepted: 08/10/2020] [Indexed: 11/22/2022]
Abstract
For over three-quarters of a century, organophosphorus (OP) insecticides have been ubiquitously used in agricultural, residential, and commercial settings and in public health programs to mitigate insect-borne diseases. Their broad-spectrum insecticidal effectiveness is accounted for by the irreversible inhibition of acetylcholinesterase (AChE), the enzyme that catalyzes acetylcholine (ACh) hydrolysis, in the nervous system of insects. However, because AChE is evolutionarily conserved, OP insecticides are also toxic to mammals, including humans, and acute OP intoxication remains a major public health concern in countries where OP insecticide usage is poorly regulated. Environmental exposures to OP levels that are generally too low to cause marked inhibition of AChE and to trigger acute signs of intoxication, on the other hand, represent an insidious public health issue worldwide. Gestational exposures to OP insecticides are particularly concerning because of the exquisite sensitivity of the developing brain to these insecticides. The present article overviews and discusses: (i) the health effects and therapeutic management of acute OP poisoning during pregnancy, (ii) epidemiological studies examining associations between environmental OP exposures during gestation and health outcomes of offspring, (iii) preclinical evidence that OP insecticides are developmental neurotoxicants, and (iv) potential mechanisms underlying the developmental neurotoxicity of OP insecticides. Understanding how gestational exposures to different levels of OP insecticides affect pregnancy and childhood development is critical to guiding implementation of preventive measures and direct research aimed at identifying effective therapeutic interventions that can limit the negative impact of these exposures on public health.
Collapse
|
9
|
Lumsden EW, McCowan L, Pescrille JD, Fawcett WP, Chen H, Albuquerque EX, Mamczarz J, Pereira EFR. Learning and memory retention deficits in prepubertal guinea pigs prenatally exposed to low levels of the organophosphorus insecticide malathion. Neurotoxicol Teratol 2020; 81:106914. [PMID: 32652103 DOI: 10.1016/j.ntt.2020.106914] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 06/16/2020] [Accepted: 07/06/2020] [Indexed: 10/23/2022]
Abstract
High doses of malathion, an organophosphorus (OP) insecticide ubiquitously used in agriculture, residential settings, and public health programs worldwide, induce a well-defined toxidrome that results from the inhibition of acetylcholinesterase (AChE). However, prenatal exposures to malathion levels that are below the threshold for AChE inhibition have been associated with increased risks of neurodevelopmental disorders, including autism spectrum disorder with intellectual disability comorbidity. The present study tested the hypothesis that prenatal exposures to a non-AChE-inhibiting dose of malathion are causally related to sex-biased cognitive deficits later in life in a precocial species. To this end, pregnant guinea pigs were injected subcutaneously with malathion (20 mg/kg) or vehicle (peanut oil, 0.5 ml/kg) once daily between approximate gestational days 53 and 63. This malathion dose regimen caused no significant AChE inhibition in the brain or blood of dams and offspring and had no significant effect on the postnatal growth of the offspring. Around postnatal day 30, locomotor activity and habituation, a form of non-associative learning, were comparable between malathion- and peanut oil-exposed offspring. However, in the Morris water maze, malathion-exposed offspring presented significant sex-dependent spatial learning deficits in addition to memory impairments. These results are far-reaching as they indicate that: (i) malathion is a developmental neurotoxicant and (ii) AChE inhibition is not an adequate biomarker to derive safety limits of malathion exposures during gestation. Continued studies are necessary to identify the time and dose dependence of the developmental neurotoxicity of malathion and the mechanisms underlying the detrimental effects of this insecticide in the developing brain.
Collapse
Affiliation(s)
- Eric W Lumsden
- Division of Translational Toxicology, Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, MD 21201, United States of America
| | - Lillian McCowan
- Division of Translational Toxicology, Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, MD 21201, United States of America
| | - Joseph D Pescrille
- Division of Translational Toxicology, Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, MD 21201, United States of America
| | - William P Fawcett
- Division of Translational Toxicology, Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, MD 21201, United States of America
| | - Hegang Chen
- Division of Biostatistics and Bioinformatics, Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, MD 21201, United States of America
| | - Edson X Albuquerque
- Division of Translational Toxicology, Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, MD 21201, United States of America; Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD 21201, United States of America
| | - Jacek Mamczarz
- Division of Translational Toxicology, Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, MD 21201, United States of America.
| | - Edna F R Pereira
- Division of Translational Toxicology, Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, MD 21201, United States of America; Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD 21201, United States of America
| |
Collapse
|
10
|
Butyrylcholinesterase, a stereospecific in vivo bioscavenger against nerve agent intoxication. Biochem Pharmacol 2020; 171:113670. [DOI: 10.1016/j.bcp.2019.113670] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 10/14/2019] [Indexed: 11/18/2022]
|
11
|
Wang Y, Kim B, Walker A, Williams S, Meeks A, Lee YJ, Seo SS. Cytotoxic effects of parathion, paraoxon, and their methylated derivatives on a mouse neuroblastoma cell line NB41A3. ACTA ACUST UNITED AC 2019. [DOI: 10.2131/fts.6.45] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Yunbiao Wang
- Department of Chemistry and Forensic Science, Albany State University, USA
| | - ByungHoon Kim
- Department of Biological Sciences, Albany State University, USA
| | - Ashley Walker
- Department of Chemistry and Forensic Science, Albany State University, USA
| | - Shayla Williams
- Department of Biological Sciences, Albany State University, USA
| | - Ashley Meeks
- Department of Chemistry and Forensic Science, Albany State University, USA
| | - Yong-Jin Lee
- Department of Biological Sciences, Albany State University, USA
| | - Seong S. Seo
- Department of Chemistry and Forensic Science, Albany State University, USA
| |
Collapse
|
12
|
Sciuto AM, Peng X. Pulmonary toxicity following inhalation exposure to VX in anesthetized rats: Possible roles for compromised immunity and oxidative stress-induced lung injury. Exp Lung Res 2019; 44:379-396. [DOI: 10.1080/01902148.2018.1519003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Alfred M. Sciuto
- Biochemical and Physiology Branch, Medical Toxicology Research Division, United States Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, Maryland, USA
| | - Xinqi Peng
- Biochemical and Physiology Branch, Medical Toxicology Research Division, United States Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, Maryland, USA
| |
Collapse
|
13
|
Sex modulated effects of sarin exposure in rats: Toxicity, hypothermia and inflammatory markers. Neurotoxicology 2018; 66:121-127. [DOI: 10.1016/j.neuro.2018.04.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 03/28/2018] [Accepted: 04/02/2018] [Indexed: 12/31/2022]
|
14
|
Scholl EA, Miller-Smith SM, Bealer SL, Lehmkuhle MJ, Ekstrand JJ, Dudek FE, McDonough JH. Age-dependent behaviors, seizure severity and neuronal damage in response to nerve agents or the organophosphate DFP in immature and adult rats. Neurotoxicology 2018; 66:10-21. [PMID: 29510177 PMCID: PMC5996394 DOI: 10.1016/j.neuro.2018.02.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 02/07/2018] [Accepted: 02/27/2018] [Indexed: 01/15/2023]
Abstract
Exposure to nerve agents (NAs) and other organophosphates (OPs) can initiate seizures that rapidly progress to status epilepticus (SE). While the electrographic and neuropathological sequelae of SE evoked by NAs and OPs have been characterized in adult rodents, they have not been adequately investigated in immature animals. In this study postnatal day (PND) 14, 21 and 28 rat pups, along with PND70 animals as adult controls, were exposed to NAs (sarin, VX) or another OP (diisopropylfluorophosphate, DFP). We then evaluated behavioral and electrographic (EEG) correlates of seizure activity, and performed neuropathology using Fluoro-Jade B. Although all immature rats exhibited behaviors that are often characterized as seizures, the incidence, duration, and severity of the electrographic seizure activity were age-dependent. No (sarin and VX) or brief (DFP) EEG seizure activity was evoked in PND14 rats, while SE progressively increased in severity as a function of age in PND21, 28 and 70 animals. Fluoro-Jade B staining was observed in multiple brain regions of animals that exhibited prolonged seizure activity. Neuronal injury in PND14 animals treated with DFP was lower than in older animals and absent in rats exposed to sarin or VX. In conclusion, we found that NAs and an OP provoked robust SE and neuronal injury similar to adults in PND21 and PND28, but not in PND14, rat pups. Convulsive behaviors were often present independent of EEG seizures and were unaccompanied by neuronal damage. These differential responses should be considered when investigating medical countermeasures for NA and OP exposure in pediatric populations.
Collapse
Affiliation(s)
- Erika A Scholl
- Department of Neurosurgery, University of Utah, Salt Lake City, UT, 84108 USA
| | - Stephanie M Miller-Smith
- Neuroscience Branch, U.S. Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD, 21010-5400 USA
| | - Steven L Bealer
- Department of Neurosurgery, University of Utah, Salt Lake City, UT, 84108 USA; Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT, 84108 USA
| | - Mark J Lehmkuhle
- Department of Neurosurgery, University of Utah, Salt Lake City, UT, 84108 USA; Epitel, Inc., Salt Lake City, UT, 84111 USA
| | - Jeffrey J Ekstrand
- Department of Pediatrics, University of Utah, Salt Lake City, UT, 84108 USA
| | - F Edward Dudek
- Department of Neurosurgery, University of Utah, Salt Lake City, UT, 84108 USA
| | - John H McDonough
- Neuroscience Branch, U.S. Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD, 21010-5400 USA.
| |
Collapse
|
15
|
Radiolabelled soman binding to sera from Rats, Guinea Pigs and Monkeys. Toxicol Lett 2017; 283:86-90. [PMID: 29155040 DOI: 10.1016/j.toxlet.2017.11.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 10/17/2017] [Accepted: 11/13/2017] [Indexed: 11/24/2022]
Abstract
Soman is a highly toxic organophosphorus chemical warfare compound that binds rapidly and irreversibility to a variety of serine active enzymes, i.e., butyryl- and acetyl-cholinesterases and carboxylesterase. The in vivo toxicity of soman has been reported to vary significantly in different animal species, such as rats and guinea pigs or non-human primates. This species variation makes it difficult to identify appropriate animal models for therapeutic drug development under the US Food and Drug Administration (FDA) Animal Rule. Since species variation in soman toxicity has been correlated with species variation in serum carboxylesterase, we undertook to determine if serum from guinea pigs, rats and non-human primates bound different levels of soman in vitro in the presence of equimolar concentrations of soman. Our results demonstrated that the amount of soman bound in the serum of rats was 4 uM, but essentially null in guinea pigs or non-human primates. The results strongly correlate with the presence or absence of carboxylesterase in the serum of animals and the difference in the toxic dose of soman in various species. Our results support prior suggestions that guinea pigs and non-human primates may be better animal models for the development of antidotes under the FDA Animal Rule.
Collapse
|
16
|
Lydon H, Hall C, Matar H, Dalton C, Chipman JK, Graham JS, Chilcott RP. The percutaneous toxicokinetics of VX in a damaged skin porcine model and the evaluation of WoundStat™ as a topical decontaminant. J Appl Toxicol 2017; 38:318-328. [PMID: 29023806 DOI: 10.1002/jat.3542] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 08/31/2017] [Accepted: 08/31/2017] [Indexed: 11/06/2022]
Abstract
This study used a damaged skin, porcine model to evaluate the in vivo efficacy of WoundStat™ for the decontamination of superficial, nerve agent-contaminated wounds. Anaesthetized animals were randomly assigned to either control (n = 7), no decontamination (n = 12) or WoundStat™ (n = 12) treatment groups. Pigs were exposed to a 5× LD50 dose of neat, radiolabelled S-[2-(diisopropylamino)ethyl]-O-ethyl methyl-phosphonothioate (VX; or equivalent volume of sterile saline for the control group) via an area of superficially damaged skin on the ear. WoundStat™ was applied at 30 seconds post-exposure to assigned animals. The VX contaminant (or saline) and decontaminant remained in place for the duration of the study (up to 6 hours). Physiological parameters and signs of intoxication were recorded during the exposure period. Skin and organ samples were taken post mortem for 14 C-VX distribution analyses. Blood samples were taken periodically for toxicokinetic and whole-blood acetylcholinesterase (AChE) activity analyses. VX exposure was accompanied by a rapid decrease in AChE activity in all animals, regardless of decontamination. However, decontamination significantly improved survival rate and time and reduced the severity of signs of intoxication. In addition, the distribution of 14 C-VX in key internal organs and post mortem blood samples was significantly lower in the WoundStat™ treatment group. This study demonstrates that WoundStat™ may be a suitable medical countermeasure for increasing both survival rate and time following VX exposure. The results also suggest that AChE activity is not a useful prognostic indicator.
Collapse
Affiliation(s)
- Helen Lydon
- CBRN & Chemical Toxicological Research Group, Centre for Radiation, Chemical and Environmental Hazards, Health Protection Agency (now Public Health England), Chilton, UK.,School of Biosciences, University of Birmingham, Edgbaston, UK
| | - Charlotte Hall
- CBRN & Chemical Toxicological Research Group, Centre for Radiation, Chemical and Environmental Hazards, Health Protection Agency (now Public Health England), Chilton, UK.,School of Biosciences, University of Birmingham, Edgbaston, UK
| | - Hazem Matar
- CBRN & Chemical Toxicological Research Group, Centre for Radiation, Chemical and Environmental Hazards, Health Protection Agency (now Public Health England), Chilton, UK.,Research Centre for Topical Drug Delivery and Toxicology, University of Hertfordshire, Hatfield, UK
| | - Christopher Dalton
- School of Biosciences, University of Birmingham, Edgbaston, UK.,Defence Science & Technology Laboratory, Porton, UK
| | - J Kevin Chipman
- School of Biosciences, University of Birmingham, Edgbaston, UK
| | - John S Graham
- Medical Toxicology Branch Analytical Toxicology Division, U.S. Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD, 21010, USA
| | - Robert P Chilcott
- CBRN & Chemical Toxicological Research Group, Centre for Radiation, Chemical and Environmental Hazards, Health Protection Agency (now Public Health England), Chilton, UK.,Research Centre for Topical Drug Delivery and Toxicology, University of Hertfordshire, Hatfield, UK
| |
Collapse
|
17
|
|
18
|
Summerhill EM, Hoyle GW, Jordt SE, Jugg BJ, Martin JG, Matalon S, Patterson SE, Prezant DJ, Sciuto AM, Svendsen ER, White CW, Veress LA. An Official American Thoracic Society Workshop Report: Chemical Inhalational Disasters. Biology of Lung Injury, Development of Novel Therapeutics, and Medical Preparedness. Ann Am Thorac Soc 2017; 14:1060-1072. [PMID: 28418689 PMCID: PMC5529138 DOI: 10.1513/annalsats.201704-297ws] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
This report is based on the proceedings from the Inhalational Lung Injury Workshop jointly sponsored by the American Thoracic Society (ATS) and the National Institutes of Health (NIH) Countermeasures Against Chemical Threats (CounterACT) program on May 21, 2013, in Philadelphia, Pennsylvania. The CounterACT program facilitates research leading to the development of new and improved medical countermeasures for chemical threat agents. The workshop was initiated by the Terrorism and Inhalational Disasters Section of the Environmental, Occupational, and Population Health Assembly of the ATS. Participants included both domestic and international experts in the field, as well as representatives from U.S. governmental funding agencies. The meeting objectives were to (1) provide a forum to review the evidence supporting current standard medical therapies, (2) present updates on our understanding of the epidemiology and underlying pathophysiology of inhalational lung injuries, (3) discuss innovative investigative approaches to further delineating mechanisms of lung injury and identifying new specific therapeutic targets, (4) present promising novel medical countermeasures, (5) facilitate collaborative research efforts, and (6) identify challenges and future directions in the ongoing development, manufacture, and distribution of effective and specific medical countermeasures. Specific inhalational toxins discussed included irritants/pulmonary toxicants (chlorine gas, bromine, and phosgene), vesicants (sulfur mustard), chemical asphyxiants (cyanide), particulates (World Trade Center dust), and respirable nerve agents.
Collapse
|
19
|
Swami D, Karade HN, Acharya J, Kumar P. In vivo protection studies of bis-quaternary 2-(hydroxyimino)-N-(pyridin-3-yl) acetamide derivatives against sarin poisoning in mice. Hum Exp Toxicol 2016; 36:23-32. [DOI: 10.1177/0960327116637109] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In vivo antidotal efficacy of new bis- quaternary 2-(hydroxyimino)- N-(pyridin-3yl) acetamide derivatives (HNK series), to counter multiples of lethal doses of nerve agent sarin (GB) and reactivation of acetylcholinesterase (AChE), was evaluated in Swiss albino mice. [Protection index PI; median lethal dose (LD50) of sarin with treatment/LD50 of sarin] was estimated, using 0.05, 0.10, and 0.20 LD50 as treatment doses of all the oximes with atropine against sarin poisoning. Dose-dependent time course study was conducted at 0.2, 0.4 and 0.8 LD50 dose of sarin for estimating maximum AChE inhibition. At optimized time (15 min), in vivo enzyme half inhibition concentration (IC50) was calculated. AChE reactivation efficacy of HNK series and pralidoxime (2-PAM) were determined by plotting shift of log IC50 doses. HNK-102 with atropine showed three fold higher PI compared to 2-PAM. In vivo IC50 of sarin for brain and serum AChE was found to be 0.87 LD50 (139.2 µg/kg) and 0.48 LD50 (77.23 µg/kg), respectively. Treatment with HNK-102 and HNK-111 (equal to their 0.20LD50) significantly reactivated sarin-intoxicated AChE ( p < 0.05) at 2× IC50 dose of sarin, compared to 2-PAM. The study revealed that HNK-102 oxime was three times more potent as antidote, for acute sarin poisoning compared to 2-PAM in vivo.
Collapse
Affiliation(s)
- Devyani Swami
- Pharmacology and Toxicology Division, Defence Research & Development Establishment, Gwalior, India
| | - Hitendra N Karade
- Process Technology Development Division, Defence Research & Development Establishment, Gwalior, India
| | - Jyotiranjan Acharya
- Process Technology Development Division, Defence Research & Development Establishment, Gwalior, India
| | - Pravin Kumar
- Pharmacology and Toxicology Division, Defence Research & Development Establishment, Gwalior, India
| |
Collapse
|
20
|
Wright LKM, Lumley LA, Lee RB, Taylor JT, Miller DB, Muse WT, Emm EJ, Whalley CE. Younger rats are more susceptible to the lethal effects of sarin than adult rats: 24 h LC 50 for whole-body (10 and 60 min) exposures. Drug Chem Toxicol 2016; 40:134-139. [PMID: 27320079 DOI: 10.1080/01480545.2016.1188304] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Chemical warfare nerve agents (CWNA) inhibit acetylcholinesterase and are among the most lethal chemicals known to man. Children are predicted to be vulnerable to CWNA exposure because of their smaller body masses, higher ventilation rates and immature central nervous systems. While a handful of studies on the effects of CWNA in younger animals have been published, exposure routes relevant to battlefield or terrorist situations (i.e. inhalation for sarin) were not used. Thus, we estimated the 24 h LC50 for whole-body (10 and 60 min) exposure to sarin using a stagewise, adaptive dose design. Specifically, male and female Sprague-Dawley rats were exposed to a range of sarin concentrations (6.2-44.0 or 1.6-12.5 mg/m³) for either 10 or 60 min, respectively, at six different times during their development (postnatal day [PND] 7, 14, 21, 28, 42 and 70). For male and female rats, the lowest LC50 values were observed for PND 14 and the highest LC50 values for PND 28. Sex differences were observed only for PND 42 for the 10 min exposures and PND 21 and 70 for the 60 min exposures. Thus, younger rats (PND 14) were more susceptible than older rats (PND 70) to the lethal effects of whole-body exposure to sarin, while adolescent (PND 28) rats were the least susceptible and sex differences were minimal. These results underscore the importance of controlling for the age of the animal in research on the toxic effects associated with CWNA exposure.
Collapse
Affiliation(s)
- Linnzi K M Wright
- a US Army Medical Research Institute of Chemical Defense (USAMRICD) and
| | - Lucille A Lumley
- a US Army Medical Research Institute of Chemical Defense (USAMRICD) and
| | - Robyn B Lee
- a US Army Medical Research Institute of Chemical Defense (USAMRICD) and
| | - James T Taylor
- a US Army Medical Research Institute of Chemical Defense (USAMRICD) and
| | - Dennis B Miller
- b US Army Edgewood Chemical Biological Center (ECBC) , Aberdeen Proving Ground , MD , USA
| | - William T Muse
- b US Army Edgewood Chemical Biological Center (ECBC) , Aberdeen Proving Ground , MD , USA
| | - Edward J Emm
- b US Army Edgewood Chemical Biological Center (ECBC) , Aberdeen Proving Ground , MD , USA
| | - Christopher E Whalley
- b US Army Edgewood Chemical Biological Center (ECBC) , Aberdeen Proving Ground , MD , USA
| |
Collapse
|
21
|
Mamczarz J, Pescrille JD, Gavrushenko L, Burke RD, Fawcett WP, DeTolla LJ, Chen H, Pereira EFR, Albuquerque EX. Spatial learning impairment in prepubertal guinea pigs prenatally exposed to the organophosphorus pesticide chlorpyrifos: Toxicological implications. Neurotoxicology 2016; 56:17-28. [PMID: 27296654 DOI: 10.1016/j.neuro.2016.06.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 06/09/2016] [Accepted: 06/09/2016] [Indexed: 11/17/2022]
Abstract
Exposure of the developing brain to chlorpyrifos (CPF), an organophosphorus (OP) pesticide used extensively in agriculture worldwide, has been associated with increased prevalence of cognitive deficits in children, particularly boys. The present study was designed to test the hypothesis that cognitive deficits induced by prenatal exposure to sub-acute doses of CPF can be reproduced in precocial small species. To address this hypothesis, pregnant guinea pigs were injected daily with CPF (25mg/kg,s.c.) or vehicle (peanut oil) for 10days starting on presumed gestation day (GD) 53-55. Offspring were born around GD 65, weaned on postnatal day (PND) 20, and subjected to behavioral tests starting around PND 30. On the day of birth, butyrylcholinesterase (BuChE), an OP bioscavenger used as a biomarker of OP exposures, and acetylcholinesterase (AChE), a major molecular target of OP compounds, were significantly inhibited in the blood of CPF-exposed offspring. In their brains, BuChE, but not AChE, was significantly inhibited. Prenatal CPF exposure had no significant effect on locomotor activity or on locomotor habituation, a form of non-associative memory assessed in open fields. Spatial navigation in the Morris water maze (MWM) was found to be sexually dimorphic among guinea pigs, with males outperforming females. Prenatal CPF exposure impaired spatial learning more significantly among male than female guinea pigs and, consequently, reduced the sexual dimorphism of the task. The results presented here, which strongly support the test hypothesis, reveal that the guinea pig is a valuable animal model for preclinical assessment of the developmental neurotoxicity of OP pesticides. These findings are far reaching as they lay the groundwork for future studies aimed at identifying therapeutic interventions to treat and/or prevent the neurotoxic effects of CPF in the developing brain.
Collapse
Affiliation(s)
- Jacek Mamczarz
- Division of Translational Toxicology, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - Joseph D Pescrille
- Division of Translational Toxicology, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - Lisa Gavrushenko
- Division of Translational Toxicology, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - Richard D Burke
- Division of Translational Toxicology, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - William P Fawcett
- Division of Translational Toxicology, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - Louis J DeTolla
- Program of Comparative Medicine and Departments of Pathology and Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - Hegang Chen
- Division of Biostatistics and Bioinformatics, Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - Edna F R Pereira
- Division of Translational Toxicology, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - Edson X Albuquerque
- Division of Translational Toxicology, University of Maryland School of Medicine, Baltimore, MD 21201, United States.
| |
Collapse
|
22
|
Pharmacokinetic profile and quantitation of protection against soman poisoning by the antinicotinic compound MB327 in the guinea-pig. Toxicol Lett 2016; 244:154-160. [DOI: 10.1016/j.toxlet.2015.08.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 07/24/2015] [Accepted: 08/10/2015] [Indexed: 11/20/2022]
|
23
|
Wright LKM, Lee RB, Vincelli NM, Whalley CE, Lumley LA. Comparison of the lethal effects of chemical warfare nerve agents across multiple ages. Toxicol Lett 2015; 241:167-74. [PMID: 26621540 DOI: 10.1016/j.toxlet.2015.11.023] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 11/09/2015] [Accepted: 11/21/2015] [Indexed: 12/17/2022]
Abstract
Children may be inherently more vulnerable than adults to the lethal effects associated with chemical warfare nerve agent (CWNA) exposure because of their closer proximity to the ground, smaller body mass, higher respiratory rate, increased skin permeability and immature metabolic systems. Unfortunately, there have only been a handful of studies on the effects of CWNA in pediatric animal models, and more research is needed to confirm this hypothesis. Using a stagewise, adaptive dose design, we estimated the 24h median lethal dose for subcutaneous exposure to seven CWNA in both male and female Sprague-Dawley rats at six different developmental times. Perinatal (postnatal day [PND] 7, 14 and 21) and adult (PND 70) rats were more susceptible than pubertal (PND 28 and 42) rats to the lethal effects associated with exposure to tabun, sarin, soman and cyclosarin. Age-related differences in susceptibility were not observed in rats exposed to VM, Russian VX or VX.
Collapse
Affiliation(s)
- Linnzi K M Wright
- US Army Medical Research Institute of Chemical Defense (USAMRICD), 2900 Ricketts Point Rd., Aberdeen Proving Ground, MD 21010, USA
| | - Robyn B Lee
- US Army Medical Research Institute of Chemical Defense (USAMRICD), 2900 Ricketts Point Rd., Aberdeen Proving Ground, MD 21010, USA
| | - Nicole M Vincelli
- Edgewood Chemical Biological Center (ECBC), 5183 Blackhawk Rd., Aberdeen Proving Ground, MD 21010, USA
| | - Christopher E Whalley
- Edgewood Chemical Biological Center (ECBC), 5183 Blackhawk Rd., Aberdeen Proving Ground, MD 21010, USA
| | - Lucille A Lumley
- US Army Medical Research Institute of Chemical Defense (USAMRICD), 2900 Ricketts Point Rd., Aberdeen Proving Ground, MD 21010, USA.
| |
Collapse
|
24
|
Angelini DJ, Moyer RA, Cole S, Willis KL, Oyler J, Dorsey RM, Salem H. The Pesticide Metabolites Paraoxon and Malaoxon Induce Cellular Death by Different Mechanisms in Cultured Human Pulmonary Cells. Int J Toxicol 2015; 34:433-41. [PMID: 26173615 DOI: 10.1177/1091581815593933] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Organophosphorus (OP) pesticides are known to induce pulmonary toxicity in both humans and experimental animals. To elucidate the mechanism of OP-induced cytotoxicity, we examined the effects of parathion and malathion and their respective metabolites, paraoxon and malaoxon, on primary cultured human large and small airway cells. Exposure to paraoxon and malaoxon produced a dose-dependent increase in cytotoxicity following a 24-hour exposure, while treatment with parathion or malathion produced no effects at clinically relevant concentrations. Exposure to paraoxon-induced caspase activation, but malaoxon failed to induce this response. Since caspases have a major role in the regulation of apoptosis and cell death, we evaluated OP-induced cell death in the presence of a caspase inhibitor. Pharmacological caspase inhibition protected against paraoxon-induced cell death but not malaoxon-induced cell death. These data suggest that caspase activation is a key signaling element in paraoxon-induced cell death, but not malaoxon-induced cellular death in the pulmonary epithelium.
Collapse
Affiliation(s)
- Daniel J Angelini
- National Research Council, Research Associates Program, Washington DC, USA Excet Inc, Springfield, VA, USA
| | - Robert A Moyer
- Chemical & Biological Technologies Department, Defense Threat Reduction Agency, Fort Belvoir, VA, USA Battelle Memorial Institute, Columbus, OH, USA
| | - Stephanie Cole
- National Research Council, Research Associates Program, Washington DC, USA Excet Inc, Springfield, VA, USA Chemical & Biological Technologies Department, Defense Threat Reduction Agency, Fort Belvoir, VA, USA
| | - Kristen L Willis
- National Research Council, Research Associates Program, Washington DC, USA Chemical & Biological Technologies Department, Defense Threat Reduction Agency, Fort Belvoir, VA, USA
| | - Jonathan Oyler
- U.S. Army Medical Command, U.S. Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, Aberdeen, MD, USA
| | - Russell M Dorsey
- U.S. Army Research Development and Engineering Command, Edgewood Chemical Biological Center, Aberdeen Proving Ground, MD, USA
| | - Harry Salem
- U.S. Army Research Development and Engineering Command, Edgewood Chemical Biological Center, Aberdeen Proving Ground, MD, USA Department of Homeland Security, Chemical Security Assessment Center, Aberdeen Proving Ground, MD, USA
| |
Collapse
|
25
|
Smith CD, Wright LKM, Garcia GE, Lee RB, Lumley LA. Hormone-dependence of sarin lethality in rats: Sex differences and stage of the estrous cycle. Toxicol Appl Pharmacol 2015; 287:253-7. [PMID: 26079828 DOI: 10.1016/j.taap.2015.06.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 06/08/2015] [Accepted: 06/10/2015] [Indexed: 11/18/2022]
Abstract
Chemical warfare nerve agents (CWNAs) are highly toxic compounds that cause a cascade of symptoms and death, if exposed casualties are left untreated. Numerous rodent models have investigated the toxicity and mechanisms of toxicity of CWNAs, but most are limited to male subjects. Given the profound physiological effects of circulating gonadal hormones in female rodents, it is possible that the daily cyclical fluctuations of these hormones affect females' sensitivity to the lethal effects of CWNAs, and previous reports that included female subjects did not control for the stage of the hormonal cycle. The aim of the current study was to determine the 24-hour median lethal dose (LD50) of the CWNA sarin in male, ovariectomized (OVEX) female, and female rats during different stages of the estrous cycle (diestrus, proestrus, and estrus). Additionally, baseline activity levels of plasma acetylcholinesterase, butyrylcholinesterase, and carboxylesterase were measured to determine differences among the groups. Results indicated that females in proestrus had a significantly higher LD50 of sarin compared to OVEX and estrous females. Although some sex differences were observed in the activity levels of plasma esterases, they were not consistent and likely not large enough to significantly affect the LD50s. These results suggest that hormonal cyclicity can influence the outcome of CWNA-related studies using female rodents, and that this variability can be minimized by controlling for the stage of the cycle. Additional research is necessary to determine the precise mechanism of the observed differences because it is unlikely to be solely explained by plasma esterase activity.
Collapse
Affiliation(s)
- Carl D Smith
- US Army Medical Research Institute of Chemical Defense (USAMRICD), Aberdeen Proving Ground, MD 21010, United States.
| | - Linnzi K M Wright
- US Army Medical Research Institute of Chemical Defense (USAMRICD), Aberdeen Proving Ground, MD 21010, United States
| | - Gregory E Garcia
- US Army Medical Research Institute of Chemical Defense (USAMRICD), Aberdeen Proving Ground, MD 21010, United States
| | - Robyn B Lee
- US Army Medical Research Institute of Chemical Defense (USAMRICD), Aberdeen Proving Ground, MD 21010, United States
| | - Lucille A Lumley
- US Army Medical Research Institute of Chemical Defense (USAMRICD), Aberdeen Proving Ground, MD 21010, United States
| |
Collapse
|
26
|
Ononye SN, Shi W, Wali VB, Aktas B, Jiang T, Hatzis C, Pusztai L. Metabolic isoenzyme shifts in cancer as potential novel therapeutic targets. Breast Cancer Res Treat 2014; 148:477-88. [PMID: 25395317 DOI: 10.1007/s10549-014-3194-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 10/31/2014] [Indexed: 12/31/2022]
Abstract
The functional redundancy of metabolic enzyme expression may present a new strategy for developing targeted therapies in cancer. To satisfy the increased metabolic demand required during neoplastic transformations and proliferation, cancer cells may rely on additional isoforms of a metabolic enzyme to satisfy the increased demand for metabolic precursors, which could subsequently render cancer cells more vulnerable to isoform-specific inhibitors. In this review, we provide a survey of common isoenzyme shifts that have been reported to be important in cancer metabolism and link those to metabolic pathways that currently have drugs in various stages of development. This phenomenon suggests a potentially new therapeutic strategy for the treatment of cancer by identifying shifts in the expression of metabolic isoenzymes between cancer and normal cells. We also delineate other putative metabolic isoenzymes that could be targets for novel targeted therapies for cancer. Changes in isoenzyme expression that occur during neoplastic transformations or in response to environmental pressure in cancer cells may result in isoenzyme diversity that may subsequently render cancer cells more vulnerable to isoform-specific inhibitors due to reliance on a single isoform to perform a vital enzymatic function.
Collapse
Affiliation(s)
- S N Ononye
- Yale Cancer Center, Yale School of Medicine, New Haven, CT, 06511, USA,
| | | | | | | | | | | | | |
Collapse
|
27
|
Legler PM, Boisvert SM, Compton JR, Millard CB. Development of organophosphate hydrolase activity in a bacterial homolog of human cholinesterase. Front Chem 2014; 2:46. [PMID: 25077141 PMCID: PMC4100338 DOI: 10.3389/fchem.2014.00046] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 06/19/2014] [Indexed: 01/10/2023] Open
Abstract
We applied a combination of rational design and directed evolution (DE) to Bacillus subtilis p-nitrobenzyl esterase (pNBE) with the goal of enhancing organophosphorus acid anhydride hydrolase (OPAAH) activity. DE started with a designed variant, pNBE A107H, carrying a histidine homologous with human butyrylcholinesterase G117H to find complementary mutations that further enhance its OPAAH activity. Five sites were selected (G105, G106, A107, A190, and A400) within a 6.7 Å radius of the nucleophilic serine Oγ. All 95 variants were screened for esterase activity with a set of five substrates: pNP-acetate, pNP-butyrate, acetylthiocholine, butyrylthiocholine, or benzoylthiocholine. A microscale assay for OPAAH activity was developed for screening DE libraries. Reductions in esterase activity were generally concomitant with enhancements in OPAAH activity. One variant, A107K, showed an unexpected 7-fold increase in its k cat/K m for benzoylthiocholine, demonstrating that it is also possible to enhance the cholinesterase activity of pNBE. Moreover, DE resulted in at least three variants with modestly enhanced OPAAH activity compared to wild type pNBE. A107H/A190C showed a 50-fold increase in paraoxonase activity and underwent a slow time- and temperature-dependent change affecting the hydrolysis of OPAA and ester substrates. Structural analysis suggests that pNBE may represent a precursor leading to human cholinesterase and carboxylesterase 1 through extension of two vestigial specificity loops; a preliminary attempt to transfer the Ω-loop of BChE into pNBE is described. Unlike butyrylcholinesterase and pNBE, introducing a G143H mutation (equivalent to G117H) did not confer detectable OP hydrolase activity on human carboxylesterase 1 (hCE1). We discuss the use of pNBE as a surrogate scaffold for the mammalian esterases, and the importance of the oxyanion-hole residues for enhancing the OPAAH activity of selected serine hydrolases.
Collapse
Affiliation(s)
- Patricia M. Legler
- Naval Research Laboratory, Center for Bio/Molecular Science and EngineeringWashington, DC, USA
| | | | | | - Charles B. Millard
- United States Army Medical Research and Materiel CommandFort Detrick, MD, USA
| |
Collapse
|
28
|
Pereira EFR, Aracava Y, DeTolla LJ, Beecham EJ, Basinger GW, Wakayama EJ, Albuquerque EX. Animal models that best reproduce the clinical manifestations of human intoxication with organophosphorus compounds. J Pharmacol Exp Ther 2014; 350:313-21. [PMID: 24907067 DOI: 10.1124/jpet.114.214932] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The translational capacity of data generated in preclinical toxicological studies is contingent upon several factors, including the appropriateness of the animal model. The primary objectives of this article are: 1) to analyze the natural history of acute and delayed signs and symptoms that develop following an acute exposure of humans to organophosphorus (OP) compounds, with an emphasis on nerve agents; 2) to identify animal models of the clinical manifestations of human exposure to OPs; and 3) to review the mechanisms that contribute to the immediate and delayed OP neurotoxicity. As discussed in this study, clinical manifestations of an acute exposure of humans to OP compounds can be faithfully reproduced in rodents and nonhuman primates. These manifestations include an acute cholinergic crisis in addition to signs of neurotoxicity that develop long after the OP exposure, particularly chronic neurologic deficits consisting of anxiety-related behavior and cognitive deficits, structural brain damage, and increased slow electroencephalographic frequencies. Because guinea pigs and nonhuman primates, like humans, have low levels of circulating carboxylesterases-the enzymes that metabolize and inactivate OP compounds-they stand out as appropriate animal models for studies of OP intoxication. These are critical points for the development of safe and effective therapeutic interventions against OP poisoning because approval of such therapies by the Food and Drug Administration is likely to rely on the Animal Efficacy Rule, which allows exclusive use of animal data as evidence of the effectiveness of a drug against pathologic conditions that cannot be ethically or feasibly tested in humans.
Collapse
Affiliation(s)
- Edna F R Pereira
- Division of Translational Toxicology, Department of Epidemiology and Public Health (E.F.R.P., Y.A., E.X.A.), and Program of Comparative Medicine and Departments of Pathology, Medicine, and Epidemiology and Public Health (L.J.D.), University of Maryland School of Medicine, Baltimore, Maryland; Countervail Corporation, Charlotte, North Carolina (E.J.B., G.W.B.); and Biomedical Advanced Research and Development Authority and Office of the Assistant Secretary for Preparedness and Response, Department of Health and Human Services, Washington, DC (E.J.W.)
| | - Yasco Aracava
- Division of Translational Toxicology, Department of Epidemiology and Public Health (E.F.R.P., Y.A., E.X.A.), and Program of Comparative Medicine and Departments of Pathology, Medicine, and Epidemiology and Public Health (L.J.D.), University of Maryland School of Medicine, Baltimore, Maryland; Countervail Corporation, Charlotte, North Carolina (E.J.B., G.W.B.); and Biomedical Advanced Research and Development Authority and Office of the Assistant Secretary for Preparedness and Response, Department of Health and Human Services, Washington, DC (E.J.W.)
| | - Louis J DeTolla
- Division of Translational Toxicology, Department of Epidemiology and Public Health (E.F.R.P., Y.A., E.X.A.), and Program of Comparative Medicine and Departments of Pathology, Medicine, and Epidemiology and Public Health (L.J.D.), University of Maryland School of Medicine, Baltimore, Maryland; Countervail Corporation, Charlotte, North Carolina (E.J.B., G.W.B.); and Biomedical Advanced Research and Development Authority and Office of the Assistant Secretary for Preparedness and Response, Department of Health and Human Services, Washington, DC (E.J.W.)
| | - E Jeffrey Beecham
- Division of Translational Toxicology, Department of Epidemiology and Public Health (E.F.R.P., Y.A., E.X.A.), and Program of Comparative Medicine and Departments of Pathology, Medicine, and Epidemiology and Public Health (L.J.D.), University of Maryland School of Medicine, Baltimore, Maryland; Countervail Corporation, Charlotte, North Carolina (E.J.B., G.W.B.); and Biomedical Advanced Research and Development Authority and Office of the Assistant Secretary for Preparedness and Response, Department of Health and Human Services, Washington, DC (E.J.W.)
| | - G William Basinger
- Division of Translational Toxicology, Department of Epidemiology and Public Health (E.F.R.P., Y.A., E.X.A.), and Program of Comparative Medicine and Departments of Pathology, Medicine, and Epidemiology and Public Health (L.J.D.), University of Maryland School of Medicine, Baltimore, Maryland; Countervail Corporation, Charlotte, North Carolina (E.J.B., G.W.B.); and Biomedical Advanced Research and Development Authority and Office of the Assistant Secretary for Preparedness and Response, Department of Health and Human Services, Washington, DC (E.J.W.)
| | - Edgar J Wakayama
- Division of Translational Toxicology, Department of Epidemiology and Public Health (E.F.R.P., Y.A., E.X.A.), and Program of Comparative Medicine and Departments of Pathology, Medicine, and Epidemiology and Public Health (L.J.D.), University of Maryland School of Medicine, Baltimore, Maryland; Countervail Corporation, Charlotte, North Carolina (E.J.B., G.W.B.); and Biomedical Advanced Research and Development Authority and Office of the Assistant Secretary for Preparedness and Response, Department of Health and Human Services, Washington, DC (E.J.W.)
| | - Edson X Albuquerque
- Division of Translational Toxicology, Department of Epidemiology and Public Health (E.F.R.P., Y.A., E.X.A.), and Program of Comparative Medicine and Departments of Pathology, Medicine, and Epidemiology and Public Health (L.J.D.), University of Maryland School of Medicine, Baltimore, Maryland; Countervail Corporation, Charlotte, North Carolina (E.J.B., G.W.B.); and Biomedical Advanced Research and Development Authority and Office of the Assistant Secretary for Preparedness and Response, Department of Health and Human Services, Washington, DC (E.J.W.)
| |
Collapse
|
29
|
Wong B, Perkins MW, Santos MD, Rodriguez AM, Murphy G, Sciuto AM. Development of a model for nerve agent inhalation in conscious rats. Toxicol Mech Methods 2013; 23:537-47. [DOI: 10.3109/15376516.2013.796033] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
30
|
Meek EC, Chambers HW, Coban A, Funck KE, Pringle RB, Ross MK, Chambers JE. Synthesis and In Vitro and In Vivo Inhibition Potencies of Highly Relevant Nerve Agent Surrogates. Toxicol Sci 2012; 126:525-33. [DOI: 10.1093/toxsci/kfs013] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
31
|
Inhibition of blood and tissue cholinesterases by soman in guinea pigs in vivo. J Appl Biomed 2011. [DOI: 10.2478/v10136-009-0030-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|