1
|
Wen Y, Chen Z, McAlinden C, Zhou X, Huang J. Recent advances in corneal neovascularization imaging. Exp Eye Res 2024; 244:109930. [PMID: 38750782 DOI: 10.1016/j.exer.2024.109930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 04/25/2024] [Accepted: 05/12/2024] [Indexed: 05/19/2024]
Abstract
Corneal neovascularization (CoNV) is a vision-threatening ocular disease commonly secondary to infectious, inflammatory, and traumatic etiologies. Slit lamp photography, in vivo confocal microscopy, angiography, and optical coherence tomography angiography (OCTA) are the primary diagnostic tools utilized in clinical practice to evaluate the vasculature of the ocular surface. However, there is currently a dearth of comprehensive literature that reviews the advancements in imaging technology for CoNV administration. Initially designed for retinal vascular imaging, OCTA has now been expanded to the anterior segment and has shown promising potential for imaging the conjunctiva, cornea, and iris. This expansion allows for the quantitative monitoring of the structural and functional changes associated with CoNV. In this review, we emphasize the impact of algorithm optimization in anterior segment-optical coherence tomography angiography (AS-OCTA) on the diagnostic efficacy of CoNV. Through the analysis of existing literature, animal model assessments are further reported to investigate its pathological mechanism and exhibit remarkable therapeutic interventions. In conclusion, AS-OCTA holds broad prospects and extensive potential for clinical diagnostics and research applications in CoNV.
Collapse
Affiliation(s)
- Yinuo Wen
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University; Key laboratory of Myopia and Related Eye Diseases, NHC; Key laboratory of Myopia and Related Eye Diseases, Chinese Academy of Medical Sciences, Shanghai, China; Shanghai Research Center of Ophthalmology and Optometry, Shanghai, China
| | - Zhongxing Chen
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University; Key laboratory of Myopia and Related Eye Diseases, NHC; Key laboratory of Myopia and Related Eye Diseases, Chinese Academy of Medical Sciences, Shanghai, China; Shanghai Research Center of Ophthalmology and Optometry, Shanghai, China
| | - Colm McAlinden
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University; Key laboratory of Myopia and Related Eye Diseases, NHC; Key laboratory of Myopia and Related Eye Diseases, Chinese Academy of Medical Sciences, Shanghai, China; Shanghai Research Center of Ophthalmology and Optometry, Shanghai, China; Corneo Plastic Unit & Eye Bank, Queen Victoria Hospital, East Grinstead, UK
| | - Xingtao Zhou
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University; Key laboratory of Myopia and Related Eye Diseases, NHC; Key laboratory of Myopia and Related Eye Diseases, Chinese Academy of Medical Sciences, Shanghai, China; Shanghai Research Center of Ophthalmology and Optometry, Shanghai, China
| | - Jinhai Huang
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University; Key laboratory of Myopia and Related Eye Diseases, NHC; Key laboratory of Myopia and Related Eye Diseases, Chinese Academy of Medical Sciences, Shanghai, China; Shanghai Research Center of Ophthalmology and Optometry, Shanghai, China.
| |
Collapse
|
2
|
Drzyzga Ł, Śpiewak D, Dorecka M, Wyględowska-Promieńska D. Available Therapeutic Options for Corneal Neovascularization: A Review. Int J Mol Sci 2024; 25:5479. [PMID: 38791518 PMCID: PMC11121997 DOI: 10.3390/ijms25105479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/07/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
Corneal neovascularization can impair vision and result in a poor quality of life. The pathogenesis involves a complex interplay of angiogenic factors, notably vascular endothelial growth factor (VEGF). This review provides a comprehensive overview of potential therapies for corneal neovascularization, covering tissue inhibitors of metalloproteinases (TIMPs), transforming growth factor beta (TGF-β) inhibitors, interleukin-1L receptor antagonist (IL-1 Ra), nitric oxide synthase (NOS) isoforms, galectin-3 inhibitors, retinal pigment epithelium-derived factor (PEDF), platelet-derived growth factor (PDGF) receptor inhibitors, and surgical treatments. Conventional treatments include anti-VEGF therapy and laser interventions, while emerging therapies such as immunosuppressive drugs (cyclosporine and rapamycin) have been explored. Losartan and decorin are potential antifibrotic agents that mitigate TGF-β-induced fibrosis. Ocular nanosystems are innovative drug-delivery platforms that facilitate the targeted release of therapeutic agents. Gene therapies, such as small interfering RNA and antisense oligonucleotides, are promising approaches for selectively inhibiting angiogenesis-related gene expression. Aganirsen is efficacious in reducing the corneal neovascularization area without significant adverse effects. These multifaceted approaches underscore the corneal neovascularization management complexity and highlight ideas for enhancing therapeutic outcomes. Furthermore, the importance of combination therapies and the need for further research to develop specific inhibitors while considering their therapeutic efficacy and potential adverse effects are discussed.
Collapse
Affiliation(s)
- Łukasz Drzyzga
- Department of Ophthalmology, Prof. K. Gibiński University Clinical Center, Medical University of Silesia, 40-055 Katowice, Poland
- Clinical Ophthalmology Center Okolux, 40-754 Katowice, Poland
| | - Dorota Śpiewak
- Department of Ophthalmology, Prof. K. Gibiński University Clinical Center, Medical University of Silesia, 40-055 Katowice, Poland
- Clinical Ophthalmology Center Okolux, 40-754 Katowice, Poland
| | - Mariola Dorecka
- Department of Ophthalmology, Prof. K. Gibiński University Clinical Center, Medical University of Silesia, 40-055 Katowice, Poland
- Department of Ophthalmology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-514 Katowice, Poland
| | - Dorota Wyględowska-Promieńska
- Department of Ophthalmology, Prof. K. Gibiński University Clinical Center, Medical University of Silesia, 40-055 Katowice, Poland
- Department of Ophthalmology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-514 Katowice, Poland
| |
Collapse
|
3
|
Altay HY, Ozdemir F, Afghah F, Kilinc Z, Ahmadian M, Tschopp M, Agca C. Gene regulatory and gene editing tools and their applications for retinal diseases and neuroprotection: From proof-of-concept to clinical trial. Front Neurosci 2022; 16:924917. [PMID: 36340792 PMCID: PMC9630553 DOI: 10.3389/fnins.2022.924917] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 09/26/2022] [Indexed: 09/11/2023] Open
Abstract
Gene editing and gene regulatory fields are continuously developing new and safer tools that move beyond the initial CRISPR/Cas9 technology. As more advanced applications are emerging, it becomes crucial to understand and establish more complex gene regulatory and editing tools for efficient gene therapy applications. Ophthalmology is one of the leading fields in gene therapy applications with more than 90 clinical trials and numerous proof-of-concept studies. The majority of clinical trials are gene replacement therapies that are ideal for monogenic diseases. Despite Luxturna's clinical success, there are still several limitations to gene replacement therapies including the size of the target gene, the choice of the promoter as well as the pathogenic alleles. Therefore, further attempts to employ novel gene regulatory and gene editing applications are crucial to targeting retinal diseases that have not been possible with the existing approaches. CRISPR-Cas9 technology opened up the door for corrective gene therapies with its gene editing properties. Advancements in CRISPR-Cas9-associated tools including base modifiers and prime editing already improved the efficiency and safety profile of base editing approaches. While base editing is a highly promising effort, gene regulatory approaches that do not interfere with genomic changes are also becoming available as safer alternatives. Antisense oligonucleotides are one of the most commonly used approaches for correcting splicing defects or eliminating mutant mRNA. More complex gene regulatory methodologies like artificial transcription factors are also another developing field that allows targeting haploinsufficiency conditions, functionally equivalent genes, and multiplex gene regulation. In this review, we summarized the novel gene editing and gene regulatory technologies and highlighted recent translational progress, potential applications, and limitations with a focus on retinal diseases.
Collapse
Affiliation(s)
- Halit Yusuf Altay
- Molecular Biology, Genetics and Bioengineering Program, Sabanci University, Istanbul, Turkey
| | - Fatma Ozdemir
- Molecular Biology, Genetics and Bioengineering Program, Sabanci University, Istanbul, Turkey
| | - Ferdows Afghah
- Molecular Biology, Genetics and Bioengineering Program, Sabanci University, Istanbul, Turkey
| | - Zeynep Kilinc
- Molecular Biology, Genetics and Bioengineering Program, Sabanci University, Istanbul, Turkey
| | - Mehri Ahmadian
- Molecular Biology, Genetics and Bioengineering Program, Sabanci University, Istanbul, Turkey
| | - Markus Tschopp
- Department of Ophthalmology, Cantonal Hospital Aarau, Aarau, Switzerland
- Department of Ophthalmology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Cavit Agca
- Molecular Biology, Genetics and Bioengineering Program, Sabanci University, Istanbul, Turkey
- Nanotechnology Research and Application Center (SUNUM), Sabanci University, Istanbul, Turkey
| |
Collapse
|
4
|
Abstract
Antisense oligonucleotides (AON) are synthetic single-stranded fragments of nucleic acids that bind to a specific complementary messenger RNA (mRNA) sequence and change the final gene product. AON were initially approved for treating cytomegalovirus retinitis and have shown promise in treating Mendelian systemic disease. AON are currently being investigated as a treatment modality for many ophthalmic diseases, including inherited retinal disorders (IRD), inflammatory response and wound healing after glaucoma surgery, and macular degeneration. They provide a possible solution to gene therapy for IRD that are not candidates for adeno-associated virus (AAV) delivery. This chapter outlines the historical background of AON and reviews clinical applications and ongoing clinical trials.
Collapse
Affiliation(s)
- Kevin Ferenchak
- Inherited Retinal Disorders Service, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, United States
| | - Iris Deitch
- Inherited Retinal Disorders Service, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, United States
| | - Rachel Huckfeldt
- Inherited Retinal Disorders Service, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
5
|
Nicholas MP, Mysore N. Corneal neovascularization. Exp Eye Res 2020; 202:108363. [PMID: 33221371 DOI: 10.1016/j.exer.2020.108363] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 11/09/2020] [Accepted: 11/11/2020] [Indexed: 12/12/2022]
Abstract
The optical clarity of the cornea is essential for maintaining good visual acuity. Corneal neovascularization, which is a major cause of vision loss worldwide, leads to corneal opacification and often contributes to a cycle of chronic inflammation. While numerous factors prevent angiogenesis within the cornea, infection, inflammation, hypoxia, trauma, corneal degeneration, and corneal transplantation can all disrupt these homeostatic safeguards to promote neovascularization. Here, we summarize its etiopathogenesis and discuss the molecular biology of angiogenesis within the cornea. We then review the clinical assessment and diagnostic evaluation of corneal neovascularization. Finally, we describe current and emerging therapies.
Collapse
Affiliation(s)
- Matthew P Nicholas
- Flaum Eye Institute, University of Rochester Medical Center, 210 Crittenden Blvd., Rochester, NY, USA
| | - Naveen Mysore
- Flaum Eye Institute, University of Rochester Medical Center, 210 Crittenden Blvd., Rochester, NY, USA.
| |
Collapse
|
6
|
Chau VQ, Hu J, Gong X, Hulleman JD, Ufret-Vincenty RL, Rigo F, Prakash TP, Corey DR, Mootha VV. Delivery of Antisense Oligonucleotides to the Cornea. Nucleic Acid Ther 2020; 30:207-214. [PMID: 32202944 DOI: 10.1089/nat.2019.0838] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Antisense oligonucleotides (ASOs) are synthetic nucleic acids that recognize complementary RNA sequences inside cells and modulate gene expression. In this study, we explore the feasibility of ASO delivery to the cornea. We used quantitative polymerase chain reaction to test the efficacy of a benchmark ASO targeting a noncoding nuclear RNA, Metastasis-Associated Lung Adenocarcinoma Transcript 1 (MALAT1), in a human corneal endothelial cell line, ex vivo human corneas, and in vivo in mice. In vivo delivery was via intravitreal or intracameral injections as well as topical administration. The anti-MALAT1 ASO significantly reduced expression of MALAT1 in a corneal endothelial cell line. We achieved a dose-dependent reduction of target gene expression in endothelial tissue from ex vivo human donor corneas. In vivo mouse experiments confirmed MALAT1 reduction in whole corneal tissue via intravitreal and intracameral routes, 82% and 71% knockdown, respectively (P < 0.001). Effects persisted up to at least 21 days, 32% (P < 0.05) and 43% (P < 0.05) knockdown, respectively. We developed protocols for the isolation and analysis of mouse corneal endothelium and observed reduction in MALAT1 expression upon both intravitreal and intracameral administrations, 64% (P < 0.05) and 63% (P < 0.05) knockdown, respectively. These data open the possibility of using ASOs to treat corneal disease.
Collapse
Affiliation(s)
- Viet Q Chau
- Department of Ophthalmology, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Jiaxin Hu
- Department of Pharmacology and Biochemistry, and UT Southwestern Medical Center, Dallas, Texas, USA
| | - Xin Gong
- Department of Ophthalmology, UT Southwestern Medical Center, Dallas, Texas, USA
| | - John D Hulleman
- Department of Ophthalmology, UT Southwestern Medical Center, Dallas, Texas, USA
| | | | - Frank Rigo
- Ionis Pharmaceuticals, Carlsbad, California, USA
| | | | - David R Corey
- Department of Pharmacology and Biochemistry, and UT Southwestern Medical Center, Dallas, Texas, USA
| | - V Vinod Mootha
- Department of Ophthalmology, UT Southwestern Medical Center, Dallas, Texas, USA.,McDermott Center for Human Growth and Development, UT Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
7
|
Abstract
Neovascular glaucoma (NVG) is the most frequently occurring type of secondary glaucoma characterized by significant decrease in visual functions. Its pathogenesis consists mainly of ischemia of the posterior segment, which is often secondary to proliferative diabetic retinopathy or ischemic central retinal vein occlusion. Development of neovascularization in the eye is associated with processes that change homeostatic balance between proangiogenic (vascular endothelial growth factor (VEGF)) and antiangiogenic (pigment epithelium-derived factor (PEDF)) factors. The aim of the therapy is to reduce the production of aqueous humour. Application of antiangiogenic preparations in patients with NVG as adjuvant therapy is the method of choice for both prevention and treatment of the disease. The article reviews literature on current possibilities of using anti-VEGF drugs in the treatment of NVG.
Collapse
Affiliation(s)
- M A Karpilova
- Research Institute of Eye Diseases, 11A Rossolimo St., Moscow, Russian Federation, 119021
| | - M H Durzhinskaya
- Research Institute of Eye Diseases, 11A Rossolimo St., Moscow, Russian Federation, 119021
| |
Collapse
|
8
|
Qian YY, Wu HY, Liu GQ, Ren C, Lu PR, Zhang XG. Blockade of insulin receptor substrate-1 inhibits biological behavior of choroidal endothelial cells. Int J Ophthalmol 2019; 12:1386-1394. [PMID: 31544031 DOI: 10.18240/ijo.2019.09.03] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 12/15/2018] [Indexed: 11/23/2022] Open
Abstract
AIM To investigate the effects of blockade of insulin receptor substrate-1 (IRS-1) on the bio-function of tube formation of human choroidal endothelial cells (HCECs). METHODS Quantitative reverse transcription-polymerase chain reaction (RT-PCR) and Western blot were performed to determine the expression level of IRS-1 and phospho-IRS-1 in HCECs. Tube formation of HCECs was analyzed using three dimensional in vitro Matrigel assay with or without IRS-1 blockage via IRS-1 inhibitor (GS-101) and vascular endothelial growth factor receptor 2 (VEGFR2) inhibitor. In addition, cell counting kit (CCK)-8 and Transwell migration assay were exerted to analyze the effects of blockade of IRS-1 on the bio-function of proliferation and migration of HCECs, respectively. The apoptosis of HCECs was examined using flow cytometry (FCM). RESULTS RT-PCR and Western blot revealed that IRS-1 phospho-IRS-1 were expressed in HCECs and the expression level was enhanced by stimulation of VEGF-A. The number of tube formation was decreased significantly in GS-101 treated groups compared to phosphate buffered saline (PBS) treated control groups. Furthermore, both cell proliferation and migration of HCECs were decreased in the presence of GS-101. FCM analysis showed that the apoptosis of HCECs was enhanced when the cells were treated with GS-101. Western blot also showed that the expression level of cleaved-caspase 3 in GS-101 treated group was higher than that in control group. CONCLUSION Blockade of IRS-1 can inhibit tube formation of HCECs through reducing cell proliferation and migration and promoting cell apoptosis.
Collapse
Affiliation(s)
- Yi-Yong Qian
- Department of Ophthalmology, the First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu Province, China.,Department of Ophthalmology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Hong-Ya Wu
- Jiangsu Key Laboratory of Clinical Immunology, the First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu Province, China
| | - Gao-Qin Liu
- Department of Ophthalmology, the First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu Province, China.,Jiangsu Key Laboratory of Clinical Immunology, the First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu Province, China
| | - Chi Ren
- Department of Ophthalmology, the First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu Province, China
| | - Pei-Rong Lu
- Department of Ophthalmology, the First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu Province, China.,Jiangsu Key Laboratory of Clinical Immunology, the First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu Province, China
| | - Xue-Guang Zhang
- Jiangsu Key Laboratory of Clinical Immunology, the First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu Province, China
| |
Collapse
|
9
|
Tahvildari M, Amouzegar A, Foulsham W, Dana R. Therapeutic approaches for induction of tolerance and immune quiescence in corneal allotransplantation. Cell Mol Life Sci 2018; 75:1509-1520. [PMID: 29307015 DOI: 10.1007/s00018-017-2739-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 12/12/2017] [Accepted: 12/27/2017] [Indexed: 01/08/2023]
Abstract
The cornea is the most commonly transplanted tissue in the body. Corneal grafts in low-risk recipients enjoy high success rates, yet over 50% of high-risk grafts (with inflamed and vascularized host beds) are rejected. As our understanding of the cellular and molecular pathways that mediate rejection has deepened, a number of novel therapeutic strategies have been unveiled. This manuscript reviews therapeutic approaches to promote corneal transplant survival through targeting (1) corneal lymphangiogenesis and hemangiogenesis, (2) antigen presenting cells, (3) effector and regulatory T cells, and (4) mesenchymal stem cells.
Collapse
Affiliation(s)
- Maryam Tahvildari
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA.,Kresge Eye Institute, Wayne State University, Detroit, MI, USA
| | - Afsaneh Amouzegar
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA
| | - William Foulsham
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA
| | - Reza Dana
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
10
|
Feizi S, Azari AA, Safapour S. Therapeutic approaches for corneal neovascularization. EYE AND VISION 2017; 4:28. [PMID: 29234686 PMCID: PMC5723406 DOI: 10.1186/s40662-017-0094-6] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 11/26/2017] [Indexed: 02/07/2023]
Abstract
Angiogenesis refers to new blood vessels that originate from pre-existing vascular structures. Corneal neovascularization which can lead to compromised visual acuity occurs in a wide variety of corneal pathologies. A large subset of measures has been advocated to prevent and/or treat corneal neovascularization with varying degrees of success. These approaches include topical corticosteroid administration, laser treatment, cautery, and fine needle diathermy. Since the imbalance between proangiogenic agents and antiangiogenic agents primarily mediate the process of corneal neovascularization, recent therapies are intended to disrupt the different steps in the synthesis and actions of proangiogenic factors. These approaches, however, are only partially effective and may lead to several side effects. The aim of this article is to review the most relevant treatments for corneal neovascularization available so far.
Collapse
Affiliation(s)
- Sepehr Feizi
- Ophthalmic Research Center, Labbafinejad Medical Center, Shahid Beheshti University of Medical Sciences, Tehran, 16666 Iran
| | - Amir A Azari
- Ophthalmic Research Center, Labbafinejad Medical Center, Shahid Beheshti University of Medical Sciences, Tehran, 16666 Iran
| | - Sharareh Safapour
- Ophthalmic Research Center, Labbafinejad Medical Center, Shahid Beheshti University of Medical Sciences, Tehran, 16666 Iran
| |
Collapse
|
11
|
Potaczek DP, Garn H, Unger SD, Renz H. Antisense molecules: A new class of drugs. J Allergy Clin Immunol 2017; 137:1334-46. [PMID: 27155029 DOI: 10.1016/j.jaci.2015.12.1344] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 11/24/2015] [Accepted: 12/15/2015] [Indexed: 12/20/2022]
Abstract
An improved understanding of disease pathogenesis leads to identification of novel therapeutic targets. From a pharmacologic point of view, these can be addressed by small chemical compounds, so-called biologicals (eg, mAbs and recombinant proteins), or by a rather new class of molecule based on the antisense concept. Recently, a new wave of clinical studies exploring antisense strategies is evolving. In addition to cancer, they include predominantly trials on infectious and noninfectious diseases, such as chronic inflammatory and metabolic conditions. This article, based on a systematic PubMed literature search, highlights recent developments in this emerging field.
Collapse
Affiliation(s)
- Daniel P Potaczek
- Institute of Laboratory Medicine, Philipps-University Marburg, Marburg, Germany
| | - Holger Garn
- Institute of Laboratory Medicine, Philipps-University Marburg, Marburg, Germany
| | - Sebastian D Unger
- Institute of Laboratory Medicine, Philipps-University Marburg, Marburg, Germany
| | - Harald Renz
- Institute of Laboratory Medicine, Philipps-University Marburg, Marburg, Germany.
| |
Collapse
|
12
|
Lorenz K, Scheller Y, Bell K, Grus F, Ponto KA, Bock F, Cursiefen C, Flach J, Gehring M, Peto T, Silva R, Tal Y, Pfeiffer N. A prospective, randomised, placebo-controlled, double-masked, three-armed, multicentre phase II/III trial for the Study of a Topical Treatment of Ischaemic Central Retinal Vein Occlusion to Prevent Neovascular Glaucoma - the STRONG study: study protocol for a randomised controlled trial. Trials 2017; 18:128. [PMID: 28302155 PMCID: PMC5356411 DOI: 10.1186/s13063-017-1861-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 02/20/2017] [Indexed: 12/19/2022] Open
Abstract
Background Neovascular glaucoma (NVG) is rare, comprising only 3.9% of all glaucoma cases. The most common cause of NVG is ischaemic central retinal vein occlusion (iCRVO). NVG frequently results in blindness and painful end-stage glaucomatous damage leading to the need for enucleation. Currently, there is no preventive therapy for NVG following iCRVO. Rescue treatments have severe drawbacks. Accordingly, there is a great need for preventing the often visually devastating outcomes of NVG. The STRONG study is designed to test whether the topically active anti-angiogenic agent aganirsen is able to inhibit the formation of neovascularisation leading to the development of secondary NVG in eyes with iCRVO. At the same time, STRONG will provide important information on the natural course of iCRVO and NVG in a large and well-characterised cohort of such patients. Methods/design This protocol describes a phase II/III, prospective, randomised, placebo-controlled, double-masked, three-armed multicentre study for the investigation of aganirsen, a new topical treatment for iCRVO in order to prevent NVG. The study will evaluate the efficacy of two different doses of this newly developed antisense oligonucleotide formulated in an eye emulsion to avoid new vessel formation by blocking insulin receptor substrate-1 (IRS)-1. This leads to subsequent down-regulation of both angiogenic as well as proinflammatory growth factors such as vascular endothelial growth factor (VEGF) and tumour necrosis factor (TNF). Eligible patients (n = 333) will be treated with topical aganirsen or placebo for a period of 24 weeks. They will also be invited to participate in substudies involving analysis of gonioscopic images, detection of biomarkers for NVG and risk factors for iCRVO. Discussion The STRONG study has the potential to offer a new treatment modality for patients suffering from iCRVO with a high risk of developing NVG. The topical administration can reduce patients’ burden and risk related to rescue treatment, such as destructive laser treatment or enucleation, but requires a high level of patient compliance. Trial registration EudraCT: 2014-000239-18; ClinicalTrials.gov, ID: NCT02947867. (Registered on 15 October 2016); see also http://strong-nvg.com. Electronic supplementary material The online version of this article (doi:10.1186/s13063-017-1861-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Katrin Lorenz
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg-University Mainz, Langenbeckstr. 1, D-55131, Mainz, Germany.
| | - Yvonne Scheller
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg-University Mainz, Langenbeckstr. 1, D-55131, Mainz, Germany
| | - Katharina Bell
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg-University Mainz, Langenbeckstr. 1, D-55131, Mainz, Germany
| | - Franz Grus
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg-University Mainz, Langenbeckstr. 1, D-55131, Mainz, Germany
| | - Katharina A Ponto
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg-University Mainz, Langenbeckstr. 1, D-55131, Mainz, Germany.,Center for Thrombosis and Hemostasis, University Medical Center, Johannes Gutenberg-University Mainz, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Felix Bock
- Department of Ophthalmology, University of Cologne, Kerpener Str. 62, 50924, Cologne, Germany
| | - Claus Cursiefen
- Department of Ophthalmology, University of Cologne, Kerpener Str. 62, 50924, Cologne, Germany
| | - Jens Flach
- Bundesverband Glaukom-Selbsthilfe e.V., Märkische Str. 61, 44141, Dortmund, Germany
| | - Marta Gehring
- Gene Signal International SA, EPFL Innovation Park-A, 1015, Lausanne, Switzerland
| | - Tunde Peto
- NIHR Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, UK
| | - Rufino Silva
- Faculty of Medicine, University of Coimbra (FMUC), Azinhaga de Santa Comba, Celas, 3000-075, Coimbra, Portugal.,Department of Ophthalmology, Coimbra Hospital and University Center (CHUC), Praceta Prof. Mota Pinto, 3000-075, Coimbra, Portugal.,Association for Innovation and Biomedical Research on Light and Image (AIBILI), Azinhaga de Santa Comba, Celas, 3000-548, Coimbra, Portugal
| | - Yossi Tal
- TechnoSTAT Ltd., 34 Jerusalem Rd., Raanana, 4350108, Israel
| | - Norbert Pfeiffer
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg-University Mainz, Langenbeckstr. 1, D-55131, Mainz, Germany
| |
Collapse
|
13
|
Benayoun Y, Petellat F, Leclerc O, Dost L, Dallaudière B, Reddy C, Robert PY, Salomon JL. [Current treatments for corneal neovascularization]. J Fr Ophtalmol 2015; 38:996-1008. [PMID: 26522890 DOI: 10.1016/j.jfo.2015.09.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2015] [Revised: 09/12/2015] [Accepted: 09/17/2015] [Indexed: 11/27/2022]
Abstract
The extension of blood vessels into the normally avascular stroma defines corneal neovascularization. Though this phenomenon, pathophysiological and clinical features are well characterized, therapeutic modalities have been hindered by a lack of safe, efficacious and non-controversial treatments. In this literature review, we focus on available therapeutic options in light of recent evidence provided by animal and clinical studies. First, this review will focus on pharmacological treatments that target angiogenesis. The low cost and market availability of bevacizumab make it the first anti-angiogenic therapy choice, and it has demonstrable efficacy in reducing corneal neovascularization when administered topically or subconjunctivally. However, novel anti-angiogenic molecules targeting the intracellular pathways of angiogenesis (siRNA, antisense oligonucleotides) provide a promising alternative. Laser therapy (direct photocoagulation or photo-dynamic therapy) and fine needle diathermy also find a place in the treatment of stabilized corneal neovascularization alone or in association with anti-angiogenic therapy. Additionally, ocular surface reconstruction using amniotic membrane graft or limbal stem cell transplantation is essential when corneal neovascularization is secondary to primary or acquired limbal deficiency.
Collapse
Affiliation(s)
- Y Benayoun
- Clinique ophtalmologique François-Chénieux, 18, rue du Général-Catroux, 87039 Limoges cedex, France; Institut de recherche et d'innovation en sciences de la vision (IRIS-Vision), 18, rue du Général-Catroux, 87039 Limoges cedex, France.
| | - F Petellat
- Clinique ophtalmologique François-Chénieux, 18, rue du Général-Catroux, 87039 Limoges cedex, France; Institut de recherche et d'innovation en sciences de la vision (IRIS-Vision), 18, rue du Général-Catroux, 87039 Limoges cedex, France
| | - O Leclerc
- Service d'ophtalmologie, hôpital Dupuytren, CHU de Limoges, 87042 Limoges cedex, France
| | - L Dost
- Service d'ophtalmologie, hôpital Dupuytren, CHU de Limoges, 87042 Limoges cedex, France
| | - B Dallaudière
- Service de radiologie, hôpital Pellegrin, CHU de Bordeaux, 33000 Bordeaux, France
| | - C Reddy
- Baylor Scott & White Memorial Hospital, Texas A&M University, Texas, États-Unis
| | - P-Y Robert
- Service d'ophtalmologie, hôpital Dupuytren, CHU de Limoges, 87042 Limoges cedex, France
| | - J-L Salomon
- Clinique ophtalmologique François-Chénieux, 18, rue du Général-Catroux, 87039 Limoges cedex, France; Institut de recherche et d'innovation en sciences de la vision (IRIS-Vision), 18, rue du Général-Catroux, 87039 Limoges cedex, France
| |
Collapse
|
14
|
Pescina S, Govoni P, Antopolsky M, Murtomäki L, Padula C, Santi P, Nicoli S. Permeation of proteins, oligonucleotide and dextrans across ocular tissues: experimental studies and a literature update. J Pharm Sci 2015; 104:2190-202. [PMID: 25973792 DOI: 10.1002/jps.24465] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 04/02/2015] [Accepted: 04/02/2015] [Indexed: 12/15/2022]
Abstract
Proteins and oligonucleotides represent powerful tools for the treatment of several ocular diseases, affecting both anterior and posterior eye segments. Despite the potential of these compounds, their administration remains a challenge. The last years have seen a growing interest for the noninvasive administration of macromolecular drugs, but still there is only little information of their permeability across the different ocular barriers. The aim of this work was to evaluate the permeation of macromolecules of different size, shape and charge across porcine ocular tissues such as the isolated sclera, the choroid Bruch's membrane and the cornea, both intact and de-epitelialized. Permeants used were two proteins (albumin and cytochrome C), an oligonucleotide, two dextrans (4 and 40 kDa) and a monoclonal antibody (bevacizumab). Obtained data and its comparison with the literature highlight the difficulties in predicting the behavior of macromolecules based on their physicochemical properties, because the interplay between the charge, molecular radius and conformation prevent their analysis separately. However, the data can be of great help for a rough evaluation of the feasibility of a noninvasive administration and for building computational models to improve understanding of the interplay among static, dynamic and metabolic barriers in the delivery of macromolecules to the eye.
Collapse
Affiliation(s)
- Silvia Pescina
- Department of Pharmacy, University of Parma, Parma, 43124, Italy
| | - Paolo Govoni
- Department of Biomedical, Biotechnological and Translational Sciences, University of Parma, Parma, 43126, Italy
| | - Maxim Antopolsky
- Centre for Drug Research, University of Helsinki, Helsinki, FI-00014, Finland
| | - Lasse Murtomäki
- Department of Chemistry, Aalto University, Aalto, FI-00076, Finland
| | - Cristina Padula
- Department of Pharmacy, University of Parma, Parma, 43124, Italy
| | - Patrizia Santi
- Department of Pharmacy, University of Parma, Parma, 43124, Italy
| | - Sara Nicoli
- Department of Pharmacy, University of Parma, Parma, 43124, Italy
| |
Collapse
|
15
|
Cursiefen C, Viaud E, Bock F, Geudelin B, Ferry A, Kadlecová P, Lévy M, Al Mahmood S, Colin S, Thorin E, Majo F, Frueh B, Wilhelm F, Meyer-Ter-Vehn T, Geerling G, Böhringer D, Reinhard T, Meller D, Pleyer U, Bachmann B, Seitz B. Aganirsen antisense oligonucleotide eye drops inhibit keratitis-induced corneal neovascularization and reduce need for transplantation: the I-CAN study. Ophthalmology 2014; 121:1683-92. [PMID: 24811963 DOI: 10.1016/j.ophtha.2014.03.038] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2013] [Revised: 03/30/2014] [Accepted: 03/31/2014] [Indexed: 11/24/2022] Open
Abstract
OBJECTIVE Eye drops of aganirsen, an antisense oligonucleotide preventing insulin receptor substrate-1 expression, inhibited corneal neovascularization in a previous dose-finding phase II study. We aimed to confirm these results in a phase III study and investigated a potential clinical benefit on visual acuity (VA), quality of life (QoL), and need for transplantation. DESIGN Multicenter, double-masked, randomized, placebo-controlled phase III study. PARTICIPANTS Analysis of 69 patients with keratitis-related progressive corneal neovascularization randomized to aganirsen (34 patients) or placebo (35 patients). Patients applied aganirsen eye drops (86 μg/day/eye) or placebo twice daily for 90 days and were followed up to day 180. MAIN OUTCOME MEASURES The primary end point was VA. Secondary end points included area of pathologic corneal neovascularization, need for transplantation, risk of graft rejection, and QoL. RESULTS Although no significant differences in VA scores between groups were observed, aganirsen significantly reduced the relative corneal neovascularization area after 90 days by 26.20% (P = 0.014). This improvement persisted after 180 days (26.67%, P = 0.012). Aganirsen tended to lower the transplantation need in the intent-to-treat (ITT) population at day 180 (P = 0.087). In patients with viral keratitis and central neovascularization, a significant reduction in transplantation need was achieved (P = 0.048). No significant differences between groups were observed in the risk of graft rejection. However, aganirsen tended to decrease this risk in patients with traumatic/viral keratitis (P = 0.162) at day 90. The QoL analyses revealed a significant improvement with aganirsen in composite and near activity subscores (P = 0.039 and 0.026, respectively) at day 90 in the per protocol population. Ocular and treatment-related treatment-emergent adverse events (TEAEs) were reported in a lower percentage with aganirsen compared with placebo. Only 3 serious TEAEs (2 with aganirsen and 1 with placebo) were considered treatment-related. CONCLUSIONS This first phase III study on a topical inhibitor of corneal angiogenesis showed that aganirsen eye drops significantly inhibited corneal neovascularization in patients with keratitis. The need for transplantation was significantly reduced in patients with viral keratitis and central neovascularization. Topical application of aganirsen was safe and well tolerated.
Collapse
Affiliation(s)
- Claus Cursiefen
- Department of Ophthalmology, University of Cologne, Cologne, Germany.
| | - Eric Viaud
- Gene Signal International SA, Boulogne-Billancourt, France
| | - Felix Bock
- Department of Ophthalmology, University of Cologne, Cologne, Germany
| | | | | | - Pavla Kadlecová
- Advanced Drug & Device Services SAS, Boulogne-Billancourt, France
| | - Michel Lévy
- Advanced Drug & Device Services SAS, Boulogne-Billancourt, France
| | | | - Sylvie Colin
- Gene Signal International SA, Boulogne-Billancourt, France
| | - Eric Thorin
- Gene Signal International SA, Montreal, Canada
| | - François Majo
- Hôpital Ophtalmique Jules-Gonin, Lausanne, Switzerland
| | - Beatrice Frueh
- Universitätsklinik für Augenheilkunde, Bern, Switzerland
| | | | | | - Gerd Geerling
- Universitätsaugenklinik Düsseldorf, Düsseldorf, Germany
| | | | | | - Daniel Meller
- Universitätsaugenklinik Duisburg-Essen, Essen, Germany
| | - Uwe Pleyer
- University Eye Clinic, CVK, Charité-Universitätsmedizin, Berlin, Germany
| | | | - Berthold Seitz
- Klinik für Augenheilkunde, Universitätsklinikum des Saarlandes UKS, Homburg/Saar, Germany
| |
Collapse
|
16
|
Colin S, Darné B, Kadi A, Ferry A, Favier M, Lesaffre C, Conduzorgues JP, Al-Mahmood S, Doss N. The antiangiogenic insulin receptor substrate-1 antisense oligonucleotide aganirsen impairs AU-rich mRNA stability by reducing 14-3-3β-tristetraprolin protein complex, reducing inflammation and psoriatic lesion size in patients. J Pharmacol Exp Ther 2014; 349:107-17. [PMID: 24504098 DOI: 10.1124/jpet.113.209346] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Increased inflammation and aberrant angiogenesis underlie psoriasis. Here, we report that the inhibition of insulin receptor substrate-1 (IRS-1) expression with aganirsen resulted in a dose-dependent reduction (P < 0.0001) in IRS-1 protein in the cytoplasm, while IRS-1 protein remained quantitatively unchanged in the perinuclear environment. Aganirsen induced a dose-dependent increase in serine-phosphorylated IRS-1 in the soluble perinuclear-nuclear fraction, inducing IRS-1-14-3-3β protein association (P < 0.001), thereby impairing 14-3-3β-tristetraprolin protein complex and AU-rich mRNA's stability (P < 0.001). Accordingly, aganirsen inhibited (P < 0.001) in vitro the expression of interleukin-8 (IL-8), IL-12, IL-22, and tumor necrosis factor alpha (TNFα), four inflammatory mediators containing mRNA with AU-rich regions. To demonstrate the clinical relevance of this pathway, we tested the efficacy of aganirsen by topical application in a pilot, double-blind, randomized, dose-ranging study in 12 psoriatic human patients. After 6 weeks of treatment, least square mean differences with placebo were -38.9% (95% confidence interval, -75.8 to -2.0%) and -37.4% (-74.3 to -0.5%) at the doses of 0.86 and 1.72 mg/g, respectively. Lesion size reduction was associated with reduced expression of IRS-1 (P < 0.01), TNFα (P < 0.0001), and vascular endothelial growth factor (P < 0.01); reduced keratinocyte proliferation (P < 0.01); and the restoration (P < 0.02) of normal levels of infiltrating CD4(+) and CD3(+) lymphocytes in psoriatic skin lesions. These results suggest that aganirsen is a first-in-class of a new generation of antiangiogenic medicines combining anti-inflammatory activities. Aganirsen-induced downregulation of inflammatory mediators characterized by AU-rich mRNA likely underlies its beneficial clinical outcome in psoriasis. These results justify further large-scale clinical studies to establish the dose of aganirsen and its long-term efficacy in psoriasis.
Collapse
Affiliation(s)
- Sylvie Colin
- Gene Signal SAS, Evry, France (S.C., A.F., S.A.-M.); Monitoring Force Group, Maisons-Laffitte, France (B.D., A.K.); Institut Cochin, Institut National de la Santé et de la Recherche Médicale U1016, CNRS UMR8104, Morphology and Histology Platform and Université Paris Descartes, Paris, France (M.F., C.L.); AMATSI, St. Gely du Fesc, France (J.-P.C.); and Université de Tunis El Manar, Faculté de Médecine de Tunis, Military Hospital of Tunis, Department of Dermatology, Tunis, Tunisia (N.D.)
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Synthesis, physicochemical and biochemical studies of anti-IRS-1 oligonucleotides containing carborane and/or metallacarborane modification. J Organomet Chem 2013. [DOI: 10.1016/j.jorganchem.2013.05.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
18
|
Abstract
PURPOSE OF REVIEW The purpose of the present review is to describe new antilymphangiogenic treatment strategies and recent findings on strain-dependency of corneal lymphangiogenesis and the interdependency between blood and lymphatic vessel growth. RECENT FINDINGS Studies on mice have revealed that apart from haemangiogenesis, lymphangiogenesis can also differ markedly between several mouse strains under normal and inflammatory conditions. Although haemangiogenesis and lymphangiogenesis are closely interconnected in their spatial-temporal patterning, recent data suggest that they can also occur independently. SUMMARY Understanding the coordinated regulation of blood and lymphatic vessel growth and genetic factors determining lymphangiogenesis in more detail could improve the development of specifically targeted antihaemangiogenic or antilymphangiogenic strategies.
Collapse
|
19
|
Krupinski J, Abudawood M, Matou-Nasri S, Al-Baradie R, Petcu EB, Justicia C, Planas A, Liu D, Rovira N, Grau-Slevin M, Secades J, Slevin M. Citicoline induces angiogenesis improving survival of vascular/human brain microvessel endothelial cells through pathways involving ERK1/2 and insulin receptor substrate-1. Vasc Cell 2012; 4:20. [PMID: 23227823 PMCID: PMC3554547 DOI: 10.1186/2045-824x-4-20] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Accepted: 11/27/2012] [Indexed: 02/07/2023] Open
Abstract
Background Citicoline is one of the neuroprotective agents that have been used as a therapy in stroke patients. There is limited published data describing the mechanisms through which it acts. Methods We used in vitro angiogenesis assays: migration, proliferation, differentiation into tube-like structures in Matrigel™ and spheroid development assays in human brain microvessel endothelial cells (hCMEC/D3). Western blotting was performed on protein extraction from hCMEC/D3 stimulated with citicoline. An analysis of citicoline signalling pathways was previously studied using a Kinexus phospho-protein screening array. A staurosporin/calcium ionophore-induced apoptosis assay was performed by seeding hCMEC/D3 on to glass coverslips in serum poor medium. In a pilot in vivo study, transient MCAO in rats was carried out with and without citicoline treatment (1000 mg/Kg) applied at the time of occlusion and subsequently every 3 days until euthanasia (21 days). Vascularity of the stroke-affected regions was examined by immunohistochemistry. Results Citicoline presented no mitogenic and chemotactic effects on hCMEC/D3; however, it significantly increased wound recovery, the formation of tube-like structures in Matrigel™ and enhanced spheroid development and sprouting. Citicoline induced the expression of phospho-extracellular-signal regulated kinase (ERK)-1/2. Kinexus assays showed an over-expression of insulin receptor substrate-1 (IRS-1). Knock-down of IRS-1 with targeted siRNA in our hCMEC/D3 inhibited the pro-angiogenic effects of citicoline. The percentage of surviving cells was higher in the presence of citicoline. Citicoline treatment significantly increased the numbers of new, active CD105-positive microvessels following MCAO. Conclusions The findings demonstrate both a pro-angiogenic and protective effect of citicoline on hCMEC/D3 in vitro and following middle cerebral artery occlusion (MCAO) in vivo.
Collapse
Affiliation(s)
- Jerzy Krupinski
- Cerebrovascular Diseases, Department of Neurology, Hospital Universitari Mútua Terrassa, Terrassa, Barcelona, Spain.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Stevenson W, Cheng SF, Dastjerdi MH, Ferrari G, Dana R. Corneal neovascularization and the utility of topical VEGF inhibition: ranibizumab (Lucentis) vs bevacizumab (Avastin). Ocul Surf 2012; 10:67-83. [PMID: 22482468 DOI: 10.1016/j.jtos.2012.01.005] [Citation(s) in RCA: 122] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Revised: 01/10/2012] [Accepted: 01/14/2012] [Indexed: 12/21/2022]
Abstract
Corneal avascularity is necessary for the preservation of optimal vision. The cornea maintains a dynamic balance between pro- and antiangiogenic factors that allows it to remain avascular under normal homeostatic conditions; however, corneal avascularity can be compromised by pathologic conditions that negate the cornea's "angiogenic privilege." The clinical relevance of corneal neovascularization has long been recognized, but management of this condition has been hindered by a lack of safe and effective therapeutic modalities. Herein, the etiology, epidemiology, pathogenesis, and treatment of corneal neovascularization are reviewed. Additionally, the authors' recent findings regarding the clinical utility of topical ranibizumab (Lucentis®) and bevacizumab (Avastin®) in the treatment of corneal neovascularization are summarized. These findings clearly indicate that ranibizumab and bevacizumab are safe and effective treatments for corneal neovascularization when appropriate precautions are observed. Although direct comparisons are not conclusive, the results suggest that ranibizumab may be modestly superior to bevacizumab in terms of both onset of action and degree of efficacy. In order to justify the increased cost of ranibizumab, it will be necessary to demonstrate meaningful treatment superiority in a prospective, randomized, head-to-head comparison study.
Collapse
Affiliation(s)
- William Stevenson
- Schepens Eye Research Institute, Massachusetts Eye & Ear Infirmary, Harvard Medical School, Boston, MA 02114, USA
| | | | | | | | | |
Collapse
|
21
|
A truncated form of CD9-partner 1 (CD9P-1), GS-168AT2, potently inhibits in vivo tumour-induced angiogenesis and tumour growth. Br J Cancer 2011; 105:1002-11. [PMID: 21863033 PMCID: PMC3185932 DOI: 10.1038/bjc.2011.303] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Background: Tetraspanins are transmembrane proteins known to contribute to angiogenesis. CD9 partner-1 (CD9P-1/EWI-F), a glycosylated type 1 transmembrane immunoglobulin, is a member of the tetraspanin web, but its role in angiogenesis remains to be elucidated. Methods: We measured the expression of CD9P-1 under angiogenic and angiostatic conditions, and the influence of its knockdown onto capillary structures formation by human endothelial cells (hECs). A truncated form of CDP-1, GS-168AT2, was produced and challenged vs hEC proliferation, migration and capillaries’ formation. Its association with CD9P-1, CD9, CD81 and CD151 and the expressions of these later at hEC surface were analysed. Finally, its effects onto in vivo tumour-induced angiogenesis and tumour growth were investigated. Results: Vascular endothelial growth factor (VEGF)-induced capillary tube-like formation was inhibited by tumour necrosis factor α and was associated with a rise in CD9P-1 mRNA expression (P<0.05); accordingly, knockdown of CD9P-1 inhibited VEGF-dependent in vitro angiogenesis. GS-168AT2 dose-dependently inhibited in vitro angiogenesis, hEC migration and proliferation (P<0.05). Co-precipitation experiments suggest that GS-168AT2 corresponds to the sequence by which CD9P-1 physiologically associates with CD81. GS-168AT2 induced the depletion of CD151, CD9 and CD9P-1 from hEC surface, correlating with GS-168AT2 degradation. Finally, in vivo injections of GS-168AT2 inhibited tumour-associated angiogenesis by 53.4±9.5% (P=0.03), and reduced tumour growth of Calu 6 tumour xenografts by 73.9±16.4% (P=0.007) without bodyweight loss. Conclusion: The truncated form of CD9P-1, GS-168AT2, potently inhibits angiogenesis and cell migration by at least the downregulation of CD151 and CD9, which provides the first evidences for the central role of CD9P-1 in tumour-associated angiogenesis and tumour growth.
Collapse
|
22
|
Kain H, Goldblum D, Geudelin B, Thorin E, Beglinger C. Tolerability and safety of GS-101 eye drops, an antisense oligonucleotide to insulin receptor substrate-1: a 'first in man' phase I investigation. Br J Clin Pharmacol 2009; 68:169-73. [PMID: 19694734 PMCID: PMC2767278 DOI: 10.1111/j.1365-2125.2009.03450.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2008] [Accepted: 04/15/2009] [Indexed: 11/28/2022] Open
Abstract
AIMS GS-101 (GeneSignal, Epalinges, Switzerland) is an antisense oligonucleotide that inhibits the expression of the scaffold protein insulin receptor substrate-1 (IRS-1). Inhibition of IRS-1 results in the prevention of neovascular growth and was shown to prevent the angiogenic process in preclinical in vitro and in vivo experiments. There is therefore a strong therapeutic rational for targeting angiogenesis in pathological neovascularization. We aimed to investigate the safety, tolerability and bioavailability of GS-101 eye drops. METHODS This was a Phase I open-label study. The investigation was performed in two steps. Local ocular tolerability was first assessed with the application of one single low dose in one eye. After no signs of intolerance were observed in the subjects, the dose escalation phase of the study was initiated, and the remaining subjects received three times daily escalating doses of GS-101 in one eye for 14 days. RESULTS The 14 healthy volunteers tolerated well 14 days' continued use of escalating doses of GS-101 from 43 to 430 microg per day. Other than itching, experienced also in the control eye by one subject and determined to be unrelated to the study treatment, no signs of intolerance were observed. CONCLUSIONS The tolerability profile obtained from this study suggests that GS-101 is safe for human use. Further clinical evaluations in diseases related to abnormal angiogenesis are being targeted. In particular, the neovascularization-related orphan indications of corneal graft rejection, retinopathy of pre-maturity and neovascular glaucoma are currently under Phase II clinical investigation and are showing promising results.
Collapse
Affiliation(s)
- Hermann Kain
- Eye Clinic, University Hospital BaselBasel, Switzerland
- Mediante GmbH, Eptingen/Basel, University Hospital BaselBasel, Switzerland
- Clinical Research Centre, University Hospital BaselBasel, Switzerland
- Montreal Heart Institute, Université de MontréalMontréal, Québec, Canada
| | - David Goldblum
- Eye Clinic, University Hospital BaselBasel, Switzerland
- Mediante GmbH, Eptingen/Basel, University Hospital BaselBasel, Switzerland
- Clinical Research Centre, University Hospital BaselBasel, Switzerland
- Montreal Heart Institute, Université de MontréalMontréal, Québec, Canada
| | - Bernard Geudelin
- Mediante GmbH, Eptingen/Basel, University Hospital BaselBasel, Switzerland
| | - Eric Thorin
- Montreal Heart Institute, Université de MontréalMontréal, Québec, Canada
| | | |
Collapse
|
23
|
GS-101 antisense oligonucleotide eye drops inhibit corneal neovascularization: interim results of a randomized phase II trial. Ophthalmology 2009; 116:1630-7. [PMID: 19643487 DOI: 10.1016/j.ophtha.2009.04.016] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2008] [Revised: 04/01/2009] [Accepted: 04/06/2009] [Indexed: 01/11/2023] Open
Abstract
PURPOSE Pathologic corneal neovascularization not only reduces corneal transparency and visual acuity, but also is one of the most significant preoperative and postoperative risk factors for graft rejection after corneal transplantation. The aim of this study was to test tolerability and efficacy of gene signal (GS)-101 eye drops, an antisense oligonucleotide against insulin receptor substrate-1, versus placebo on inhibition of progressive corneal neovascularization. DESIGN Randomized, double-blind, multicenter, phase II clinical study. PARTICIPANTS AND CONTROLS Interim analysis on 40 patients with progressive corneal neovascularization resulting from various underlying diseases being nonresponsive to conventional therapy. INTERVENTIONS Four groups of 10 patients were treated for 3 months in this dose-finding study comparing 3 doses of GS-101 (eye drops twice daily; 43, 86, and 172 microg/day total) with placebo (10 patients per group). MAIN OUTCOME MEASURES The primary end point was the area covered by pathologic corneal blood vessels, which was measured morphometrically on digitized slit-lamp pictures using image analysis techniques. RESULTS GS-101 eye drops were well tolerated. All serious and 95% of all other adverse events were categorized by the investigators as unrelated. In 3 patients, there was a potentially related side effect of ocular surface discomfort. At a dose of 86 microg/day (43 microg/drop), GS-101 eye drops produced a significant inhibition and regression of corneal neovascularization (-2.04+/-1.57% of total corneal area; P = 0.0047), whereas the low dose tended to stabilize it (0.07+/-2.94%; P = 0.2088) compared with placebo (0.89+/-2.15%), where corneal neovascularization progressed in all patients. There was no apparent benefit to the higher dose (1.60+/-7.63%). CONCLUSIONS The interim results of this phase II study suggest that GS-101 eye drops at an optimal dose of 86 microg/day are an effective and noninvasive approach specifically to inhibit and regress active corneal angiogenesis, a major risk factor for corneal graft transplantation and graft rejection. Safety concerns were not detected. FINANCIAL DISCLOSURE(S) Proprietary or commercial disclosure may be found after the references.
Collapse
|