1
|
Hu C, He M, Chen M, Xu Q, Li S, Cui Y, Qiu X, Tian W. Amelioration of Neuropathic Pain and Attenuation of Neuroinflammation Responses by Tetrahydropalmatine Through the p38MAPK/NF-κB/iNOS Signaling Pathways in Animal and Cellular Models. Inflammation 2021; 45:891-903. [PMID: 34757554 PMCID: PMC8956562 DOI: 10.1007/s10753-021-01593-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/18/2021] [Accepted: 10/28/2021] [Indexed: 11/28/2022]
Abstract
Neuropathic pain (NP) treatment remains a challenge because the pathomechanism is not yet fully understood. Because of low treatment efficacy, there is an important unmet need in neuropathic pain patients, and the development of a more effective pharmacotherapy is urgently required. Neuroinflammation induced by oxidative stress-mediated activation of nuclear factor-kappa B (NF-κB) plays an important role in NP. In this study, we aimed to investigate the protective properties of tetrahydropalmatine (THP) on a spared nerve injury (SNI) model of neuropathic pain in mice in in vivo and also in in vitro experiments. THP decreased mechanical hyperalgesia and cold allodynia compared with the SNI group. A microarray was applied to analyze differentially expressed of mRNA among different groups, and THP noticeably changed the expression of MAPK-related proteins compared with the SNI groups. H&E staining showed that the THP changed the inflammation after the spared nerve injury, with decreased NO expression in the THP group as compared to the SNI group. In addition, SNI-induced pain was reversed by intraperitoneal administration of THP, and further results indicated that THP suppressed inducible nitric oxide synthase (iNOS, pro-nociceptive mediators), phosphorylated MAPKs, and p65 in the dorsal root ganglions and sciatic nerve, while the serum levels of the pro-inflammatory cytokines IL-1β were significantly higher in the SNI group as compared to the THP group. To identify the molecular mechanism of the antineuropathic activity of THP, sodium nitroprusside (SNP)-induced neuro-2a (N2a) cells, LPS-induced BV2 cells, and LTA-induced astrocytes were further investigated in signaling pathways. In vitro experiments indicated that THP suppressed the expression of IL-1β, iNOS, phosphorylated MAPKs, and p65, which were assayed using western blotting, and immunofluorescence.
Collapse
Affiliation(s)
- Cheng Hu
- Department of Anesthesiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, 210029, China
| | - Menglin He
- Department of Anesthesiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, 210029, China
| | - Meijuan Chen
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Qian Xu
- Department of Anesthesiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, 210029, China
| | - Sha Li
- Department of Anesthesiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, 210029, China
| | - Yaomei Cui
- Department of Anesthesiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, 210029, China
| | - Xizi Qiu
- Department of Anesthesiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, 210029, China
| | - Weiqian Tian
- Department of Anesthesiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, 210029, China.
| |
Collapse
|
2
|
Chen LZ, Shu HY, Wu J, Yu YL, Ma D, Huang X, Liu MM, Liu XH, Shi JB. Discovery and development of novel pyrimidine and pyrazolo/thieno-fused pyrimidine derivatives as potent and orally active inducible nitric oxide synthase dimerization inhibitor with efficacy for arthritis. Eur J Med Chem 2021; 213:113174. [PMID: 33515864 DOI: 10.1016/j.ejmech.2021.113174] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/24/2020] [Accepted: 01/07/2021] [Indexed: 12/15/2022]
Abstract
In order to discover and develop drug-like anti-inflammatory agents against arthritis, based on "Hit" we found earlier and to overcome drawbacks of toxicity, twelve series of total 89 novel pyrimidine, pyrazolo[4,3-d]pyrimidine and thieno[3,2-d]pyrimidine derivatives were designed, synthesized and screened for their anti-inflammatory activity against NO and toxicity for normal liver cells (LO2). Relationships of balance toxicity and activity have been summarized through multi-steps, and title compounds 22o, 22l were found to show lower toxicity (against LO2: IC50 = 2934, 2301 μM, respectively) and potent effect against NO release (IR = 98.3, 97.67%, at 10 μM, respectively). Furthermore, compound 22o showed potent iNOS inhibitory activity with value of IC50 is 0.96 μM and could interfere stability and formation of the active dimeric iNOS. It's anti-inflammatory activity in vivo was assessed by AIA rat model. Furthermore, the results of metabolic stability, CYP, PK study in vivo, acute toxicity study and subacute toxicity assessment indicated this compound had good drug-like properties for treatment.
Collapse
Affiliation(s)
- Liu Zeng Chen
- School of Pharmacy, Anhui Medical University, Hefei, 230032, PR China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, PR China
| | - Hai Yang Shu
- School of Pharmacy, Anhui Medical University, Hefei, 230032, PR China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, PR China
| | - Jing Wu
- School of Pharmacy, Anhui Medical University, Hefei, 230032, PR China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, PR China
| | - Yun Long Yu
- School of Pharmacy, Anhui Medical University, Hefei, 230032, PR China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, PR China
| | - Duo Ma
- School of Pharmacy, Anhui Medical University, Hefei, 230032, PR China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, PR China
| | - Xin Huang
- School of Pharmacy, Anhui Medical University, Hefei, 230032, PR China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, PR China
| | - Ming Ming Liu
- School of Pharmacy, Anhui Medical University, Hefei, 230032, PR China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, PR China
| | - Xin Hua Liu
- School of Pharmacy, Anhui Medical University, Hefei, 230032, PR China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, PR China.
| | - Jing Bo Shi
- School of Pharmacy, Anhui Medical University, Hefei, 230032, PR China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, PR China.
| |
Collapse
|
3
|
Shi JB, Chen LZ, Wang BS, Huang X, Jiao MM, Liu MM, Tang WJ, Liu XH. Novel Pyrazolo[4,3-d]pyrimidine as Potent and Orally Active Inducible Nitric Oxide Synthase (iNOS) Dimerization Inhibitor with Efficacy in Rheumatoid Arthritis Mouse Model. J Med Chem 2019; 62:4013-4031. [DOI: 10.1021/acs.jmedchem.9b00039] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Jing Bo Shi
- School of Pharmacy, Anhui Medical University, Hefei 230032, P. R. China
| | - Liu Zeng Chen
- School of Pharmacy, Anhui Medical University, Hefei 230032, P. R. China
| | - Bao Shi Wang
- School of Pharmacy, Anhui Medical University, Hefei 230032, P. R. China
| | - Xin Huang
- School of Pharmacy, Anhui Medical University, Hefei 230032, P. R. China
| | - Ming Ming Jiao
- School of Pharmacy, Anhui Medical University, Hefei 230032, P. R. China
| | - Ming Ming Liu
- School of Pharmacy, Anhui Medical University, Hefei 230032, P. R. China
| | - Wen Jian Tang
- School of Pharmacy, Anhui Medical University, Hefei 230032, P. R. China
| | - Xin Hua Liu
- School of Pharmacy, Anhui Medical University, Hefei 230032, P. R. China
| |
Collapse
|
4
|
Zhong L, Tran T, Baguley TD, Lee SJ, Henke A, To A, Li S, Yu S, Grieco FA, Roland J, Schultz PG, Eizirik DL, Rogers N, Chartterjee AK, Tremblay MS, Shen W. A novel inhibitor of inducible NOS dimerization protects against cytokine-induced rat beta cell dysfunction. Br J Pharmacol 2018; 175:3470-3485. [PMID: 29888783 PMCID: PMC6086989 DOI: 10.1111/bph.14388] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 05/14/2018] [Accepted: 05/28/2018] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND AND PURPOSE Beta cell apoptosis is a major feature of type 1 diabetes, and pro-inflammatory cytokines are key drivers of the deterioration of beta cell mass through induction of apoptosis. Mitochondrial stress plays a critical role in mediating apoptosis by releasing cytochrome C into the cytoplasm, directly activating caspase-9 and its downstream signalling cascade. We aimed to identify new compounds that protect beta cells from cytokine-induced activation of the intrinsic (mitochondrial) pathway of apoptosis. EXPERIMENTAL APPROACH Diabetogenic media, composed of IL-1β, IFN-γ and high glucose, were used to induce mitochondrial stress in rat insulin-producing INS1E cells, and a high-content image-based screen of small molecule modulators of Casp9 pathway was performed. KEY RESULTS A novel small molecule, ATV399, was identified from a high-content image-based screen for compounds that inhibit cleaved caspase-9 activation and subsequent beta cell apoptosis induced by a combination of IL-1β, IFN-γ and high glucose, which together mimic the pathogenic diabetic milieu. Through medicinal chemistry optimization, potency was markedly improved (6-30 fold), with reduced inhibitory effects on CYP3A4. Improved analogues, such as CAT639, improved beta cell viability and insulin secretion in cytokine-treated rat insulin-producing INS1E cells and primary dispersed islet cells. Mechanistically, CAT639 reduced the production of NO by allosterically inhibiting dimerization of inducible NOS (iNOS) without affecting its mRNA levels. CONCLUSION AND IMPLICATIONS Taken together, these studies demonstrate a successful phenotypic screening campaign resulting in identification of an inhibitor of iNOS dimerization that protects beta cell viability and function through modulation of mitochondrial stress induced by cytokines.
Collapse
Affiliation(s)
- Linlin Zhong
- California Institute for Biomedical Research (Calibr)La JollaCA92037USA
| | - Tuan Tran
- California Institute for Biomedical Research (Calibr)La JollaCA92037USA
| | - Tyler D Baguley
- California Institute for Biomedical Research (Calibr)La JollaCA92037USA
| | - Sang Jun Lee
- California Institute for Biomedical Research (Calibr)La JollaCA92037USA
| | - Adam Henke
- California Institute for Biomedical Research (Calibr)La JollaCA92037USA
| | - Andrew To
- California Institute for Biomedical Research (Calibr)La JollaCA92037USA
| | - Sijia Li
- California Institute for Biomedical Research (Calibr)La JollaCA92037USA
| | - Shan Yu
- California Institute for Biomedical Research (Calibr)La JollaCA92037USA
| | - Fabio A Grieco
- ULB Center for Diabetes ResearchUniversite´ Libre de Bruxelles (ULB)Brussels1070Belgium
| | - Jason Roland
- California Institute for Biomedical Research (Calibr)La JollaCA92037USA
| | - Peter G Schultz
- California Institute for Biomedical Research (Calibr)La JollaCA92037USA
- Department of ChemistryThe Scripps Research InstituteLa JollaCA92037USA
| | - Decio L Eizirik
- ULB Center for Diabetes ResearchUniversite´ Libre de Bruxelles (ULB)Brussels1070Belgium
| | - Nikki Rogers
- California Institute for Biomedical Research (Calibr)La JollaCA92037USA
| | | | | | - Weijun Shen
- California Institute for Biomedical Research (Calibr)La JollaCA92037USA
| |
Collapse
|
5
|
A new promising simultaneous approach for attenuating type II diabetes mellitus induced neuropathic pain in rats: iNOS inhibition and neuroregeneration. Eur J Pharmacol 2017; 818:419-428. [PMID: 29154836 DOI: 10.1016/j.ejphar.2017.11.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Revised: 10/29/2017] [Accepted: 11/08/2017] [Indexed: 11/21/2022]
Abstract
In view of the pathologic basis for the treatment of diabetic neuropathy, it is important to enhance nerve regeneration as well as prevent nerve degeneration. So, in the present study, we have investigated the effect of S-Methylisothiourea Sulfate (selective iNOS inhibitor) and Citicoline, alone and in combination, on Type II diabetes mellitus induced neuropathic pain in wistar rats. Type II diabetes was induced by providing high fat diet and low dose of Streptozotocin for 35 days in rats. Type II diabetes mellitus was assessed in terms of increased glucose, triglycerides, cholesterol, LDL levels, glucose tolerance and decrease in HDL levels. Neuropathy as the complication of type II diabetes was assessed in terms of decreased nerve conduction velocity, mechanical and thermal hyperalgesia and cold allodynia. Oxidative stress was assessed in sciatic nerve and showed increase in LPO and nitrite levels whereas decrease was shown in GSH and catalase activity. Axonal degeneration marked by nerve fibre dearrangement and demyelination was observed in histopathological studies. SMT (iNOS inhibitor), Citicoline and low dose combination of both drugs significantly attenuates the diabetic neuropathic pain assessed in terms of parameters employed. Thus, it may be concluded that simultaneous administration of SMT and Citicoline may provide potential therapeutics for diabetic neuropathic pain.
Collapse
|
6
|
Asad ABA, Seah S, Baumgartner R, Feng D, Jensen A, Manigbas E, Henry B, Houghton A, Evelhoch JL, Derbyshire SWG, Chin CL. Distinct BOLD fMRI Responses of Capsaicin-Induced Thermal Sensation Reveal Pain-Related Brain Activation in Nonhuman Primates. PLoS One 2016; 11:e0156805. [PMID: 27309348 PMCID: PMC4911046 DOI: 10.1371/journal.pone.0156805] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Accepted: 05/18/2016] [Indexed: 01/05/2023] Open
Abstract
Background Approximately 20% of the adult population suffer from chronic pain that is not adequately treated by current therapies, highlighting a great need for improved treatment options. To develop effective analgesics, experimental human and animal models of pain are critical. Topically/intra-dermally applied capsaicin induces hyperalgesia and allodynia to thermal and tactile stimuli that mimics chronic pain and is a useful translation from preclinical research to clinical investigation. Many behavioral and self-report studies of pain have exploited the use of the capsaicin pain model, but objective biomarker correlates of the capsaicin augmented nociceptive response in nonhuman primates remains to be explored. Methodology Here we establish an aversive capsaicin-induced fMRI model using non-noxious heat stimuli in Cynomolgus monkeys (n = 8). BOLD fMRI data were collected during thermal challenge (ON:20 s/42°C; OFF:40 s/35°C, 4-cycle) at baseline and 30 min post-capsaicin (0.1 mg, topical, forearm) application. Tail withdrawal behavioral studies were also conducted in the same animals using 42°C or 48°C water bath pre- and post- capsaicin application (0.1 mg, subcutaneous, tail). Principal Findings Group comparisons between pre- and post-capsaicin application revealed significant BOLD signal increases in brain regions associated with the ‘pain matrix’, including somatosensory, frontal, and cingulate cortices, as well as the cerebellum (paired t-test, p<0.02, n = 8), while no significant change was found after the vehicle application. The tail withdrawal behavioral study demonstrated a significant main effect of temperature and a trend towards capsaicin induced reduction of latency at both temperatures. Conclusions These findings provide insights into the specific brain regions involved with aversive, ‘pain-like’, responses in a nonhuman primate model. Future studies may employ both behavioral and fMRI measures as translational biomarkers to gain deeper understanding of pain processing and evaluate the preclinical efficacy of novel analgesics.
Collapse
Affiliation(s)
- Abu Bakar Ali Asad
- Translational Biomarkers, Merck Research Laboratories, MSD, Singapore, Singapore
- * E-mail:
| | - Stephanie Seah
- Translational Biomarkers, Merck Research Laboratories, MSD, Singapore, Singapore
| | - Richard Baumgartner
- Biometrics Research, Biostatistics & Research Decision Sciences, Merck Research Laboratories, Merck & Co., Rahway, NJ, United States of America
| | - Dai Feng
- Biometrics Research, Biostatistics & Research Decision Sciences, Merck Research Laboratories, Merck & Co., Rahway, NJ, United States of America
| | - Andres Jensen
- Early Discovery Pharmacology, Merck Research Laboratories, MSD, Singapore, Singapore
| | | | - Brian Henry
- Early Discovery Pharmacology, Merck Research Laboratories, MSD, Singapore, Singapore
| | - Andrea Houghton
- Early Discovery Pharmacology, Merck Research Laboratories, Merck & Co., West Point, PA, United States of America
| | - Jeffrey L. Evelhoch
- Translational Biomarkers, Merck Research Laboratories, Merck & Co., West Point, PA, United States of America
| | - Stuart W. G. Derbyshire
- Dept of Psychology, National University of Singapore, Singapore, Singapore
- A*STAR-NUS Clinical Imaging Research Centre, Singapore, Singapore
| | - Chih-Liang Chin
- Translational Biomarkers, Merck Research Laboratories, MSD, Singapore, Singapore
| |
Collapse
|
7
|
Yang Y, Yu T, Lian YJ, Ma R, Yang S, Cho JY. Nitric oxide synthase inhibitors: a review of patents from 2011 to the present. Expert Opin Ther Pat 2014; 25:49-68. [PMID: 25380586 DOI: 10.1517/13543776.2014.979154] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
INTRODUCTION Nitric oxide synthases (NOSs) are a family of enzymes that play an essential role in synthesizing nitric oxide (NO) by oxidizing l-arginine. As previously reported, NO is a significant mediator in cellular signaling pathways. It serves as a crucial regulator in insulin secretion, vascular tone, peristalsis, angiogenesis, neural development and inflammation. Due to its important role, the inhibition of these vital enzymes provides, as tools, the opportunity to gain an insight into potential therapeutic applications targeting NOSs. AREAS COVERED This paper reviews the patent literature between 2011 and mid-2014 that specified inhibitors of NOS family members as the significant targets. Google and Baidu search engines were used to find relevant patents and clinical information using NOSs or NOS inhibitor as search terms. EXPERT OPINION Considerable recent progress has been made in the development of NOS inhibitors with pharmacodynamic and pharmacokinetic properties, and such development is likely to continue. The patented compounds attenuated mostly embodying evidence from in vitro and in vivo trials that demonstrate good potential for future clinical human trials and industrial applications. Furthermore, new techniques such as X-ray ligand crystallographic study and structure-activity relationship were popularly utilized, which give new insights for developing novel, safe, efficient and selective NOS inhibitors.
Collapse
Affiliation(s)
- Yanyan Yang
- Institute for Translational Medicine, College of Medicine, Qingdao University , Qingdao 266021 , China
| | | | | | | | | | | |
Collapse
|
8
|
Mukherjee P, Cinelli MA, Kang S, Silverman RB. Development of nitric oxide synthase inhibitors for neurodegeneration and neuropathic pain. Chem Soc Rev 2014; 43:6814-38. [PMID: 24549364 PMCID: PMC4138306 DOI: 10.1039/c3cs60467e] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Nitric oxide (NO) is an important signaling molecule in the human body, playing a crucial role in cell and neuronal communication, regulation of blood pressure, and in immune activation. However, overproduction of NO by the neuronal isoform of nitric oxide synthase (nNOS) is one of the fundamental causes underlying neurodegenerative disorders and neuropathic pain. Therefore, developing small molecules for selective inhibition of nNOS over related isoforms (eNOS and iNOS) is therapeutically desirable. The aims of this review focus on the regulation and dysregulation of NO signaling, the role of NO in neurodegeneration and pain, the structure and mechanism of nNOS, and the use of this information to design selective inhibitors of this enzyme. Structure-based drug design, the bioavailability and pharmacokinetics of these inhibitors, and extensive target validation through animal studies are addressed.
Collapse
Affiliation(s)
- Paramita Mukherjee
- Department of Chemistry, Department of Molecular Biosciences, Chemistry of Life Processes Institute, Center for Molecular Innovation and Drug Discovery, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, USA.
| | | | | | | |
Collapse
|
9
|
Keilhoff G, Schröder H, Peters B, Becker A. Time-course of neuropathic pain in mice deficient in neuronal or inducible nitric oxide synthase. Neurosci Res 2013; 77:215-21. [DOI: 10.1016/j.neures.2013.08.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 07/22/2013] [Accepted: 08/24/2013] [Indexed: 10/26/2022]
|
10
|
Abstract
This paper is the thirty-fourth consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2011 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior (Section 2), and the roles of these opioid peptides and receptors in pain and analgesia (Section 3); stress and social status (Section 4); tolerance and dependence (Section 5); learning and memory (Section 6); eating and drinking (Section 7); alcohol and drugs of abuse (Section 8); sexual activity and hormones, pregnancy, development and endocrinology (Section 9); mental illness and mood (Section 10); seizures and neurologic disorders (Section 11); electrical-related activity and neurophysiology (Section 12); general activity and locomotion (Section 13); gastrointestinal, renal and hepatic functions (Section 14); cardiovascular responses (Section 15); respiration (Section 16); and immunological responses (Section 17).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, Flushing, NY 11367, United States.
| |
Collapse
|
11
|
Bhatt DK, Gupta S, Jansen-Olesen I, Andrews JS, Olesen J. NXN-188, a selective nNOS inhibitor and a 5-HT1B/1D receptor agonist, inhibits CGRP release in preclinical migraine models. Cephalalgia 2012; 33:87-100. [PMID: 23155193 DOI: 10.1177/0333102412466967] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND NXN-188 is a combined neuronal nitric oxide synthase (nNOS) inhibitor and 5-hydroxytryptamine 1B/1D (5-HT1B/1D) receptor agonist. Using preclinical models, we evaluated whether these two unique therapeutic principles have a synergistic effect in attenuating stimulated calcitonin gene-related peptide (CGRP) release, a marker of trigeminal activation. METHODS We examined the effect of NXN-188 on: (1) KCl-, capsaicin- and resiniferatoxin (RTX)-induced immunoreactive CGRP (iCGRP) release from isolated preparation of rat dura mater, trigeminal ganglion (TG) and trigeminal nucleus caudalis (TNC); and (2) capsaicin- and electrical stimulation (ES)-induced middle meningeal artery (MMA) dilation in a rat closed-cranial window. RESULTS NXN-188 inhibited: (1) KCl-stimulated iCGRP release from dura mater (% decrease mean ± SEM, lowest effective concentration) (35 ± 6%, 30 µM), TG (24 ± 11%, 10 µM) and TNC (40 ± 8%, 10 µM); (2) capsaicin- and RTX-induced iCGRP release from dura mater; and (3) capsaicin- and ES-induced increase in dural artery diameter (32 ± 5%, 3 mg kg(-1) intravenous (i.v.) and 36 ± 1%, 10 mg kg(-1) i.v.). CONCLUSIONS NXN-188 inhibits CGRP release from migraine-relevant cephalic tissues. Its effect is most likely mediated via a combination of nNOS-inhibition and 5-HT1B/1D receptor agonism in dura mater while the mechanisms of action for inhibition of CGRP release from TG and TNC have to be investigated further.
Collapse
Affiliation(s)
- Deepak K Bhatt
- Department of Neurology, Glostrup Hospital, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | | | | | | | | |
Collapse
|
12
|
Cury Y, Picolo G, Gutierrez VP, Ferreira SH. Pain and analgesia: The dual effect of nitric oxide in the nociceptive system. Nitric Oxide 2011; 25:243-54. [DOI: 10.1016/j.niox.2011.06.004] [Citation(s) in RCA: 180] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2010] [Revised: 02/17/2011] [Accepted: 06/16/2011] [Indexed: 01/22/2023]
|