1
|
Traughber CA, Iacano AJ, Neupane K, Khan MR, Opoku E, Nunn T, Prince A, Sangwan N, Hazen SL, Smith JD, Gulshan K. Impavido attenuates inflammation, reduces atherosclerosis, and alters gut microbiota in hyperlipidemic mice. iScience 2023; 26:106453. [PMID: 37020959 PMCID: PMC10067757 DOI: 10.1016/j.isci.2023.106453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 12/14/2022] [Accepted: 03/15/2023] [Indexed: 04/03/2023] Open
Abstract
Impavido (Miltefosine) is an FDA-approved drug for treating leishmaniasis and primary amebic meningoencephalitis. We have shown previously that Miltefosine increased cholesterol release and dampened Nlrp3 inflammasome assembly in macrophages. Here, we show that Miltefosine reduced LPS-induced choline uptake by macrophages, and attenuated Nlrp3 inflammasome assembly in mice. Miltefosine-fed mice showed reduced plasma IL-1β in a polymicrobial cecal slurry model of systemic inflammation. Miltefosine-fed mice showed increased reverse cholesterol transport to the plasma, liver, and feces. Hyperlipidemic apoE-/- mice fed with WTD + Miltefosine showed significantly reduced weight gain and markedly reduced atherosclerotic lesions versus mice fed with WTD. The 16S rDNA sequencing and analysis of gut microbiota showed marked alterations in the microbiota profile of Miltefosine-fed hyperlipidemic apoE-/- versus control, with the most notable changes in Romboutsia and Bacteriodes species. Taken together, these data indicate that Miltefosine causes pleiotropic effects on lipid metabolism, inflammasome activity, atherosclerosis, and the gut microbiota.
Collapse
|
2
|
Analysis of Low Molecular Weight Substances and Related Processes Influencing Cellular Cholesterol Efflux. Pharmaceut Med 2020; 33:465-498. [PMID: 31933239 PMCID: PMC7101889 DOI: 10.1007/s40290-019-00308-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Cholesterol efflux is the key process protecting the vascular system from the development of atherosclerotic lesions. Various extracellular and intracellular events affect the ability of the cell to efflux excess cholesterol. To explore the possible pathways and processes that promote or inhibit cholesterol efflux, we applied a combined cheminformatic and bioinformatic approach. We performed a comprehensive analysis of published data on the various substances influencing cholesterol efflux and found 153 low molecular weight substances that are included in the Chemical Entities of Biological Interest (ChEBI) database. Pathway enrichment was performed for substances identified within the Reactome database, and 45 substances were selected in 93 significant pathways. The most common pathways included the energy-dependent processes related to active cholesterol transport from the cell, lipoprotein metabolism and lipid transport, and signaling pathways. The activators and inhibitors of cholesterol efflux were non-uniformly distributed among the different pathways: the substances influencing ‘biological oxidations’ activate cholesterol efflux and the substances influencing ‘Signaling by GPCR and PTK6’ inhibit efflux. This analysis may be used in the search and design of efflux effectors for therapies targeting structural and functional high-density lipoprotein deficiency.
Collapse
|
3
|
Miltefosine increases macrophage cholesterol release and inhibits NLRP3-inflammasome assembly and IL-1β release. Sci Rep 2019; 9:11128. [PMID: 31366948 PMCID: PMC6668382 DOI: 10.1038/s41598-019-47610-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 06/18/2019] [Indexed: 01/24/2023] Open
Abstract
Miltefosine is an FDA approved oral drug for treating cutaneous and visceral leishmaniasis. Leishmania is a flagellated protozoa, which infects and differentiates in macrophages. Here, we studied the effects of Miltefosine on macrophage's lipid homeostasis, autophagy, and NLRP3 inflammasome assembly/activity. Miltefosine treatment conferred multiple effects on macrophage lipid homeostasis leading to increased cholesterol release from cells, increased lipid-raft disruption, decreased phosphatidylserine (PS) flip from the cell-surface, and redistribution of phosphatidylinositol 4,5-bisphosphate (PIP2) from the plasma membrane to actin rich regions in the cells. Enhanced basal autophagy, lipophagy and mitophagy was observed in cells treated with Miltefosine vs. control. Miltefosine treated cells showed marked increased in phosphorylation of kinases involved in autophagy induction such as; Adenosine monophosphate-activated protein kinase (AMPK) and Unc-51 like autophagy activating kinase (ULK1). The Toll like receptor (TLR) signaling pathway was blunted by Miltefosine treatment, resulting in decreased TLR4 recruitment to cell-surface and ~75% reduction in LPS induced pro-IL-1β mRNA levels. Miltefosine reduced endotoxin-mediated mitochondrial reactive oxygen species and protected the mitochondrial membrane potential. Miltefosine treatment induced mitophagy and dampened NLRP3 inflammasome assembly. Collectively, our data shows that Miltefosine induced ABCA1 mediated cholesterol release, induced AMPK phosphorylation and mitophagy, while dampening NLRP3 inflammasome assembly and IL-1β release.
Collapse
|
4
|
Zhou Z, Luo B, Liu X, Chen M, Lan W, Iovanna JL, Peng L, Xia Y. Flavonoid-alkylphospholipid conjugates elicit dual inhibition of cancer cell growth and lipid accumulation. Chem Commun (Camb) 2019; 55:8919-8922. [PMID: 31270526 DOI: 10.1039/c9cc04084f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cancer development is often associated with lipid metabolic reprogramming, including aberrant lipid accumulation. We create novel paradigms endowed with dual functions of anticancer activity and inhibition of lipid accumulation by conjugating the natural product quercetin and synthetic alkylphospholipid drugs, and harnessing the biomedical effects of both. These conjugates offer fresh perspectives in the search for anticancer candidates.
Collapse
Affiliation(s)
- Zhengwei Zhou
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, China.
| | - Biyao Luo
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, China.
| | - Xi Liu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, China.
| | - Mimi Chen
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, China.
| | - Wenjun Lan
- Aix-Marseille Université, CNRS, Centre Interdisciplinaire de Nanoscience de Marseille, Equipe Labellisé par La Ligue, France. and Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS, Aix-Marseille Université and Institut Paoli-Calmettes, Marseille 13288, France
| | - Juan L Iovanna
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS, Aix-Marseille Université and Institut Paoli-Calmettes, Marseille 13288, France
| | - Ling Peng
- Aix-Marseille Université, CNRS, Centre Interdisciplinaire de Nanoscience de Marseille, Equipe Labellisé par La Ligue, France.
| | - Yi Xia
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, China.
| |
Collapse
|
5
|
Zulueta Díaz YDLM, Fanani ML. Crossregulation between the insertion of Hexadecylphosphocholine (miltefosine) into lipid membranes and their rheology and lateral structure. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017. [DOI: 10.1016/j.bbamem.2017.06.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
6
|
Ríos-Marco P, Marco C, Gálvez X, Jiménez-López JM, Carrasco MP. Alkylphospholipids: An update on molecular mechanisms and clinical relevance. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:1657-1667. [PMID: 28238819 DOI: 10.1016/j.bbamem.2017.02.016] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Revised: 02/20/2017] [Accepted: 02/21/2017] [Indexed: 11/16/2022]
Abstract
Alkylphospholipids (APLs) represent a new class of drugs which do not interact directly with DNA but act on the cell membrane where they accumulate and interfere with lipid metabolism and signalling pathways. This review summarizes the mode of action at the molecular level of these compounds. In this sense, a diversity of mechanisms has been suggested to explain the actions of clinically-relevant APLs, in particular, in cancer treatment. One consistently reported finding is that APLs reduce the biosynthesis of phosphatidylcholine (PC) by inhibiting the rate-limiting enzyme CTP:phosphocholine cytidylyltransferase (CT). APLs also alter intracellular cholesterol traffic and metabolism in human tumour-cell lines, leading to an accumulation of cholesterol inside the cell. An increase in cholesterol biosynthesis associated with a decrease in the synthesis of choline-containing phospholipids and cholesterol esterification leads to a change in the free-cholesterol:PC ratio in cells exposed to APLs. Akt phosphorylation status after APL exposure shows that this critical regulator for cell survival is modulated by changes in cholesterol levels induced in the plasma membrane by these lipid analogues. Furthermore, APLs produce cell ultrastructural alterations with an abundant autophagic vesicles and autolysosomes in treated cells, indicating an interference of autophagy process after APL exposure. Thus, antitumoural APLs interfere with the proliferation of tumour cells via a complex mechanism involving phospholipid and cholesterol metabolism, interfere with lipid-dependent survival-signalling pathways and autophagy. Although APLs also exert antiparasitic, antibacterial, and antifungal effects, in this review we provide a summary of the antileishmanial activity of these lipid analogues. This article is part of a Special Issue entitled: Membrane Lipid Therapy: Drugs Targeting Biomembranes edited by Pablo V. Escribá.
Collapse
Affiliation(s)
- Pablo Ríos-Marco
- Department of Biochemistry and Molecular Biology I, Faculty of Sciences, University of Granada, Av. Fuentenueva s/n, Granada 18001, Spain
| | - Carmen Marco
- Department of Biochemistry and Molecular Biology I, Faculty of Sciences, University of Granada, Av. Fuentenueva s/n, Granada 18001, Spain
| | - Xiomara Gálvez
- Department of Biochemistry and Molecular Biology I, Faculty of Sciences, University of Granada, Av. Fuentenueva s/n, Granada 18001, Spain
| | - José M Jiménez-López
- Department of Biochemistry and Molecular Biology I, Faculty of Sciences, University of Granada, Av. Fuentenueva s/n, Granada 18001, Spain.
| | - María P Carrasco
- Department of Biochemistry and Molecular Biology I, Faculty of Sciences, University of Granada, Av. Fuentenueva s/n, Granada 18001, Spain.
| |
Collapse
|
7
|
Luna ACDL, Saraiva GKV, Filho OMR, Chierice GO, Neto SC, Cuccovia IM, Maria DA. Potential antitumor activity of novel DODAC/PHO-S liposomes. Int J Nanomedicine 2016; 11:1577-91. [PMID: 27143880 PMCID: PMC4841408 DOI: 10.2147/ijn.s90850] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
In recent studies, we showed that synthetic phosphoethanolamine (PHO-S) has a great potential for inducing cell death in several tumor cell lines without damage to normal cells. However, its cytotoxic effect and selectivity against tumor cells could increase with encapsulation in cationic liposomes, such as dioctadecyldimethylammonium chloride (DODAC), due to electrostatic interactions between these liposomes and tumor cell membranes. Our aim was to use cationic liposomes to deliver PHO-S and to furthermore maximize the therapeutic effect of this compound. DODAC liposomes containing PHO-S (DODAC/PHO-S), at concentrations of 0.3-2.0 mM, prepared by ultrasonication, were analyzed by scanning electron microscopy (SEM) and dynamic light scattering. The cytotoxic effect of DODAC/PHO-S on B16F10 cells, Hepa1c1c7 cells, and human umbilical vein endothelial cells (HUVECs) was assessed by MTT assay. Cell cycle phases of B16F10 cells were analyzed by flow cytometry and the morphological changes by SEM, after treatment. The liposomes were spherical and polydisperse in solution. The liposomes were stable, presenting an average of ∼ 50% of PHO-S encapsulation, with a small reduction after 40 days. DODAC demonstrated efficient PHO-S delivery, with the lowest values of IC50% (concentration that inhibits 50% of the growth of cells) for tumor cells, compared with PHO-S alone, with an IC50% value of 0.8 mM for B16F10 cells and 0.2 mM for Hepa1c1c7 cells, and without significant effects on endothelial cells. The Hepa1c1c7 cells showed greater sensitivity to the DODAC/PHO-S formulation when compared to B16F10 cells and HUVECs. The use of DODAC/PHO-S on B16F10 cells induced G2/M-phase cell cycle arrest, with the proportion significantly greater than that treated with PHO-S alone. The morphological analysis of B16F10 cells by SEM showed changes such as "bleb" formation, cell detachment, cytoplasmic retraction, and apoptotic bodies after DODAC/PHO-S treatment. Cationic liposomal formulation for PHO-S delivery promoted cytotoxicity more selectively and effectively against B16F10 and Hepa1c1c7 cells. Thus, the DODAC/PHO-S liposomal formulation presents great potential for preclinical studies.
Collapse
Affiliation(s)
- Arthur Cássio de Lima Luna
- Biochemistry and Biophysical Laboratory, Butantan Institute, University of Sao Paulo, Sao Paulo, Brazil; Department of Medical Sciences, Medical School, University of Sao Paulo, Sao Paulo, Brazil
| | | | | | | | - Salvador Claro Neto
- Department of Chemistry and Molecular Physics, University of Sao Paulo, Sao Carlos, Brazil
| | - Iolanda Midea Cuccovia
- Department of Biochemistry, Institute of Chemistry, University of Sao Paulo, Sao Paulo, Brazil
| | - Durvanei Augusto Maria
- Biochemistry and Biophysical Laboratory, Butantan Institute, University of Sao Paulo, Sao Paulo, Brazil; Department of Medical Sciences, Medical School, University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
8
|
Pleiotropic effects of antitumour alkylphospholipids on cholesterol transport and metabolism. Exp Cell Res 2015; 340:81-90. [PMID: 26712518 DOI: 10.1016/j.yexcr.2015.12.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 12/15/2015] [Accepted: 12/18/2015] [Indexed: 11/20/2022]
Abstract
BACKGROUND Alkylphospholipid (APL) analogs are a new class of membrane-directed synthetic compounds with a variety of biological actions and clinical applications. In particular, these agents are promising candidates in cancer treatment. We have demonstrated that after prolonged treatment APLs alter intracellular cholesterol traffic and metabolism in human tumor-cell lines, leading to an accumulation of cholesterol inside the cell. After further investigation concerning the mode of action of APLs, we have explored the influence of several APLs on novel aspects of cholesterol and lipoprotein homeostasis using hepatoma HepG2 cells and THP1-derived macrophages. METHODS Quantitative real-time PCR analysis with a pathway-focused PCR array system was performed to measure relative changes in the mRNA expression of a number of genes related to cholesterol transport and metabolism. We compared the gene-expression profiles of HepG2 cells treated with miltefosine, edelfosine or perifosine for 6h and 24h with the profile of control cells. We also analysed particular genes of interest in both HepG2 and macrophage-like THP1 cells using specific PCR assays. Immunoblots were used to confirm protein-expression changes. Measurement of ABCA1-mediated cholesterol efflux was determined using apoA1 as cholesterol acceptor. RESULTS We found global changes in gene-expression patterns to maintain cholesterol homeostasis after exposure of cells to APLs. The pathways for cholesterol biosynthesis and LDL-cholesterol uptake were both transcriptionally upregulated by the three APLs assayed. Conversely, major pathways involved in the catabolism of cholesterol to bile acids and lipoprotein-associated cholesterol export were impaired after APL incubation, which may well contribute to the higher cell-cholesterol levels induced by these compounds. CONCLUSION Incubation of cells with different APLs stimulated cholesterol biosynthesis and uptake at the same time as it depressed common pathways for excess cholesterol removal in tumor cells, ultimately leading to altered cholesterol homeostasis.
Collapse
|
9
|
Ríos-Marco P, Martín-Fernández M, Soria-Bretones I, Ríos A, Carrasco MP, Marco C. Alkylphospholipids deregulate cholesterol metabolism and induce cell-cycle arrest and autophagy in U-87 MG glioblastoma cells. BIOCHIMICA ET BIOPHYSICA ACTA 2013; 1831:1322-34. [PMID: 23707264 DOI: 10.1016/j.bbalip.2013.05.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Revised: 05/08/2013] [Accepted: 05/13/2013] [Indexed: 11/27/2022]
Abstract
Glioblastoma is the most common malignant primary brain tumour in adults and one of the most lethal of all cancers. Growing evidence suggests that human tumours undergo abnormal lipid metabolism, characterised by an alteration in the mechanisms that regulate cholesterol homeostasis. We have investigated the effect that different antitumoural alkylphospholipids (APLs) exert upon cholesterol metabolism in the U-87 MG glioblastoma cell line. APLs altered cholesterol homeostasis by interfering with its transport from the plasma membrane to the endoplasmic reticulum (ER), thus hindering its esterification. At the same time they stimulated the synthesis of cholesterol from radiolabelled acetate and its internalisation from low-density lipoproteins (LDLs), inducing both 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR) and LDL receptor (LDLR) genes. Fluorescent microscopy revealed that these effects promoted the accumulation of intracellular cholesterol. Filipin staining demonstrated that this accumulation was not confined to the late endosome/lysosome (LE/LY) compartment since it did not colocalise with LAMP2 lysosomal marker. Furthermore, APLs inhibited cell growth, producing arrest at the G2/M phase. We also used transmission electron microscopy (TEM) to investigate ultrastructural alterations induced by APLs and found an abundant presence of autophagic vesicles and autolysosomes in treated cells, indicating the induction of autophagy. Thus our findings clearly demonstrate that antitumoural APLs interfere with the proliferation of the glioblastoma cell line via a complex mechanism involving cholesterol metabolism, cell-cycle arrest or autophagy. Knowledge of the interrelationship between these processes is fundamental to our understanding of tumoural response and may facilitate the development of novel therapeutics to improve treatment of glioblastoma and other types of cancer.
Collapse
Affiliation(s)
- Pablo Ríos-Marco
- Department of Biochemistry and Molecular Biology I, University of Granada, Granada, Spain
| | | | | | | | | | | |
Collapse
|
10
|
Ríos-Marco P, Segovia JL, Jiménez-López JM, Marco C, Carrasco MP. Lipid Efflux Mediated by Alkylphospholipids in HepG2 Cells. Cell Biochem Biophys 2013; 66:737-46. [DOI: 10.1007/s12013-013-9518-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
11
|
Gills JJ, Zhang C, Abu-Asab MS, Castillo SS, Marceau C, LoPiccolo J, Kozikowski AP, Tsokos M, Goldkorn T, Dennis PA. Ceramide mediates nanovesicle shedding and cell death in response to phosphatidylinositol ether lipid analogs and perifosine. Cell Death Dis 2012; 3:e340. [PMID: 22764099 PMCID: PMC3406576 DOI: 10.1038/cddis.2012.72] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Anticancer phospholipids that inhibit Akt such as the alkylphospholipid perifosine (Per) and phosphatidylinositol ether lipid analogs (PIAs) promote cellular detachment and apoptosis and have a similar cytotoxicity profile against cancer cell lines in the NCI60 panel. While investigating the mechanism of Akt inhibition, we found that short-term incubation with these compounds induced rapid shedding of cellular nanovesicles containing EGFR, IGFR and p-Akt that occurred in vitro and in vivo, while prolonged incubation led to cell detachment and death that depended on sphingomyelinase-mediated generation of ceramide. Pretreatment with sphingomyelinase inhibitors blocked ceramide generation, decreases in phospho-Akt, nanovesicle release and cell detachment in response to alkylphospholipids and PIAs in non-small cell lung cancer cell lines. Similarly, exogenous ceramide also decreased active Akt and induced nanovesicle release. Knockdown of neutral sphingomyelinase decreased, whereas overexpression of neutral or acid sphingomyelinase increased cell detachment and death in response to the compounds. When transferred in vitro, PIA or Per-induced nanovesicles increased ceramide levels and death in recipient cells. These results indicate ceramide generation underlies the Akt inhibition and cytotoxicity of this group of agents, and suggests nanovesicle shedding and uptake might potentially propagate their cytotoxicity in vivo.
Collapse
Affiliation(s)
- J J Gills
- Medical Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892-4254, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|