1
|
Li M, Li H, Lu L, Fu J, Ao H, Han M, Guo Y, Zhang H, Wang Z, Wang X. Simple preparation and greatly improved oral bioavailability: The supersaturated drug delivery system of quercetin based on PVP K30. Drug Deliv Transl Res 2024; 14:3225-3238. [PMID: 38421545 DOI: 10.1007/s13346-024-01544-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/08/2024] [Indexed: 03/02/2024]
Abstract
Quercetin, as a representative flavonoid, is widely present in daily diet and has been developed as a dietary supplement due to its beneficial physiological activities. However, the application of quercetin is limited due to its poor water solubility and extensive metabolism. So far, the nano-drug delivery systems designed to improve its bioavailability generally have the shortcomings of low drug loading content and difficulty in industrial production. In order to tackle these problems, quercetin supersaturated drug delivery system (QSDDS) was successfully prepared using solvent method, for which PVP K30 was employed as a crystallization and precipitation inhibitor to maintain the supersaturated state of quercetin in aqueous system. The obtained QSDDS, with a relative high drug loading content of 13%, could quickly disperse in water and form colloidal system with the mean particle size of about 200 nm, meanwhile induce the generation of supersaturated quercetin solution more than 12 h. In vivo pharmacokinetic study proved that QSDDS achieved a high absolute bioavailability of 36.05%, 10 times as that of physical quercetin suspension, which was dose-dependent with higher bioavailability at higher dose. Considering the simple preparation method, QSDDS provided a feasible strategy and a simple way to improve oral absorption of insoluble flavonoids.
Collapse
Affiliation(s)
- Manzhen Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing, 100193, China
| | - Haowen Li
- PK-ADME, Pharmaron Beijing, Beijing E-Town, 100176, China
| | - Likang Lu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing, 100193, China
| | - Jingxin Fu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing, 100193, China
| | - Hui Ao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing, 100193, China
| | - Meihua Han
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing, 100193, China
| | - Yifei Guo
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing, 100193, China
| | - Hongda Zhang
- Jiangsu Kanion Parmaceutical Co. Ltd, Jiangsu, Lianyungang, 222001, China
- National Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture and Kanion Pharmaceutical Co. Ltd., Jiangsu, Lianyungang, 222001, China
| | - Zhenzhong Wang
- Jiangsu Kanion Parmaceutical Co. Ltd, Jiangsu, Lianyungang, 222001, China.
- National Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture and Kanion Pharmaceutical Co. Ltd., Jiangsu, Lianyungang, 222001, China.
| | - Xiangtao Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing, 100193, China.
| |
Collapse
|
2
|
Bešlo D, Golubić N, Rastija V, Agić D, Karnaš M, Šubarić D, Lučić B. Antioxidant Activity, Metabolism, and Bioavailability of Polyphenols in the Diet of Animals. Antioxidants (Basel) 2023; 12:1141. [PMCID: PMC10294820 DOI: 10.3390/antiox12061141] [Citation(s) in RCA: 33] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/04/2023] [Accepted: 05/15/2023] [Indexed: 06/29/2023] Open
Abstract
As the world’s population grows, so does the need for more and more animal feed. In 2006, the EU banned the use of antibiotics and other chemicals in order to reduce chemical residues in food consumed by humans. It is well known that oxidative stress and inflammatory processes must be combated to achieve higher productivity. The adverse effects of the use of pharmaceuticals and other synthetic compounds on animal health and product quality and safety have increased interest in phytocompounds. With the use of plant polyphenols in animal nutrition, they are gaining more attention as a supplement to animal feed. Livestock feeding based on a sustainable, environmentally friendly approach (clean, safe, and green agriculture) would also be a win–win for farmers and society. There is an increasing interest in producing healthier products of animal origin with a higher ratio of polyunsaturated fatty acids (PUFAs) to saturated fatty acids by modulating animal nutrition. Secondary plant metabolites (polyphenols) are essential chemical compounds for plant physiology as they are involved in various functions such as growth, pigmentation, and resistance to pathogenic organisms. Polyphenols are exogenous antioxidants that act as one of the first lines of cell defense. Therefore, the discoveries on the intracellular antioxidant activity of polyphenols as a plant supplement have contributed significantly to the improvement of antioxidant activity, as polyphenols prevent oxidative stress damage and eliminate excessively produced free radicals. To achieve animal welfare, reduce stress and the need for medicines, and increase the quality of food of animal origin, the addition of polyphenols to research and breeding can be practised in part with a free-choice approach to animal nutrition.
Collapse
Affiliation(s)
- Drago Bešlo
- Faculty of Agrobiotechnical Sciences Osijek, J. J. Strossmayer University Osijek, Vladimira Preloga 1, HR-31000 Osijek, Croatia; (N.G.); (V.R.); (D.A.); (M.K.); (D.Š.)
| | - Nataša Golubić
- Faculty of Agrobiotechnical Sciences Osijek, J. J. Strossmayer University Osijek, Vladimira Preloga 1, HR-31000 Osijek, Croatia; (N.G.); (V.R.); (D.A.); (M.K.); (D.Š.)
| | - Vesna Rastija
- Faculty of Agrobiotechnical Sciences Osijek, J. J. Strossmayer University Osijek, Vladimira Preloga 1, HR-31000 Osijek, Croatia; (N.G.); (V.R.); (D.A.); (M.K.); (D.Š.)
| | - Dejan Agić
- Faculty of Agrobiotechnical Sciences Osijek, J. J. Strossmayer University Osijek, Vladimira Preloga 1, HR-31000 Osijek, Croatia; (N.G.); (V.R.); (D.A.); (M.K.); (D.Š.)
| | - Maja Karnaš
- Faculty of Agrobiotechnical Sciences Osijek, J. J. Strossmayer University Osijek, Vladimira Preloga 1, HR-31000 Osijek, Croatia; (N.G.); (V.R.); (D.A.); (M.K.); (D.Š.)
| | - Domagoj Šubarić
- Faculty of Agrobiotechnical Sciences Osijek, J. J. Strossmayer University Osijek, Vladimira Preloga 1, HR-31000 Osijek, Croatia; (N.G.); (V.R.); (D.A.); (M.K.); (D.Š.)
| | - Bono Lučić
- NMR Center, Ruđer Bošković Institute, Bijenička cesta 54, HR-10000 Zagreb, Croatia;
| |
Collapse
|
3
|
Smith A, Page BDG, Collier AC, Coughtrie MWH. Homology Modeling of Human Uridine-5'-diphosphate-glucuronosyltransferase 1A6 Reveals Insights into Factors Influencing Substrate and Cosubstrate Binding. ACS OMEGA 2020; 5:6872-6887. [PMID: 32258923 PMCID: PMC7114752 DOI: 10.1021/acsomega.0c00205] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 03/11/2020] [Indexed: 05/05/2023]
Abstract
The elimination of numerous endogenous compounds and xenobiotics via glucuronidation by uridine-5'-diphosphate glycosyltransferase enzymes (UGTs) is an essential process of the body's chemical defense system. UGTs have distinct but overlapping substrate preferences, but the molecular basis for their substrate specificity remains poorly understood. Three-dimensional protein structures can greatly enhance our understanding of the interactions between enzymes and their substrates, but because of the inherent difficulties in purifying and crystallizing integral endoplasmic reticulum membrane proteins, no complete mammalian UGT structure has yet been produced. To address this problem, we have created a homology model of UGT1A6 using I-TASSER to explore, in detail, the interactions of human UGT1A6 with its substrates. Ligands were docked into our model in the presence of the cosubstrate uridine-5'-diphosphate-glucuronic acid, interacting residues were examined, and poses were compared to those cocrystallized with various plant and bacterial glycosyltransferases (GTs). Our model structurally resembles other GTs, and docking experiments replicated many of the expected UGT-substrate interactions. Some bias toward the template structures' protein-substrate interactions and binding preferences was evident.
Collapse
|
4
|
Borsari C, Santarem N, Macedo S, Jiménez-Antón MD, Torrado JJ, Olías-Molero AI, Corral MJ, Tait A, Ferrari S, Costantino L, Luciani R, Ponterini G, Gul S, Kuzikov M, Ellinger B, Behrens B, Reinshagen J, Alunda JM, Cordeiro-da-Silva A, Costi MP. SAR Studies and Biological Characterization of a Chromen-4-one Derivative as an Anti- Trypanosoma brucei Agent. ACS Med Chem Lett 2019; 10:528-533. [PMID: 30996791 DOI: 10.1021/acsmedchemlett.8b00565] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 01/29/2019] [Indexed: 12/11/2022] Open
Abstract
Chemical modulation of the flavonol 2-(benzo[d][1,3]dioxol-5-yl)-chromen-4-one (1), a promising anti-Trypanosomatid agent previously identified, was evaluated through a phenotypic screening approach. Herein, we have performed structure-activity relationship studies around hit compound 1. The pivaloyl derivative (13) showed significant anti-T. brucei activity (EC50 = 1.1 μM) together with a selectivity index higher than 92. The early in vitro ADME-tox properties (cytotoxicity, mitochondrial toxicity, cytochrome P450 and hERG inhibition) were determined for compound 1 and its derivatives, and these led to the identification of some liabilities. The 1,3-benzodioxole moiety in the presented compounds confers better in vivo pharmacokinetic properties than those of classical flavonols. Further studies using different delivery systems could lead to an increase of compound blood levels.
Collapse
Affiliation(s)
- Chiara Borsari
- University of Modena and Reggio Emilia, Via Campi 103, 41125 Modena, Italy
| | - Nuno Santarem
- IBMC and Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4150-180 Porto, Portugal
| | - Sara Macedo
- IBMC and Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4150-180 Porto, Portugal
| | | | | | | | | | - Annalisa Tait
- University of Modena and Reggio Emilia, Via Campi 103, 41125 Modena, Italy
| | - Stefania Ferrari
- University of Modena and Reggio Emilia, Via Campi 103, 41125 Modena, Italy
| | - Luca Costantino
- University of Modena and Reggio Emilia, Via Campi 103, 41125 Modena, Italy
| | - Rosaria Luciani
- University of Modena and Reggio Emilia, Via Campi 103, 41125 Modena, Italy
| | - Glauco Ponterini
- University of Modena and Reggio Emilia, Via Campi 103, 41125 Modena, Italy
| | - Sheraz Gul
- Fraunhofer Institute for Molecular Biology and Applied Ecology Screening Port, 22525 Hamburg, Germany
| | - Maria Kuzikov
- Fraunhofer Institute for Molecular Biology and Applied Ecology Screening Port, 22525 Hamburg, Germany
| | - Bernhard Ellinger
- Fraunhofer Institute for Molecular Biology and Applied Ecology Screening Port, 22525 Hamburg, Germany
| | - Birte Behrens
- Fraunhofer Institute for Molecular Biology and Applied Ecology Screening Port, 22525 Hamburg, Germany
| | - Jeanette Reinshagen
- Fraunhofer Institute for Molecular Biology and Applied Ecology Screening Port, 22525 Hamburg, Germany
| | | | - Anabela Cordeiro-da-Silva
- IBMC and Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4150-180 Porto, Portugal
- Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal
| | - Maria Paola Costi
- University of Modena and Reggio Emilia, Via Campi 103, 41125 Modena, Italy
| |
Collapse
|
5
|
Osborne MJ, Coutinho de Oliveira L, Volpon L, Zahreddine HA, Borden KLB. Overcoming Drug Resistance through the Development of Selective Inhibitors of UDP-Glucuronosyltransferase Enzymes. J Mol Biol 2018; 431:258-272. [PMID: 30428301 DOI: 10.1016/j.jmb.2018.11.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 10/18/2018] [Accepted: 11/05/2018] [Indexed: 12/26/2022]
Abstract
Drug resistance is a major cause of cancer-related mortality. Glucuronidation of drugs via elevation of UDP-glucuronosyltransferases (UGT1As) correlates with clinical resistance. The nine UGT1A family members have broad substrate specificities attributed to their variable N-terminal domains and share a common C-terminal domain. Development of UGT1As as pharmacological targets has been hampered by toxicity of pan-UGT inhibitors and by difficulty in isolating pure N-terminal domains or full-length proteins. Here, we developed a strategy to target selected UGT1As which exploited the biochemical tractability of the C-domain and its ability to allosterically communicate with the catalytic site. By combining NMR fragment screening with in vitro glucuronidation assays, we identified inhibitors selective for UGT1A4. Significantly, these compounds selectively restored sensitivity in resistant cancer cells only for substrates of the targeted UGT1A. This strategy represents a crucial first step toward developing compounds to overcome unwanted glucuronidation thereby reversing resistance in patients.
Collapse
Affiliation(s)
- Michael J Osborne
- Institute of Research in Immunology and Cancer (IRIC), Department of Pathology and Cell Biology, Université de Montréal, Pavilion Marcelle-Coutu, Chemin Polytechnique, Montreal, QC, Canada
| | - Luciana Coutinho de Oliveira
- Institute of Research in Immunology and Cancer (IRIC), Department of Pathology and Cell Biology, Université de Montréal, Pavilion Marcelle-Coutu, Chemin Polytechnique, Montreal, QC, Canada
| | - Laurent Volpon
- Institute of Research in Immunology and Cancer (IRIC), Department of Pathology and Cell Biology, Université de Montréal, Pavilion Marcelle-Coutu, Chemin Polytechnique, Montreal, QC, Canada
| | - Hiba Ahmad Zahreddine
- Institute of Research in Immunology and Cancer (IRIC), Department of Pathology and Cell Biology, Université de Montréal, Pavilion Marcelle-Coutu, Chemin Polytechnique, Montreal, QC, Canada
| | - Katherine L B Borden
- Institute of Research in Immunology and Cancer (IRIC), Department of Pathology and Cell Biology, Université de Montréal, Pavilion Marcelle-Coutu, Chemin Polytechnique, Montreal, QC, Canada.
| |
Collapse
|
6
|
Li Y, Ning J, Wang Y, Wang C, Sun C, Huo X, Yu Z, Feng L, Zhang B, Tian X, Ma X. Drug interaction study of flavonoids toward CYP3A4 and their quantitative structure activity relationship (QSAR) analysis for predicting potential effects. Toxicol Lett 2018; 294:27-36. [DOI: 10.1016/j.toxlet.2018.05.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 04/13/2018] [Accepted: 05/08/2018] [Indexed: 12/27/2022]
|
7
|
Qi C, Fu J, Zhao H, Xing H, Dong D, Wu B. Identification of UGTs and BCRP as potential pharmacokinetic determinants of the natural flavonoid alpinetin. Xenobiotica 2018; 49:276-283. [DOI: 10.1080/00498254.2018.1440657] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Chunli Qi
- Institution of Laboratory Animal, Jinan University, Guangzhou, China
| | - Jiangnan Fu
- Institution of Laboratory Animal, Jinan University, Guangzhou, China
| | - Huinan Zhao
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Huijie Xing
- Institution of Laboratory Animal, Jinan University, Guangzhou, China
| | - Dong Dong
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Baojian Wu
- College of Pharmacy, Jinan University, Guangzhou, China
| |
Collapse
|
8
|
Xu M, Dong P, Tian X, Wang C, Huo X, Zhang B, Wu L, Deng S, Ma X. Drug interaction study of natural steroids from herbs specifically toward human UDP-glucuronosyltransferase (UGT) 1A4 and their quantitative structure activity relationship (QSAR) analysis for prediction. Pharmacol Res 2016; 110:139-150. [DOI: 10.1016/j.phrs.2016.05.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 04/26/2016] [Accepted: 05/06/2016] [Indexed: 12/11/2022]
|
9
|
Wang M, Yang G, He Y, Xu B, Zeng M, Ge S, Yin T, Gao S, Hu M. Establishment and use of new MDCK II cells overexpressing both UGT1A1 and MRP2 to characterize flavonoid metabolism via the glucuronidation pathway. Mol Nutr Food Res 2016; 60:1967-83. [PMID: 26833852 DOI: 10.1002/mnfr.201500321] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 11/23/2015] [Accepted: 01/12/2016] [Indexed: 11/06/2022]
Abstract
SCOPE The purpose of this study is to characterize how overexpression of an efflux transporter and an UDP-glucuronosyltransferase (UGT) affects the cellular kinetics of glucuronidation processes. METHODS AND RESULTS A new MDCK II cell line overexpressing both MRP2 and UGT1A1 (MDCKII-UGT1A1/MRP2 cells) was developed and used to determine how overexpression of an efflux transporter affects the kinetics of cellular flavonoid glucuronide production. The results showed that most model flavonoids (from a total of 13) were mainly metabolized into glucuronides in the MDCKII-UGT1A1/MRP2 cells and the glucuronides were rapidly excreted. Flavonoids with three or fewer hydroxyl group at 7, 3' or 6 hydroxyl group were also metabolized into sulfates. Mechanistic studies using 7-hydroxylflavone showed that its glucuronide was mainly (90%) effluxed by BCRP with a small (10%) but significant contribution from MRP2. Maximal velocity of glucuronide production MDCK-MRP2/UGT1A1 cells showed a fairly good correlation (R(2) >0.8) with those derived using UGT1A1 microsomes, but other kinetic parameters (e.g., Km ) did not correlate. CONCLUSION Overexpression of a second efficient efflux transporter did not significantly change the fact that BCRP is the dominant transporter for flavonoid glucuronide nor did it diminish the influence of the efflux transporter as the "gate keeper" of glucuronidation process.
Collapse
Affiliation(s)
- Meifang Wang
- Hubei University of Medicine and University-Affiliated Taihe Hospital, Shiyan, China.,Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, USA
| | - Guangyi Yang
- Hubei University of Medicine and University-Affiliated Taihe Hospital, Shiyan, China.,Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, USA.,Hubei Provincial Technology and Research Center for Comprehensive Development of Medicinal Herbs, Hubei University of Medicine, Shiyan, Hubei, China
| | - Yu He
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, USA
| | - Beibei Xu
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, USA
| | - Min Zeng
- Hubei University of Medicine and University-Affiliated Taihe Hospital, Shiyan, China.,Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, USA
| | - Shufan Ge
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, USA
| | - Taijun Yin
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, USA
| | - Song Gao
- Hubei University of Medicine and University-Affiliated Taihe Hospital, Shiyan, China.,Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, USA
| | - Ming Hu
- Hubei University of Medicine and University-Affiliated Taihe Hospital, Shiyan, China. .,Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, USA.
| |
Collapse
|
10
|
Zeng M, Sun R, Basu S, Ma Y, Ge S, Yin T, Gao S, Zhang J, Hu M. Disposition of flavonoids via recycling: Direct biliary excretion of enterically or extrahepatically derived flavonoid glucuronides. Mol Nutr Food Res 2016; 60:1006-19. [PMID: 26843117 DOI: 10.1002/mnfr.201500692] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 01/20/2016] [Accepted: 01/25/2016] [Indexed: 01/08/2023]
Abstract
SCOPE Enterohepatic recycling is often thought to involve mostly phase II metabolites generated in the liver. This study aims to determine if direct biliary excretion of extrahepatically generated glucuronides would also enable recycling. METHODS AND RESULTS Conventional and modified intestinal perfusion models along with intestinal and liver microsomes were used to determine the contribution of extrahepatically derived glucuronides. Glucuronidation of four flavonoids (genistein, biochanin A, apigenin, and chrysin at 2.5-20 μM) were generally more rapid in the hepatic than intestinal microsomes. Furthermore, when aglycones (at 10 μM each) were perfused, larger (1.7-9 fold) amounts of glucuronides were found in the bile than in the luminal perfusate. However, higher concentrations of glucuronides were not found in jugular vein than portal vein, and apigenin glucuronide actually displayed a significantly lower concentration in jugular vein (<1 nM) than portal vein (≈4 nM). A direct portal infusion of four flavonoid glucuronides (5.9-10.4 μM perfused at 2 mL/h) showed that the vast majority (>65%) of the glucuronides (except for biochanin A glucuronide) administered were efficiently excreted into the bile. CONCLUSION Direct biliary excretion of extrahepatically generated flavonoid glucuronides is a highly efficient clearance mechanism, which should enable enterohepatic recycling of flavonoids without hepatic conjugating enzymes.
Collapse
Affiliation(s)
- Min Zeng
- Department of Thoracic and Cardiomacrovascular Surgery, Hubei University of Medicine Affiliated Shiyan Taihe Hospital, Shiyan, Hubei, China.,Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, USA
| | - Rongjin Sun
- College of Pharmacy, Hubei University of Medicine, Shiyan, Hubei, China.,Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, USA.,Hubei Provincial Technology and Research Center for Comprehensive Development of Medicinal Herbs, Hubei University of Medicine, Shiyan, Hubei, China.,Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, Hubei, China
| | - Sumit Basu
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, USA
| | - Yong Ma
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, USA
| | - Shufan Ge
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, USA
| | - Taijun Yin
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, USA
| | - Song Gao
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, USA
| | - Jun Zhang
- Department of Thoracic and Cardiomacrovascular Surgery, Hubei University of Medicine Affiliated Shiyan Taihe Hospital, Shiyan, Hubei, China
| | - Ming Hu
- College of Pharmacy, Hubei University of Medicine, Shiyan, Hubei, China.,Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, USA
| |
Collapse
|
11
|
Tripathi SP, Prajapati R, Verma N, Sangamwar AT. Predicting substrate selectivity between UGT1A9 and UGT1A10 using molecular modelling and molecular dynamics approach. MOLECULAR SIMULATION 2015. [DOI: 10.1080/08927022.2015.1044451] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
12
|
Gonzales GB, Smagghe G, Grootaert C, Zotti M, Raes K, Van Camp J. Flavonoid interactions during digestion, absorption, distribution and metabolism: a sequential structure-activity/property relationship-based approach in the study of bioavailability and bioactivity. Drug Metab Rev 2015; 47:175-90. [PMID: 25633078 DOI: 10.3109/03602532.2014.1003649] [Citation(s) in RCA: 138] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Flavonoids are a group of polyphenols that provide health-promoting benefits upon consumption. However, poor bioavailability has been a major hurdle in their use as drugs or nutraceuticals. Low bioavailability has been associated with flavonoid interactions at various stages of the digestion, absorption and distribution process, which is strongly affected by their molecular structure. In this review, we use structure-activity/property relationship to discuss various flavonoid interactions with food matrices, digestive enzymes, intestinal transporters and blood proteins. This approach reveals specific bioactive properties of flavonoids in the gastrointestinal tract as well as various barriers for their bioavailability. In the last part of this review, we use these insights to determine the effect of different structural characteristics on the overall bioavailability of flavonoids. Such information is crucial when flavonoid or flavonoid derivatives are used as active ingredients in foods or drugs.
Collapse
Affiliation(s)
- Gerard Bryan Gonzales
- Department of Food Safety and Food Quality, Faculty of Bioscience Engineering, Ghent University , Gent , Belgium
| | | | | | | | | | | |
Collapse
|
13
|
He G, Zhang S, Xu L, Xia Y, Wang P, Li S, Zhu L, Xu H, Ge G, Yang L. C-8 Mannich base derivatives of baicalein display improved glucuronidation stability: exploring the mechanism by experimentation and theoretical calculations. RSC Adv 2015. [DOI: 10.1039/c5ra20213b] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The glucuronidation of 7-OH is blocked by the intramolecular hydrogen bond between 7-OH and C-8 Mannich base substituent in BA-a.
Collapse
|
14
|
Ghemtio L, Soikkeli A, Yliperttula M, Hirvonen J, Finel M, Xhaard H. SVM Classification and CoMSIA Modeling of UGT1A6 Interacting Molecules. J Chem Inf Model 2014; 54:1011-26. [DOI: 10.1021/ci400577a] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Leo Ghemtio
- Centre for Drug Research, ‡Division of Pharmaceutical Technology, §Division of Biopharmaceutics
and Pharmacokinetics, and ∥Division of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Helsinki, 00100 Helsinki, Finland
| | - Anne Soikkeli
- Centre for Drug Research, ‡Division of Pharmaceutical Technology, §Division of Biopharmaceutics
and Pharmacokinetics, and ∥Division of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Helsinki, 00100 Helsinki, Finland
| | - Marjo Yliperttula
- Centre for Drug Research, ‡Division of Pharmaceutical Technology, §Division of Biopharmaceutics
and Pharmacokinetics, and ∥Division of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Helsinki, 00100 Helsinki, Finland
| | - Jouni Hirvonen
- Centre for Drug Research, ‡Division of Pharmaceutical Technology, §Division of Biopharmaceutics
and Pharmacokinetics, and ∥Division of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Helsinki, 00100 Helsinki, Finland
| | - Moshe Finel
- Centre for Drug Research, ‡Division of Pharmaceutical Technology, §Division of Biopharmaceutics
and Pharmacokinetics, and ∥Division of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Helsinki, 00100 Helsinki, Finland
| | - Henri Xhaard
- Centre for Drug Research, ‡Division of Pharmaceutical Technology, §Division of Biopharmaceutics
and Pharmacokinetics, and ∥Division of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Helsinki, 00100 Helsinki, Finland
| |
Collapse
|
15
|
Xu B, Gao S, Wu B, Yin T, Hu M. Absolute quantification of UGT1A1 in various tissues and cell lines using isotope label-free UPLC-MS/MS method determines its turnover number and correlates with its glucuronidation activities. J Pharm Biomed Anal 2013; 88:180-90. [PMID: 24055854 DOI: 10.1016/j.jpba.2013.08.024] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 08/13/2013] [Accepted: 08/14/2013] [Indexed: 02/07/2023]
Abstract
Uridine 5'-diphosphate-glucuronosyltransferase (UGT)1A1 is a major phase II metabolism enzyme responsible for glucuronidation of drugs and endogenous compounds. The purpose of this study was to determine the expression level of UGT1A1 in human liver microsomes and human cell lines by using an isotope label-free LC-MS/MS method. A Waters Ultra performance liquid chromatography (UPLC) system coupled with an API 5500Qtrap mass spectrometer was used for the analysis. Two signature peptides (Pep-1, and Pep-2) were employed to quantify UGT1A1 by multiple reaction monitoring (MRM) approach. Standard addition method was used to validate the assay to account for the matrix effect. 17β-Estradiol was used as the marker substrate to determine UGT1A1 activities. The validated method has a linear range of 200-0.0195nM for both signature peptides. The precision, accuracy, and matrix effect were in acceptable ranges. UGT1A1 expression levels were then determined using 8 individual human liver microsomes, a pooled human liver microsomes, three UGT1A1 genotyped human liver microsomes, and four cell lines (Caco-2, MCF-7, Hela, and HepG2). The correlations study showed that the UGT1A1 protein levels were strongly correlated with its glucuronidation activities in human liver microsomes (R(2)=0.85) and in microsomes prepared from cell lines (R(2)=0.95). Isotope-labeled peptides were not necessary for LC-MS/MS quantitation of proteins. The isotope label-free absolute quantification method used here had good accuracy, sensitivity, linear range, and reproducibility, and were used successfully for the accurate determination of UGT1A1 from tissues and cell lines.
Collapse
Affiliation(s)
- Beibei Xu
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, The University of Houston, 1441 Moursund Street, Houston, TX 77030, USA
| | | | | | | | | |
Collapse
|
16
|
Ma G, Wu B, Gao S, Yang Z, Ma Y, Hu M. Mutual regioselective inhibition of human UGT1A1-mediated glucuronidation of four flavonoids. Mol Pharm 2013; 10:2891-903. [PMID: 23786524 DOI: 10.1021/mp300599t] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
UDP-glucuronosyltransferase (UGT) 1A1-catalyzed glucuronidation is an important elimination pathway of flavonoids, and mutually inhibitory interactions may occur when two or more flavonoids are coadministered. Our recent research suggested that glucuronidation of flavonoids displayed distinct positional preferences, but whether this will lead to the mutually regioselective inhibition of UGT1A1-mediated glucuronidation of flavonoids is unknown. Therefore, we chose three monohydroxyflavone isomers, 3-hydroxyflavone (3HF), 7-hydroxyflavone (7HF), and 4'-hydroxyflavone (4'HF), and one trihydroxyflavone, 3,7,4'-trihydroxyflavone (3,7,4'THF), as the model compounds to characterize the possible mutually regioselective inhibition of glucuronidation using expressed human UGT1A1. Apparent kinetic parameters [e.g., reaction velocity (V), Michaelis-Menten constant (Km), maximum rate of metabolism (Vmax), concentration at which inhibitor achieves 50% inhibition (IC50), and the Lineweaver-Burk plots were used to evaluate the apparent kinetic mechanisms of inhibition of glucuronidation. The results showed that UGT1A1-mediated glucuronidation of three monohydroxyflavones (i.e., 3HF, 7HF, and 4'HF) and 3,7,4'THF was mutually inhibitory, and the mechanisms of inhibition appeared to be the mixed-typed inhibition. Specifically, the inhibitory effects displayed certain positional preference. Glucuronidation of 3HF was more easily inhibited by 3,7,4'THF than that of 7HF or 4'HF. Compared to 7-O-glucuronidation of 3,7,4'THF, 3-O-glucuronidation of 3,7,4'THF was more inhibited by 3HF and 4'HF, whereas glucuronidation at both 3-OH and 7-OH positions of 3,7,4'THF was more easily inhibited by 7HF than by 3HF and 4'HF. In conclusion, 3HF, 7HF, 4'HF, and 3,7,4'THF were both substrates and inhibitors of UGT1A1, and they exhibited mutually regioselective inhibition of UGT1A1-mediated glucuronidation via a mixed-type inhibitory mechanism.
Collapse
Affiliation(s)
- Guo Ma
- Department of Clinical Pharmacy, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai, 201203, PR China
| | | | | | | | | | | |
Collapse
|
17
|
Wei Y, Wu B, Jiang W, Yin T, Jia X, Basu S, Yang G, Hu M. Revolving door action of breast cancer resistance protein (BCRP) facilitates or controls the efflux of flavone glucuronides from UGT1A9-overexpressing HeLa cells. Mol Pharm 2013; 10:1736-50. [PMID: 23402418 DOI: 10.1021/mp300562q] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Cellular production of flavonoid glucuronides requires the action of both UDP-glucuronosyltransferases (UGT) and efflux transporters since glucuronides are too hydrophilic to diffuse across the cellular membrane. We determined the kinetics of efflux of 13 flavonoid glucuronides using the newly developed HeLa-UGT1A9 cells and correlated them with kinetic parameters derived using expressed UGT1A9. The results indicated that, among the seven monohydroxylflavones (HFs), there was moderately good correlation (r(2) ≥ 0.65) between the fraction metabolized (fmet) derived from HeLa-UGT1A9 cells and CLint derived from the UGT1A9-mediated metabolism. However, there was weak or no correlation between these two parameters for six dihydroxylflavones (DHFs). Furthermore, there was weak or no correlation between various kinetic parameters (Km, Vmax, or CLint) for the efflux and the metabolism regardless of whether we were using seven HFs, six DHFs, or a combination thereof. Instead, the cellular excretion of many flavonoid glucuronides appears to be controlled by the efflux transporter, and the poor affinity of glucuronide to the efflux transporter resulted in major intracellular accumulation of glucuronides to a level that is above the dosing concentration of its aglycone. Hence, the efflux transporters appear to act as the "Revolving Door" to control the cellular excretion of glucuronides. In conclusion, the determination of a flavonoid's susceptibility to glucuronidation must be based on both its susceptibility to glucuronidation by the enzyme and resulting glucuronide's affinity to the relevant efflux transporters, which act as the "Revolving Door(s)" to facilitate or control its removal from the cells.
Collapse
Affiliation(s)
- Yingjie Wei
- Key Laboratory of New Drug Delivery System of Chinese Materia Medica, Jiangsu Provincial Academy of Chinese Medicine, 100 Shizi Street, Nanjing 210028, China
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Tripathi SP, Bhadauriya A, Patil A, Sangamwar AT. Substrate selectivity of human intestinal UDP-glucuronosyltransferases (UGTs): in silico and in vitro insights. Drug Metab Rev 2013; 45:231-52. [PMID: 23461702 DOI: 10.3109/03602532.2013.767345] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The current drug development process aims to produce safe, effective drugs within a reasonable time and at a reasonable cost. Phase II metabolism (glucuronidation) can affect drug action and pharmacokinetics to a considerable extent and so its studies and prediction at initial stages of drug development are very imperative. Extensive glucuronidation is an obstacle to oral bioavailability because the first-pass glucuronidation [or premature clearance by UDP-glucuronosyltransferases (UGTs)] of orally administered agents frequently results in poor oral bioavailability and lack of efficacy. Modeling of new chemical entities/drugs for UGTs and their kinetic data can be useful in understanding the binding patterns to be used in the design of better molecules. This review concentrates on first-pass glucuronidation by intestinal UGTs, including their topology, expression profile, and pharmacogenomics. In addition, recent advances are discussed with respect to substrate selectivity at the binding pocket, structural requirements, and mechanism of enzyme actions.
Collapse
Affiliation(s)
- Satya Prakash Tripathi
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER), Punjab, India
| | | | | | | |
Collapse
|
19
|
Dong D, Wu B. In Silico Modeling of UDP-Glucuronosyltransferase 1A10 Substrates Using the Volsurf Approach. J Pharm Sci 2012; 101:3531-9. [DOI: 10.1002/jps.23100] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Revised: 01/28/2012] [Accepted: 02/10/2012] [Indexed: 12/12/2022]
|
20
|
Wu B, Wang X, Zhang S, Hu M. Accurate prediction of glucuronidation of structurally diverse phenolics by human UGT1A9 using combined experimental and in silico approaches. Pharm Res 2012; 29:1544-61. [PMID: 22302521 DOI: 10.1007/s11095-012-0666-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Accepted: 01/03/2012] [Indexed: 11/26/2022]
Abstract
PURPOSE Catalytic selectivity of human UGT1A9, an important membrane-bound enzyme catalyzing glucuronidation of xenobiotics, was determined experimentally using 145 phenolics and analyzed by 3D-QSAR methods. METHODS Catalytic efficiency of UGT1A9 was determined by kinetic profiling. Quantitative structure activity relationships were analyzed using CoMFA and CoMSIA techniques. Molecular alignment of substrate structures was made by superimposing the glucuronidation site and its adjacent aromatic ring to achieve maximal steric overlap. For a substrate with multiple active glucuronidation sites, each site was considered a separate substrate. RESULTS 3D-QSAR analyses produced statistically reliable models with good predictive power (CoMFA: q2 = 0.548, r2 = 0.949, r pred 2 = 0.775; CoMSIA: q2 = 0.579, r2 = 0.876, r pred 2 = 0.700). Contour coefficient maps were applied to elucidate structural features among substrates that are responsible for selectivity differences. Contour coefficient maps were overlaid in the catalytic pocket of a homology model of UGT1A9, enabling identification of the UGT1A9 catalytic pocket with a high degree of confidence. CONCLUSION CoMFA/CoMSIA models can predict substrate selectivity and in vitro clearance of UGT1A9. Our findings also provide a possible molecular basis for understanding UGT1A9 functions and substrate selectivity.
Collapse
Affiliation(s)
- Baojian Wu
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, 1441 Moursund St., Houston, Texas 77030, USA
| | | | | | | |
Collapse
|
21
|
Wu B, Jiang W, Yin T, Gao S, Hu M. A new strategy to rapidly evaluate kinetics of glucuronide efflux by breast cancer resistance protein (BCRP/ABCG2). Pharm Res 2012; 29:3199-208. [PMID: 22752253 DOI: 10.1007/s11095-012-0817-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2012] [Accepted: 06/20/2012] [Indexed: 12/21/2022]
Abstract
PURPOSE The efflux transporter breast cancer resistance protein (BCRP/ABCG2) plays an important role in excretion of anionic drugs and metabolites including glucuronides in humans. METHODS In this article, our recently published cell model (i.e., HeLa cells over-expressing UGT1A9 (HeLa1A9)) is used to determine the kinetic parameters of BCRP-mediated transport of glucuronides. RESULTS After incubation of the aglycone with the cells, a steady-state (i.e., zero-order or near zero-order) excretion of its glucuronide is rapidly achieved and then maintained. Kinetic profiling with different (intracellular) glucuronide concentrations and their corresponding excretion rates is enabled by varying the concentration of the aglycone, which allows for the determination of kinetic parameters responsible for BCRP-mediated efflux of glucuronides. This approach was validated theoretically using a cellular pharmacokinetic model incorporating various enzymatic and transporter-mediated kinetic processes. It was also validated experimentally in that kinetic parameters of efflux of glucuronides of 6-hydroxyflavone and 4-methylumberiferone in the HeLa1A9 cell model were shown to be consistent with those derived with BCRP-overexpressing membrane vesicles. CONCLUSION This study provides a new strategy for rapidly evaluating the kinetics of glucuronide efflux by BCRP.
Collapse
Affiliation(s)
- Baojian Wu
- Department of Pharmacological & Pharmaceutical Sciences, College of Pharmacy, University of Houston, 1441 Moursund Street, Houston, Texas 77030, USA
| | | | | | | | | |
Collapse
|
22
|
Ako R, Dong D, Wu B. 3D-QSAR studies on UDP-glucuronosyltransferase 2B7 substrates using the pharmacophore and VolSurf approaches. Xenobiotica 2012; 42:891-900. [DOI: 10.3109/00498254.2012.675094] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Roland Ako
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77030, USA
| | | | | |
Collapse
|
23
|
Tang L, Zhou J, Yang CH, Xia BJ, Hu M, Liu ZQ. Systematic studies of sulfation and glucuronidation of 12 flavonoids in the mouse liver S9 fraction reveal both unique and shared positional preferences. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:3223-33. [PMID: 22352802 PMCID: PMC3409651 DOI: 10.1021/jf201987k] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Sulfation and glucuronidation are the principal metabolic pathways of flavonoids, and extensive phase II metabolism is the main reason for their poor bioavailabilities. The purpose of this study was to compare the similarities and differences in the positional preference of glucuronidation versus sulfation in the mouse liver S9 fraction. The conjugating rates of seven monohydroxyflavones (HFs) (i.e., 2'-, 3'-, 4'-, 3-, 5-, 6-, and 7-HF), and five dihydroxyflavones (diHFs) (i.e., 6,7-, 4',7-, 3,7-, 5,7-, and 3,4'-diHF) were determined in three separate enzymatic reaction systems: (A) sulfation only, (B) glucuronidation only, or (C) simultaneous sulfation and glucuronidation (i.e., Sult-Ugt coreaction). In general, glucuronidation rates were much faster than sulfation rates. Among the HFs, 7-HF was the best substrate for both conjugation reactions, whereas 3-HF was rapidly glucuronidated but was not sulfated. As a result, the rank order of sulfation was very different from that of glucuronidation. Among the diHFs, regiospecific glucuronidation was limited to 7-OH and 3-OH positions, whereas regiospecific sulfation was limited to 7-OH and 4'-OH positions. Other positions (i.e., 6-OH and 5-OH) in diHFs were not conjugated. The positional preferences were essentially maintained in a Sult-Ugt coreaction system, although sulfation was surprisingly enhanced. Lastly, sulfation and glucuronidation displayed different regiospecific- and substrate-dependent characteristics. In conclusion, glucuronidation and sulfation shared the same preference for 7-OH position (of flavonoids) but displayed unique preference in other positions in that glucuronidation preferred the 3-OH position whereas sulfation preferred the 4'-OH position.
Collapse
Affiliation(s)
- Lan Tang
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, China, 510515
| | - Juan Zhou
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, China, 510515
| | - Cai-Hua Yang
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, China, 510515
| | - Bi-Jun Xia
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, China, 510515
| | - Ming Hu
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, China, 510515
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, 1441 Moursund Street, Houston, TX77030, USA
- Corresponding authors: Ming Hu, Ph.D. 1441 Moursund Street, Department of Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77030. Tel: (713)-795-8320. or Zhongqiu Liu, Ph.D. 1838 North Guangzhou Avenue, Department of Pharmaceutics, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China, 510515. Tel: +86-20-61648596,
| | - Zhong-Qiu Liu
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, China, 510515
- Corresponding authors: Ming Hu, Ph.D. 1441 Moursund Street, Department of Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77030. Tel: (713)-795-8320. or Zhongqiu Liu, Ph.D. 1838 North Guangzhou Avenue, Department of Pharmaceutics, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China, 510515. Tel: +86-20-61648596,
| |
Collapse
|
24
|
Dong D, Ako R, Hu M, Wu B. Understanding substrate selectivity of human UDP-glucuronosyltransferases through QSAR modeling and analysis of homologous enzymes. Xenobiotica 2012; 42:808-20. [PMID: 22385482 DOI: 10.3109/00498254.2012.663515] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The UDP-glucuronosyltransferase (UGT) enzyme catalyzes the glucuronidation reaction which is a major metabolic and detoxification pathway in humans. Understanding the mechanisms for substrate recognition by UGT assumes great importance in an attempt to predict its contribution to xenobiotic/drug disposition in vivo. Spurred on by this interest, 2D/3D-quantitative structure activity relationships and pharmacophore models have been established in the absence of a complete mammalian UGT crystal structure. This review discusses the recent progress in modeling human UGT substrates including those with multiple sites of glucuronidation. A better understanding of UGT active site contributing to substrate selectivity (and regioselectivity) from the homologous enzymes (i.e. plant and bacterial UGTs, all belong to family 1 of glycosyltransferase (GT1)) is also highlighted, as these enzymes share a common catalytic mechanism and/or overlapping substrate selectivity.
Collapse
Affiliation(s)
- Dong Dong
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
25
|
Moroy G, Martiny VY, Vayer P, Villoutreix BO, Miteva MA. Toward in silico structure-based ADMET prediction in drug discovery. Drug Discov Today 2011; 17:44-55. [PMID: 22056716 DOI: 10.1016/j.drudis.2011.10.023] [Citation(s) in RCA: 170] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Revised: 10/07/2011] [Accepted: 10/21/2011] [Indexed: 12/12/2022]
Abstract
Quantitative structure-activity relationship (QSAR) methods and related approaches have been used to investigate the molecular features that influence the absorption, distribution, metabolism, excretion and toxicity (ADMET) of drugs. As the three-dimensional structures of several major ADMET proteins become available, structure-based (docking-scoring) computations can be carried out to complement or to go beyond QSAR studies. Applying docking-scoring methods to ADMET proteins is a challenging process because they usually have a large and flexible binding cavity; however, promising results relating to metabolizing enzymes have been reported. After reviewing current trends in the field we applied structure-based methods in the context of receptor flexibility in a case study involving the phase II metabolizing sulfotransferases. Overall, the explored concepts and results suggested that structure-based ADMET profiling will probably join the mainstream during the coming years.
Collapse
Affiliation(s)
- Gautier Moroy
- Inserm UMR-S 973, Molécules Thérapeutiques In Silico, Université Paris Diderot, Sorbonne Paris Cité, 35 Rue Helene Brion, 75013 Paris, France
| | | | | | | | | |
Collapse
|
26
|
Wu B, Zhang S, Hu M. Evaluation of 3,3',4'-trihydroxyflavone and 3,6,4'-trihydroxyflavone (4'-O-glucuronidation) as the in vitro functional markers for hepatic UGT1A1. Mol Pharm 2011; 8:2379-89. [PMID: 21985641 DOI: 10.1021/mp200300w] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Identifying uridine 5'-diphospho-(UDP)-glucuronosyltransferase (UGT)-selective probes (substrates that are primarily glucuronidated by a single isoform) is complicated by the enzymes' large overlapping substrate specificity. Here, regioselective glucuronidation of two flavonoids, 3,3',4'-trihydroxyflavone (3,3',4'-THF) and 3,6,4'-trihydroxyflavone (3,6,4'-THF), is used to probe the activity of hepatic UGT1A1. The glucuronidation kinetics of 3,3',4'-THF and 3,6,4'-THF was determined using 12 recombinant human UGT isoforms and pooled human liver microsomes (pHLM). The individual contribution of main UGT isoforms to the metabolism of the two flavonoids in pHLM was estimated using the relative activity factor approach. UGT1A1 activity correlation analyses using flavonoids-4'-O-glucuronidation vs β-estradiol-3-glucuronidation (a well-recognized marker for UGT1A1) or vs SN-38 glucuronidation were performed using a bank of HLMs (n = 12) including three UGT1A1-genotyped HLMs (i.e., UGT1A1*1*1, UGT1A1*1*28, and UGT1A1*28*28). The results showed that UGT1A1 and 1A9, followed by 1A7, were the main isoforms for glucuronidating the two flavonoids, where UGT1A1 accounted for 92 ± 7% and 91 ± 10% of 4'-O-glucuronidation of 3,3',4'-THF and 3,6,4'-THF, respectively, and UGT1A9 accounted for most of the 3-O-glucuronidation. Highly significant correlations (R(2) > 0.944, p < 0.0001) between the rates of flavonoids 4'-O-glucuronidation and that of estradiol-3-glucuronidation or SN-38 glucuronidation were observed across 12 HLMs. In conclusion, UGT1A1-mediated 4'-O-glucuronidation of 3,3',4'-THF and 3,6,4'-THF was highly correlated with the glucuronidation of estradiol (3-OH) and SN-38. This study demonstrated for the first time that regioselective glucuronidation of flavonoids can be applied to probe hepatic UGT1A1 activity in vitro.
Collapse
Affiliation(s)
- Baojian Wu
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, 1441 Moursund Street, Houston, Texas 77030, United States
| | | | | |
Collapse
|
27
|
Singh R, Wu B, Tang L, Hu M. Uridine diphosphate glucuronosyltransferase isoform-dependent regiospecificity of glucuronidation of flavonoids. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2011; 59:7452-64. [PMID: 21413806 PMCID: PMC3391414 DOI: 10.1021/jf1041454] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The objective of this study was to determine the regiospecificity of the important uridine diphosphate glucuronosyltransferase (UGT) isoforms responsible for the glucuronidation of flavones and flavonols. We systematically studied the glucuronidation of 13 flavonoids (7 flavones and 6 flavonols, with hydroxyl groups at C-3, C-4', C-5, and/or C-7 positions in flavonoid structure) at a substrate concentration of 10 μM by 8 recombinant human UGT isoforms mainly responsible for the metabolism of flavonoids, UGTs 1A1, 1A3, 1A6, 1A7, 1A8, 1A9, 1A10, and 2B7. At 10 μM substrate concentration, different UGT isoforms gave different regiospecific glucuronidation patterns. UGT 1A1 equally glucuronidated 3-O (glucuronic acid substituted at C-3 hydroxyl group), 7-O, and 4'-O, whereas UGTs 1A8 and 1A9 preferably glucuronidated only 3-O and 7-O positions. UGT 1A1 usually showed no regiospecificity for glucuronidating any position, whereas UGT 1A8 and UGT 1A9 showed dominant, moderate, or weak regiospecificity for 3-O or 7-O position, depending on the structure of the compound. UGT 1A3 showed dominant regiospecificity for the 7-O position, whereas UGT 1A7 showed dominant regiospecificity for the 3-O position. We also showed that the glucuronidation rates of 3-O and 7-O positions in flavones and flavonols were affected by the addition of multiple hydroxyl groups at different positions as well as by the substrate concentrations (2.5, 10, and 35 μM). In conclusion, regiospecific glucuronidation of flavonols was isoform- and concentration-dependent, whereas flavones were dominantly glucuronidated at the 7-O position by most UGT isoforms. We also concluded that UGTs 1A3 and 1A7 showed dominant regiospecificity for only the 7-O and 3-O positions, respectively. UGTs 1A8 and 1A9 showed moderate or weak preference on glucuronidating position 3-O over the 7-O position, whereas other UGT isoforms did not prefer glucuronidating any particular positions.
Collapse
Affiliation(s)
- Rashim Singh
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, 1441 Moursund Street, Houston, TX 77030
| | - Baojian Wu
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, 1441 Moursund Street, Houston, TX 77030
| | - Lan Tang
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, 1441 Moursund Street, Houston, TX 77030
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Ming Hu
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, 1441 Moursund Street, Houston, TX 77030
- Address correspondence to: Ming Hu, Ph.D. 1441 Moursund Street Department of Pharmaceutical Sciences College of Pharmacy University of Houston Houston, TX 77030 Tel: (713)-795-8320
| |
Collapse
|
28
|
Wu B, Kulkarni K, Basu S, Zhang S, Hu M. First-pass metabolism via UDP-glucuronosyltransferase: a barrier to oral bioavailability of phenolics. J Pharm Sci 2011; 100:3655-81. [PMID: 21484808 DOI: 10.1002/jps.22568] [Citation(s) in RCA: 204] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Revised: 03/10/2011] [Accepted: 03/10/2011] [Indexed: 12/11/2022]
Abstract
Glucuronidation mediated by UDP-glucuronosyltransferases (UGTs) is a significant metabolic pathway that facilitates efficient elimination of numerous endobiotics and xenobiotics, including phenolics. UGT genetic deficiency and polymorphisms or inhibition of glucuronidation by concomitant use of drugs are associated with inherited physiological disorders or drug-induced toxicities. Moreover, extensive glucuronidation can be a barrier to oral bioavailability as the first-pass glucuronidation (or premature clearance by UGTs) of orally administered agents usually results in the poor oral bioavailability and lack of efficacies. This review focused on the first-pass glucuronidation of phenolics including natural polyphenols and pharmaceuticals. The complexity of UGT-mediated metabolism of phenolics is highlighted with species-, gender-, organ- and isoform-dependent specificity, as well as functional compensation between UGT1A and 2B subfamily. In addition, recent advances are discussed with respect to the mechanisms of enzymatic actions, including the important properties such as binding pocket size and phosphorylation requirements.
Collapse
Affiliation(s)
- Baojian Wu
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas 77030, USA
| | | | | | | | | |
Collapse
|
29
|
Regioselective glucuronidation of flavonols by six human UGT1A isoforms. Pharm Res 2011; 28:1905-18. [PMID: 21472492 DOI: 10.1007/s11095-011-0418-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Accepted: 03/04/2011] [Indexed: 10/18/2022]
Abstract
PURPOSE Glucuronidation is a major barrier to flavonoid bioavailability; understanding its regiospecificity and reaction kinetics would greatly enhance our ability to model and predict flavonoid disposition. We aimed to determine the regioselective glucuronidation of four model flavonols using six expressed human UGT1A isoforms (UGT1A1, 1A3, 1A7, 1A8, 1A9, 1A10). METHODS In vitro reaction kinetic profiles of six UGT1A-mediated metabolism of four flavonols (all with 7-OH group) were characterized; kinetic parameters (K(m), V(max) and CL(int) = V(max)/K(m)) were determined. RESULTS UGT1A1 and 1A3 regioselectively metabolized the 7-OH group, whereas UGT1A7, 1A8, 1A9 and 1A10 preferred to glucuronidate the 3-OH group. UGT1A1 and 1A9 were the most efficient conjugating enzymes with K(m) values of ≤1 μM and relative catalytic efficiency ratios of ≥5.5. Glucuronidation by UGT1As displayed surprisingly strong substrate inhibition. In particular, K(si) values (substrate inhibition constant) were less than 5.4 μM for UGT1A1-mediated metabolism. CONCLUSION UGT1A isoforms displayed distinct positional preferences between 3-OH and 7-OH of flavonols. Differentiated kinetic properties between 3-O- and 7-O- glucuronidation suggested that (at least) two distinct binding modes within the catalytic domain were possible. The existence of multiple binding modes should provide better "expert" knowledge to model and predict UGT1A-mediated glucuronidation.
Collapse
|