1
|
Rusciano D, Russo C. The Therapeutic Trip of Melatonin Eye Drops: From the Ocular Surface to the Retina. Pharmaceuticals (Basel) 2024; 17:441. [PMID: 38675402 PMCID: PMC11054783 DOI: 10.3390/ph17040441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/18/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024] Open
Abstract
Melatonin is a ubiquitous molecule found in living organisms, ranging from bacteria to plants and mammals. It possesses various properties, partly due to its robust antioxidant nature and partly owed to its specific interaction with melatonin receptors present in almost all tissues. Melatonin regulates different physiological functions and contributes to the homeostasis of the entire organism. In the human eye, a small amount of melatonin is also present, produced by cells in the anterior segment and the posterior pole, including the retina. In the eye, melatonin may provide antioxidant protection along with regulating physiological functions of ocular tissues, including intraocular pressure (IOP). Therefore, it is conceivable that the exogenous topical administration of sufficiently high amounts of melatonin to the eye could be beneficial in several instances: for the treatment of eye pathologies like glaucoma, due to the IOP-lowering and neuroprotection effects of melatonin; for the prevention of other dysfunctions, such as dry eye and refractive defects (cataract and myopia) mainly due to its antioxidant properties; for diabetic retinopathy due to its metabolic influence and neuroprotective effects; for macular degeneration due to the antioxidant and neuroprotective properties; and for uveitis, mostly owing to anti-inflammatory and immunomodulatory properties. This paper reviews the scientific evidence supporting the use of melatonin in different ocular districts. Moreover, it provides data suggesting that the topical administration of melatonin as eye drops is a real possibility, utilizing nanotechnological formulations that could improve its solubility and permeation through the eye. This way, its distribution and concentration in different ocular tissues may support its pleiotropic therapeutic effects.
Collapse
Affiliation(s)
- Dario Rusciano
- Fidia Research Centre, c/o University of Catania, Via Santa Sofia 89, 95123 Catania, Italy
| | - Cristina Russo
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via Santa Sofia 89, 95123 Catania, Italy;
| |
Collapse
|
2
|
Ma L, Liu X, Liu Q, Jin S, Chang H, Liu H. The Roles of Transient Receptor Potential Ion Channels in Pathologies of Glaucoma. Front Physiol 2022; 13:806786. [PMID: 35185615 PMCID: PMC8850928 DOI: 10.3389/fphys.2022.806786] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 01/03/2022] [Indexed: 11/13/2022] Open
Abstract
Transient receptor ion potential (TRP) channels are a cluster of non-selective cation channels present on cell membranes. They are important mediators of sensory signals to regulate cellular functions and signaling pathways. Alterations and dysfunction of these channels could disrupt physiological processes, thus leading to a broad array of disorders, such as cardiovascular, renal and nervous system diseases. These effects position them as potential targets for drug design and treatment. Because TRP channels can mediate processes such as mechanical conduction, osmotic pressure, and oxidative stress, they have been studied in the context of glaucoma. Glaucoma is an irreversible blinding eye disease caused by an intermittent or sustained increase in intraocular pressure (IOP), which results in the apoptosis of retinal ganglion cells (RGCs), optic nerve atrophy and eventually visual field defects. An increasing number of studies have documented that various TRP subfamilies are abundantly expressed in ocular structures, including the cornea, lens, ciliary body (CB), trabecular meshwork (TM) and retina. In alignment with these findings, there is also mounting evidence supporting the potential role of the TRP family in glaucoma progression. Therefore, it is of great interest and clinical significance to gain an increased understanding of these channels, which in turn could shed more light on the identification of new therapeutic targets for glaucoma. Moreover, this role is not understood completely to date, and whether the activation of TRP channels contributes to glaucoma, or instead aggravates progression, needs to be explored. In this manuscript, we aim to provide a comprehensive overview of recent research on TRP channels in glaucoma and to suggest novel targets for future therapeutic interventions in glaucoma.
Collapse
Affiliation(s)
- Lin Ma
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Liu
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qing Liu
- Shenzhen Key Laboratory of Viral Vectors for Biomedicine, Chinese Academy of Sciences, Shenzhen Institute of Advanced Technology, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, The Brain Cognition and Brain Disease Institute, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Sen Jin
- Shenzhen Key Laboratory of Viral Vectors for Biomedicine, Chinese Academy of Sciences, Shenzhen Institute of Advanced Technology, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, The Brain Cognition and Brain Disease Institute, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Heng Chang
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Haixia Liu
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Haixia Liu,
| |
Collapse
|
3
|
A Topical Formulation of Melatoninergic Compounds Exerts Strong Hypotensive and Neuroprotective Effects in a Rat Model of Hypertensive Glaucoma. Int J Mol Sci 2020; 21:ijms21239267. [PMID: 33291737 PMCID: PMC7730513 DOI: 10.3390/ijms21239267] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/23/2020] [Accepted: 12/02/2020] [Indexed: 02/08/2023] Open
Abstract
Melatonin is of great importance for regulating several eye processes, including pressure homeostasis. Melatonin in combination with agomelatine has been recently reported to reduce intraocular pressure (IOP) with higher efficacy than each compound alone. Here, we used the methylcellulose (MCE) rat model of hypertensive glaucoma, an optic neuropathy characterized by the apoptotic death of retinal ganglion cells (RGCs), to evaluate the hypotensive and neuroprotective efficacy of an eye drop nanomicellar formulation containing melatonin/agomelatine. Eye tissue distribution of melatonin/agomelatine in healthy rats was evaluated by HPLC/MS/MS. In the MCE model, we assessed by tonometry the hypotensive efficacy of melatonin/agomelatine. Neuroprotection was revealed by electroretinography; by levels of inflammatory and apoptotic markers; and by RGC density. The effects of melatonin/agomelatine were compared with those of timolol (a beta blocker with prevalent hypotensive activity) or brimonidine (an alpha 2 adrenergic agonist with potential neuroprotective efficacy), two drugs commonly used to treat glaucoma. Both melatonin and agomelatine penetrate the posterior segment of the eye. In the MCE model, IOP elevation was drastically reduced by melatonin/agomelatine with higher efficacy than that of timolol or brimonidine. Concomitantly, gliosis-related inflammation and the Bax-associated apoptosis were partially prevented, thus leading to RGC survival and recovered retinal dysfunction. We suggest that topical melatoninergic compounds might be beneficial for ocular health.
Collapse
|
4
|
Abstract
Glaucoma is an optical neuropathy associated to a progressive degeneration of retinal ganglion cells with visual field loss and is the main cause of irreversible blindness in the world. The treatment has the aim to reduce intraocular pressure. The first therapy option is to instill drugs on the ocular surface. The main limitation of this is the reduced time of the drug staying on the cornea. This means that high doses are required to ensure its therapeutic effect. A drug-loaded contact lens can diffuse into the post lens tear film in a constant and prolonged flow, resulting in an increased retention of the drug on the surface of the cornea for up to 30 min and thus providing a higher drug bioavailability, increasing the therapeutic efficacy, reducing the amount of administered drug, and thereby provoking fewer adverse events. Several different systems of drug delivery have been studied in recent decades; ranging from more simple methods of impregnating the lenses, such as soaking, to more complex ones, such as molecular imprinting have been proposed. Moreover, different drugs, from those already commercially available to new substances such as melatonin have been studied to improve the glaucoma treatment efficacy. This review describes the role of contact lenses as an innovative drug delivery system to treat glaucoma.
Collapse
|
5
|
Current Medical Therapy and Future Trends in the Management of Glaucoma Treatment. J Ophthalmol 2020; 2020:6138132. [PMID: 32774906 PMCID: PMC7391108 DOI: 10.1155/2020/6138132] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 06/29/2020] [Indexed: 01/02/2023] Open
Abstract
Glaucoma is a neurodegenerative disease characterized by progressive loss of retinal ganglion cells and their axons. Lowering of intraocular pressure (IOP) is currently the only proven treatment strategy for glaucoma. However, some patients show progressive loss of visual field and quality of life despite controlled IOP which indicates that other factors are implicated in glaucoma. Therefore, approaches that could prevent or decrease the rate of progression and do not rely on IOP lowering have gained much attention. Effective neuroprotection has been reported in animal models of glaucoma, but till now, no neuroprotective agents have been clinically approved. The present update provides an overview of currently available IOP-lowering medications. Moreover, potential new treatment targets for IOP-lowering and neuroprotective therapy are discussed. Finally, future trends in glaucoma therapy are addressed, including sustained drug delivery systems and progress toward personalized medicine.
Collapse
|
6
|
Zuo J, Jiang Z. Melatonin attenuates hypertension and oxidative stress in a rat model of L-NAME-induced gestational hypertension. Vasc Med 2020; 25:295-301. [PMID: 32469270 DOI: 10.1177/1358863x20919798] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Preeclampsia is a life-threatening multiorgan systemic disease with manifestations including gestational hypertension, oxidative stress, and vascular dysfunction. We aimed to evaluate the therapeutic effects of melatonin on an L-NAME (NLG-nitro-l-arginine methyl ester)-induced rat preeclampsia model. During gestation, L-NAME was added to drinking water at 50 mg/kg/day from gestation day (GD) 8. Rats received the combination of L-NAME with melatonin (10 mg/kg/day), or aspirin (1.5 mg/kg/day), and rats that received only L-NAME or no treatments were used as controls. Aspirin was mixed with rodent chow and melatonin was administered intraperitoneally. Blood pressure and urine protein content were monitored every 3 days. On GD19, blood samples were collected for biochemical analysis. Compared to untreated L-NAME rats, melatonin led to markedly lowered blood pressure and urine protein content, and recovery in the fetus alive ratio, fetal weight, and the fetal weight/placental weight ratio. Compared to untreated L-NAME rats, plasma antioxidant capacity and plasma malondialdehyde were increased and decreased by melatonin, respectively, in L-NAME rats. Melatonin treatment also reduced sFlt-1, increased PlGF, and decreased the sFlt-1/PlGF ratio. In the placenta, melatonin also reduced sFlt-1 levels and increased Nrf2, PlGF, and HO-1 levels. We have demonstrated in a rat model of preeclampsia that melatonin exerts significant protective effects through lowering blood pressure and reducing oxidative stress.
Collapse
Affiliation(s)
- Junfang Zuo
- Department of Obstetrics, Tianjin Central Hospital of Obstetrics and Gynecology, Tianjin, China
| | - Ziyun Jiang
- Shanghai Zhuole Biotech Center, Shanghai, China
| |
Collapse
|
7
|
Hypotensive Effect of Nanomicellar Formulation of Melatonin and Agomelatine in a Rat Model: Significance for Glaucoma Therapy. Diagnostics (Basel) 2020; 10:diagnostics10030138. [PMID: 32138160 PMCID: PMC7151109 DOI: 10.3390/diagnostics10030138] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 02/18/2020] [Accepted: 02/28/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Melatoninergic agents are known to reduce intraocular pressure (IOP). The present study was performed to evaluate the effect of nanomicellar formulations of melatoninergic agents on IOP in the rat. METHODS Tonometry was used to measure IOP in eyes instilled with melatonin or agomelatine. Ocular hypertension was induced by the injection of methylcellulose in the anterior chamber. RESULTS Melatonin formulated in nanomicelles had a longer lasting hypotonizing effect on IOP with respect to melatonin in saline. Nanomicellar formulations of melatonin and agomelatine, either alone or in combination, had lowering effects that did not depend on their concentration or their combination, which, however, resulted in an increased duration of the hypotonizing effect. The duration of the lowering effect was further increased by the addition of lipoic acid. CONCLUSIONS We demonstrated the effective hypotonizing activity of melatonin and agomelatine in combination with lipoic acid. Although results in animals cannot be directly translated to humans, the possibility of developing novel therapeutical approaches for patients suffering from hypertensive glaucoma should be considered.
Collapse
|
8
|
Guglielmi P, Carradori S, Campestre C, Poce G. Novel therapies for glaucoma: a patent review (2013-2019). Expert Opin Ther Pat 2019; 29:769-780. [DOI: 10.1080/13543776.2019.1653279] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Paolo Guglielmi
- Department of Chemistry and Technologies of Drugs, Sapienza University of Rome, Rome, Italy
| | - Simone Carradori
- Department of Pharmacy, University “G. d’Annunzio” of Chieti-Pescara, Chieti, Italy
| | - Cristina Campestre
- Department of Pharmacy, University “G. d’Annunzio” of Chieti-Pescara, Chieti, Italy
| | - Giovanna Poce
- Department of Chemistry and Technologies of Drugs, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
9
|
Navarro Gil FJ, Huete-Toral F, Crooke A, Dominguez Godinez CO, Carracedo G, Pintor J. Effect of Melatonin and Its Analogs on Tear Secretion. J Pharmacol Exp Ther 2019; 371:186-190. [PMID: 31371479 DOI: 10.1124/jpet.119.259192] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 07/30/2019] [Indexed: 11/22/2022] Open
Abstract
Melatonin has been shown to enhance tear secretion associated with dinucleotide diadenosine tetraphosphate. This study investigated the isolated action of melatonin and its analogs, agomelatine, N-butanoyl-2-(2-methoxy-6H-isoindolo[2,1-a]indol-11-yl) ethanamine (IIK7), and 5-methoxycarbonylamino-N-cetyltryptamine (5-MCA-NAT) (10 µl at 100 µM), on tear secretion when applied topically in the rabbit cornea and its relationship with the melatonin MT1, MT2, and MT3/quinone reductase QR2 receptors. The results showed a significant increase in tear secretion, with a maximal effect at 60 minutes for the agonists (138.9% ± 6.5%, 128.9% ± 6.4%, and 120.0% ± 5.2%, respectively; P < 0.05; 100% control) but not for melatonin (101.6% ± 7.9%; P > 0.05). Agonist action was tested combined with the antagonists DH97 (MT2 selective), prazosin (MT3/QR2 inhibitor), and luzindole (nonselective MT membrane receptor) (10 µl at 100 µM). DH97 reversed the effect of agomelatine, IIK7, and 5-MCA-NAT up to 30.85% ± 7.6%,108% ± 7.2%, and 87.01% ± 7.6%, respectively (P < 0.05; 100% control). Luzindole antagonized agomelatine and 5-MCA-NAT up to 67.35% ± 7.6% and 92.12% ± 8%, respectively (P < 0.05). Prazosin only reversed 5-MCA-NAT action up to 84.2% ± 7.7% (P < 0.05). These results suggest different pathways for the agonists to act through MT membrane receptors. Therefore, agomelatine, IIK7, and 5-MCA-NAT act through MT membrane receptors as secretagogues of tear secretion, and these analogs could be considered excellent therapeutic candidates for dry eye treatment. SIGNIFICANCE STATEMENT: Currently, dry eye with aqueous deficit is treated by adding artificial tears palliatively. This study shows that topical installation of three melatonin analogs (agomelatine, IIK7, and 5-MCA-NAT), but not melatonin, in therapeutic doses in the rabbit cornea significantly increases tear production, acting through different melatonin membrane receptor subtypes. Therefore, this study suggests that melatoninergic compounds could be considered excellent therapeutic candidates for dry eye treatment and ocular surface diseases occurring with a reduction in tear production.
Collapse
Affiliation(s)
- Francisco Javier Navarro Gil
- Departamentos de Optometría y Visión (F.J.N.G., C.O.D.G., G.C.) and Bioquímica y Biología Molecular (F.H.-T., A.C., J.P.), Facultad de Óptica y Optometría, Universidad Complutense de Madrid, Madrid, Spain
| | - Fernando Huete-Toral
- Departamentos de Optometría y Visión (F.J.N.G., C.O.D.G., G.C.) and Bioquímica y Biología Molecular (F.H.-T., A.C., J.P.), Facultad de Óptica y Optometría, Universidad Complutense de Madrid, Madrid, Spain
| | - Almudena Crooke
- Departamentos de Optometría y Visión (F.J.N.G., C.O.D.G., G.C.) and Bioquímica y Biología Molecular (F.H.-T., A.C., J.P.), Facultad de Óptica y Optometría, Universidad Complutense de Madrid, Madrid, Spain
| | - Carmen Olalla Dominguez Godinez
- Departamentos de Optometría y Visión (F.J.N.G., C.O.D.G., G.C.) and Bioquímica y Biología Molecular (F.H.-T., A.C., J.P.), Facultad de Óptica y Optometría, Universidad Complutense de Madrid, Madrid, Spain
| | - Gonzalo Carracedo
- Departamentos de Optometría y Visión (F.J.N.G., C.O.D.G., G.C.) and Bioquímica y Biología Molecular (F.H.-T., A.C., J.P.), Facultad de Óptica y Optometría, Universidad Complutense de Madrid, Madrid, Spain
| | - Jesús Pintor
- Departamentos de Optometría y Visión (F.J.N.G., C.O.D.G., G.C.) and Bioquímica y Biología Molecular (F.H.-T., A.C., J.P.), Facultad de Óptica y Optometría, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
10
|
Visser HE, Dees DD, Millichamp NJ, Vallone LV, Scott EM. Effect of orally administered melatonin on intraocular pressure of ophthalmologically normal dogs. Am J Vet Res 2019; 80:410-415. [PMID: 30919670 DOI: 10.2460/ajvr.80.4.410] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To determine the effect of orally administered melatonin on the intraocular pressure (IOP) of ophthalmologically normal dogs. ANIMALS 20 ophthalmologically normal dogs (40 eyes). PROCEDURES In a randomized crossover study, each dog received a 7-day regimen of melatonin (0.1 to 0.2 mg/kg, PO, q 12 h) and a placebo (150 mg of lactose powder in a capsule, PO, q 12 h), with a 7-day washout period between treatment regimens. Rebound tonometry was used to measure the IOP in both eyes of each dog 5 times at 2-hour intervals on days 0 (before administration of the first dose), 2, 4, and 7 (after administration of the last dose) of each treatment period. Repeated-measures ANOVA was used to evaluate the effects of treatment, day, and IOP measurement time within day on IOP. RESULTS Intraocular pressure was not significantly associated with treatment but was associated with day and the interaction between day and IOP measurement time within day. The mean ± SD IOP was 14.26 ± 2.95 and 14.34 ± 2.69 mm Hg for the melatonin and placebo regimens, respectively. Within each treatment period, the mean IOP tended to decrease from day 0 to 7 as well as within each day, which was attributed to the dogs becoming acclimated to the study protocol and natural diurnal variations in IOP. CONCLUSIONS AND CLINICAL RELEVANCE Results indicated that oral administration of melatonin (0.1 to 0.2 mg/kg, q 12 h for 7 d) did not significantly affect the IOP of ophthalmologically normal dogs.
Collapse
|
11
|
Boutin JA, Ferry G. Is There Sufficient Evidence that the Melatonin Binding SiteMT3Is Quinone Reductase 2? J Pharmacol Exp Ther 2018; 368:59-65. [DOI: 10.1124/jpet.118.253260] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 10/26/2018] [Indexed: 12/15/2022] Open
|
12
|
Cheng J, Xiao M, Xu H, Fang S, Chen X, Kong X, Sun X. Seasonal changes of 24-hour intraocular pressure rhythm in healthy Shanghai population. Medicine (Baltimore) 2016; 95:e4453. [PMID: 27495076 PMCID: PMC4979830 DOI: 10.1097/md.0000000000004453] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The aim of the present study was to investigate and compare the 24-hour intraocular pressure (IOP) rhythms in winter and summer in the healthy population of Shanghai, China.This is a cross-sectional study in which 24-hour IOP measurements were taken for all eligible healthy volunteers in winter and summer, respectively, and the temperature, hours of sunlight (sunlight time), and circulatory parameters, including heart rate, systolic blood pressure, and diastolic blood pressure, were also recorded. The 24-hour IOP curves and IOP parameters (mean, peak, trough, and fluctuation of IOP together with the diurnal-to-nocturnal IOP change) in winter and summer were obtained and compared. The magnitude of IOP changes from summer to winter was also calculated.A total of 29 participants (58 eyes), 14 (48.28%) male and 15 (51.72%) female, aged 43.66 ± 12.20 (19-61) years, were considered eligible for this study. Generally, IOP decreased progressively before noon, increased notably in the nocturnal period, and peaked at 12:00 AM in winter and at 2:00 AM in summer. The pattern of 24-hour IOP in winter and summer was significantly different (P = 0.002). The average IOPs from 4:00 PM to 8:00 AM, except for 6:00 AM, were significantly higher in winter (P < 0.05). However, no significant differences were shown after adjusting for temperature and/or sunlight time. From summer to winter, the extent of IOP increase was mostly around 0 to 3 mm Hg, and the IOPs increased more significantly in the nocturnal period than in the diurnal period (P = 0.05).The 24-hour IOP rhythms were different in winter and summer, with higher IOP level in winter. Temperature and sunlight time, which are independent of heart rate and blood pressure, affected the 24-hour IOP rhythms in healthy people in Shanghai, China. Further investigations are expected for the rhythm of some endogenous substance secretion and the inner mechanism of regulation of IOP.
Collapse
Affiliation(s)
- Jingyi Cheng
- Department of Ophthalmology and Visual Science, Eye, Ear, Nose and Throat Hospital, Fudan University, Shanghai, China
- Key Laboratory of Myopia, Ministry of Health (Fudan University), Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University
| | - Ming Xiao
- Department of Ophthalmology, Shanghai Bei Zhan Hospital
| | - Huan Xu
- Department of Ophthalmology and Visual Science, Eye, Ear, Nose and Throat Hospital, Fudan University, Shanghai, China
- Key Laboratory of Myopia, Ministry of Health (Fudan University), Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University
| | - Shaobin Fang
- Department of Ophthalmology, Shanghai Bei Zhan Hospital
| | - Xu Chen
- Department of Ophthalmology, Shanghai Bei Zhan Hospital
| | - Xiangmei Kong
- Department of Ophthalmology and Visual Science, Eye, Ear, Nose and Throat Hospital, Fudan University, Shanghai, China
- Key Laboratory of Myopia, Ministry of Health (Fudan University), Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University
- Correspondence: Xinghuai Sun, Department of Ophthalmology and Visual Science, Eye, Ear, Nose and Throat Hospital, Fudan University, 83 Fenyang Road, Shanghai 200031, China (e-mail: ); Co-correspondence: Xiangmei Kong, Department of Ophthalmology and Visual Science, Eye, Ear, Nose and Throat Hospital, Fudan University, 83 Fenyang Road, Shanghai 200031, China (e-mail: )
| | - Xinghuai Sun
- Department of Ophthalmology and Visual Science, Eye, Ear, Nose and Throat Hospital, Fudan University, Shanghai, China
- Key Laboratory of Myopia, Ministry of Health (Fudan University), Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Fudan University, Shanghai, China
- Correspondence: Xinghuai Sun, Department of Ophthalmology and Visual Science, Eye, Ear, Nose and Throat Hospital, Fudan University, 83 Fenyang Road, Shanghai 200031, China (e-mail: ); Co-correspondence: Xiangmei Kong, Department of Ophthalmology and Visual Science, Eye, Ear, Nose and Throat Hospital, Fudan University, 83 Fenyang Road, Shanghai 200031, China (e-mail: )
| |
Collapse
|
13
|
Martinez-Aguila A, Fonseca B, Perez de Lara MJ, Pintor J. Effect of Melatonin and 5-Methoxycarbonylamino-N-Acetyltryptamine on the Intraocular Pressure of Normal and Glaucomatous Mice. ACTA ACUST UNITED AC 2016; 357:293-9. [DOI: 10.1124/jpet.115.231456] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 03/02/2016] [Indexed: 01/02/2023]
|
14
|
TRPV4 activation triggers the release of melatonin from human non-pigmented ciliary epithelial cells. Exp Eye Res 2015; 136:34-7. [DOI: 10.1016/j.exer.2015.04.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 03/10/2015] [Accepted: 04/27/2015] [Indexed: 11/20/2022]
|
15
|
Dwivedi V, Hari Babu M, Kant R, Sridhar Reddy M. N-Substitution dependent stereoselectivity switch in palladium catalyzed hydroalkynylation of ynamides: a regio and stereoselective synthesis of ynenamides. Chem Commun (Camb) 2015; 51:14996-9. [DOI: 10.1039/c5cc06251a] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A palladium catalysed regioselective hydroalkynylation of ynamides for ynenamides is achieved with an N-substitution dependent stereoselectivity switch.
Collapse
Affiliation(s)
- Vikas Dwivedi
- Medicinal & Process Chemistry Division
- CSIR-Central Drug Research Institute
- Lucknow 226031
- India
| | - Madala Hari Babu
- Medicinal & Process Chemistry Division
- CSIR-Central Drug Research Institute
- Lucknow 226031
- India
| | - Ruchir Kant
- Molecular & Structural Biology Division
- CSIR-CDRI
- Lucknow 226031
- India
| | - Maddi Sridhar Reddy
- Medicinal & Process Chemistry Division
- CSIR-Central Drug Research Institute
- Lucknow 226031
- India
- Academy of Scientific and Innovative Research
| |
Collapse
|
16
|
Huete-Toral F, Crooke A, Martínez-Águila A, Pintor J. Melatonin receptors trigger cAMP production and inhibit chloride movements in nonpigmented ciliary epithelial cells. J Pharmacol Exp Ther 2014; 352:119-28. [PMID: 25344385 DOI: 10.1124/jpet.114.218263] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Melatonin and its analog 5-MCA-NAT (5-methylcarboxyamino-N-acetyl tryptamine) are active compounds reducing intraocular pressure (IOP). This action is mediated through MT2 and the putative MT3 melatonin receptor, producing a transient reduction of IOP that lasts for a few hours and has not yet been characterized. The use of melatonin and its analog are causing a decrease in chloride efflux from rabbit nonpigmented epithelial cells (NPE), possibly explaining the decrease in IOP. Melatonin and 5-MCA-NAT inhibited rabbit NPE chloride release in a concentration-dependent manner, whereas the pD2 values were between 4.5 ± 1.2 and 4.4 ± 1.0, respectively. Melatonin hypotensive action was enhanced by the presence of MT2 antagonists, such as DH97 (N-pentanoyl-2-benzyltryptamine) and 4-P-P-DOT (4-phenyl-2-propionamidotetralin) and by the nonselective melatonin receptor antagonist luzindole. Prazosin (1.5 µM) partially reverses the melatonin action by acting as a selective MT3 antagonist. However, at 15 nM it acts as an α-adrenergic receptor antagonist, enhancing the melatonin effect. Regarding the intracellular pathways triggered by melatonin receptors, neither phospholipase C/protein kinase C pathway nor the canonical reduction of intracellular cAMP was responsible for melatonin or 5-MCA-NAT actions. On the contrary, the application of these substances produced a concentration-dependent increase of cAMP, with pD2 values of 4.6 ± 0.2 and 4.9 ± 0.7 for melatonin and 5-MCA-NAT, respectively. In summary, melatonin reduces the release of chloride concomitantly to cAMP generation. The reduction of Cl(-) secretion accounts for a decrease in the water outflow and therefore a decrease in aqueous humor production. This could be one of the main mechanisms responsible for the reduction of IOP after application of melatonin and 5-MCA-NAT.
Collapse
Affiliation(s)
- Fernando Huete-Toral
- Departamento de Bioquímica y Biología Molecular IV, Facultad de Óptica y Optometría, Universidad Complutense de Madrid, Madrid, Spain
| | - Almudena Crooke
- Departamento de Bioquímica y Biología Molecular IV, Facultad de Óptica y Optometría, Universidad Complutense de Madrid, Madrid, Spain
| | - Alejandro Martínez-Águila
- Departamento de Bioquímica y Biología Molecular IV, Facultad de Óptica y Optometría, Universidad Complutense de Madrid, Madrid, Spain
| | - Jesús Pintor
- Departamento de Bioquímica y Biología Molecular IV, Facultad de Óptica y Optometría, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
17
|
Alkozi HA, Pintor J. Melatonin and derivatives as promising tools for glaucoma treatment. World J Ophthalmol 2013; 3:32-37. [DOI: 10.5318/wjo.v3.i4.32] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Accepted: 11/13/2013] [Indexed: 02/06/2023] Open
Abstract
Neurohormones melatonin and its analogues are present with an important physiological and pharmacological ability to reduce intraocular pressure (IOP); thus, they are suitable for the treatment of ocular hypertension often associated with glaucoma. It is demonstrated that two of its analogues, 5-MCA-NAT and IIK7, are more effective than melatonin to reduce IOP for a longer period of time. The research for the discovery of better compounds resulted in the development of newer and improved analogues compared to 5-MCA-NAT and IIK7. Furthermore, already commercially available drugs currently used as treatment for other pathologies, presenting a resemblance to the melatonin structure, are being tested as potential glaucoma drugs. In this sense, agomelatine, which is already used as an anti-depressant medicine, is recognized as a worthy candidate since it reduces IOP, even under hypertensive conditions. To sum up, the use of melatonin and its analogues as promising anti-glaucomatous substances is of great importance and should be given serious consideration.
Collapse
|
18
|
Crooke A, Huete-Toral F, Martínez-Águila A, Martín-Gil A, Pintor J. Melatonin and its analog 5-methoxycarbonylamino-N-acetyltryptamine potentiate adrenergic receptor-mediated ocular hypotensive effects in rabbits: significance for combination therapy in glaucoma. J Pharmacol Exp Ther 2013; 346:138-45. [PMID: 23591996 DOI: 10.1124/jpet.112.202036] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Melatonin is currently considered a promising drug for glaucoma treatment because of its ocular hypotensive and neuroprotective effects. We have investigated the effect of melatonin and its analog 5-methoxycarbonylamino-N-acetyltryptamine, 5-MCA-NAT, on β₂/α(2A)-adrenergic receptor mRNA as well as protein expression in cultured rabbit nonpigmented ciliary epithelial cells. Quantitative polymerase chain reaction and immunocytochemical assays revealed a significant β₂-adrenergic receptor downregulation as well as α(2A)-adrenergic receptor up-regulation of treated cells (P < 0.001, maximal significant effect). In addition, we have studied the effect of these drugs upon the ocular hypotensive action of a nonselective β-adrenergic receptor (timolol) and a selective α₂-adrenergic receptor agonist (brimonidine) in normotensive rabbits. Intraocular pressure (IOP) experiments showed that the administration of timolol in rabbits pretreated with melatonin or 5-MCA-NAT evoked an additional IOP reduction of 14.02% ± 5.8% or 16.75% ± 5.48% (P < 0.01) in comparison with rabbits treated with timolol alone for 24 hours. Concerning brimonidine hypotensive action, an additional IOP reduction of 29.26% ± 5.21% or 39.07% ± 5.81% (P < 0.001) was observed in rabbits pretreated with melatonin or 5-MCA-NAT when compared with animals treated with brimonidine alone for 24 hours. Additionally, a sustained potentiating effect of a single dose of 5-MCA-NAT was seen in rabbits treated with brimonidine once daily for up 4 days (extra IOP decrease of 15.57% ± 5.15%, P < 0.05, compared with brimonidine alone). These data confirm the indirect action of melatoninergic compounds on adrenergic receptors and their remarkable effect upon the ocular hypotensive action mainly of α₂-adrenergic receptor agonists but also of β-adrenergic antagonists.
Collapse
Affiliation(s)
- Almudena Crooke
- Departamento de Bioquímica, Facultad de Óptica y Optometría, Universidad Complutense de Madrid, Madrid, Spain
| | | | | | | | | |
Collapse
|
19
|
Bucolo C, Salomone S, Drago F, Reibaldi M, Longo A, Uva MG. Pharmacological management of ocular hypertension: current approaches and future prospective. Curr Opin Pharmacol 2013; 13:50-5. [PMID: 23069477 DOI: 10.1016/j.coph.2012.09.012] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Revised: 09/18/2012] [Accepted: 09/21/2012] [Indexed: 01/11/2023]
|
20
|
Martínez-Águila A, Fonseca B, Bergua A, Pintor J. Melatonin analogue agomelatine reduces rabbit's intraocular pressure in normotensive and hypertensive conditions. Eur J Pharmacol 2012; 701:213-7. [PMID: 23270715 DOI: 10.1016/j.ejphar.2012.12.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Revised: 12/03/2012] [Accepted: 12/07/2012] [Indexed: 01/31/2023]
Abstract
In the search for new compounds to reduce intraocular pressure (IOP), with fewer side effects, we have found that agomelatine, a melatonin analogue, can reduce IOP being, therefore, interesting for the treatment of ocular hypertension and glaucoma. In normotensive conditions, agomelatine (10μl 100μM) reduced IOP by 20.8±1.4% (n=18) with a maximal effect 180min after the compound application and 68.8±5.7% (n=8) in a hypertensive condition. Concentration-response curve depicted a sigmoid behaviour presenting a pD2 value of 9.7±0.3 which was equivalent to an EC50 of 0.19nM. The effect of agomelatine was partially antagonized by 4PPDOT (MT2 antagonist receptor. 10μl 100μM) and prazosin (MT3 antagonist receptor. 10μl 100μM) (85.6±1.6% and 87.2±1.9%, N=18 respectively.) Agomelatine hypotensive effect in normotensive condition was comparable to latanoprost (40μl) and brimonidine (40μl) and it was no so effective as dorzolamide (40μl) or timolol (40μl). These results may suggest the use of this melatonin analogue for the treatment of those ocular conditions, which involve an abnormal raise of intraocular pressure.
Collapse
|
21
|
Musumeci T, Bucolo C, Carbone C, Pignatello R, Drago F, Puglisi G. Polymeric nanoparticles augment the ocular hypotensive effect of melatonin in rabbits. Int J Pharm 2012; 440:135-40. [PMID: 23078856 DOI: 10.1016/j.ijpharm.2012.10.014] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Revised: 10/02/2012] [Accepted: 10/03/2012] [Indexed: 12/11/2022]
Abstract
Melatonin, a neurohormone secreted by the pineal gland, is able to modulate intraocular pressure (IOP). The aim of this study was to generate nanoparticle (NPs) sustained release formulations that allow to extend the pre-corneal residence time of melatonin, thus prolonging its pharmacological effects. Poly(D,L-lactide-co-glycolide) (PLGA) and PLGA-poly(ethylenglycole) (PEG) nanoparticles (NPs) were used to prepare the new melatonin formulations. Mean particle diameter and zeta potential, determined after freeze-drying in the presence of glucose as a cryoprotectant, ranged between 100 and 400 nm and -32.2/-8.2 mV, respectively for PLGA and PLGA-PEG NPs. Melatonin loading ranged between 44% and 80%. DSC analysis showed a homogeneous molecular dispersion of the drug in the NPs matrix. The hypotensive effect was evaluated by measuring IOP during 24h after instillation in the rabbit eye, in comparison with a melatonin aqueous solution at the same concentration (0.08%, w/v). The tested NPs showed good ocular tolerability in rabbit eye using biomicroscopy. Melatonin-loaded PLGA-PEG NPs were the most effective in reducing IOP up to 8h (maximum IOP reduction: 5 mmHg).
Collapse
Affiliation(s)
- Teresa Musumeci
- Laboratory of Drug Delivery Technology, Department of Drug Sciences, University of Catania, Catania, Italy.
| | | | | | | | | | | |
Collapse
|
22
|
Crooke A, Huete-Toral F, Martínez-Águila A, Colligris B, Pintor J. Ocular disorders and the utility of animal models in the discovery of melatoninergic drugs with therapeutic potential. Expert Opin Drug Discov 2012; 7:989-1001. [PMID: 22860991 DOI: 10.1517/17460441.2012.714769] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
INTRODUCTION The pineal indole-derived hormone melatonin is a modulator of circadian and seasonal rhythms with an important role in ocular health and disease. This could be due to specific melatonin receptors that have been identified in structures such as cornea, lens, ciliary body, retina, choroid and sclera. In addition, a local synthesis of melatonin occurs in several of these ocular tissues. AREAS COVERED The authors review existing literature on the most common animal models where ocular melatonin actions have been tested. The therapeutic potential of melatonin in diabetic keratopathy and retinopathy, keratitis, cataracts, glaucoma, uveitis, age-related macular degeneration and retinitis pigmentosa is discussed. Furthermore, the authors comment on the usefulness of different animal models for the development of melatoninergic drugs with therapeutic potential. EXPERT OPINION The use of animals for the study of ocular diseases and the potentiality of melatonin and its analogs, as future therapeutic drugs, should be performed on the basis of a rationale study. It is important to note that melatonin receptors seem to be widespread all over the eye. This strongly suggests that, in order to modify the physiology and biochemistry of malfunctioning ocular tissue, the melatonin receptors which are present in that tissue must be first identified. Second there is the need to confirm that those receptors targeted perform the desirable responses, and as a third measure, to use selective agonists (or antagonists) instead of melatonin. However, although some animals mimic ocular pathologies relatively well, and these can be used in melatonin studies, there is still a long way to go till some of the results obtained in animal models could be used for human therapy.
Collapse
Affiliation(s)
- Almudena Crooke
- Departamento de Bioquímica y Biología Molecular IV, E.U. Óptica, Universidad Complutense de Madrid, C/Arcos de Jalón 118, Madrid, Spain
| | | | | | | | | |
Collapse
|
23
|
Ben Soussia I, Mies F, Naeije R, Shlyonsky V. Melatonin down-regulates volume-sensitive chloride channels in fibroblasts. Pflugers Arch 2012; 464:273-85. [DOI: 10.1007/s00424-012-1139-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Revised: 07/16/2012] [Accepted: 07/17/2012] [Indexed: 01/01/2023]
|