1
|
Mao Y, Chen H, Zhu W, Ni S, Luo S, Tang S, Chen Z, Wang Q, Xu J, Tu Q, Chen H, Zhu L. Cuproptosis Cell Death Molecular Events and Pathways to Liver Disease. J Inflamm Res 2025; 18:883-894. [PMID: 39867947 PMCID: PMC11760270 DOI: 10.2147/jir.s498340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 01/07/2025] [Indexed: 01/28/2025] Open
Abstract
Chronic liver disease ranks as the 11th leading cause of death worldwide, while hepatocellular carcinoma (HCC) is the fourth leading cause of cancer-related mortality, representing a substantial risk to public health. Over the past few decades, the global landscape of chronic liver diseases, including hepatitis, metabolic dysfunction-associated steatotic liver disease (MASLD), liver fibrosis, and HCC, has undergone substantial changes. Copper, a vital trace element for human health, is predominantly regulated by the liver. Both copper deficiency and excess can lead to cellular damage and liver dysfunction. Copper deposition is a genetic process of copper-dependent cell death associated with mitochondrial respiration, which is associated with cardiovascular disease and IBD. However, the roles of copper overload and cuproptosis in liver disease remain largely underexplored. This article examines recent studies on copper metabolism and cuproptosis in chronic liver disease, investigating the potential of targeting copper ions as a therapeutic approach. The objective is to offer insights and guidance for future investigations in this developing field of study.
Collapse
Affiliation(s)
- Yun Mao
- Department of Gerontology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, People’s Republic of China
| | - Huilan Chen
- Department of Gerontology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, People’s Republic of China
| | - Weihan Zhu
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
| | - Shunlan Ni
- Department of Infectious Disease, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, People’s Republic of China
| | - Shengnan Luo
- Department of Infectious Disease, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, People’s Republic of China
| | - Shiyue Tang
- Department of Infectious Disease, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, People’s Republic of China
| | - Zhiyi Chen
- Department of Gastroenterology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, People’s Republic of China
| | - Qin Wang
- Department of Infectious Disease, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, People’s Republic of China
| | - Jinxian Xu
- Department of Infectious Disease, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, People’s Republic of China
| | - Qi Tu
- Department of Neurosurgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, People’s Republic of China
| | - Haijun Chen
- Department of Infectious Disease, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, People’s Republic of China
| | - Lujian Zhu
- Department of Infectious Disease, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, People’s Republic of China
| |
Collapse
|
2
|
Gallagher CI, Ha DA, Harvey RJ, Vandenberg RJ. Positive Allosteric Modulators of Glycine Receptors and Their Potential Use in Pain Therapies. Pharmacol Rev 2022; 74:933-961. [PMID: 36779343 PMCID: PMC9553105 DOI: 10.1124/pharmrev.122.000583] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 04/26/2022] [Accepted: 05/13/2022] [Indexed: 11/22/2022] Open
Abstract
Glycine receptors are ligand-gated ion channels that mediate synaptic inhibition throughout the mammalian spinal cord, brainstem, and higher brain regions. They have recently emerged as promising targets for novel pain therapies due to their ability to produce antinociception by inhibiting nociceptive signals within the dorsal horn of the spinal cord. This has greatly enhanced the interest in developing positive allosteric modulators of glycine receptors. Several pharmaceutical companies and research facilities have attempted to identify new therapeutic leads by conducting large-scale screens of compound libraries, screening new derivatives from natural sources, or synthesizing novel compounds that mimic endogenous compounds with antinociceptive activity. Advances in structural techniques have also led to the publication of multiple high-resolution structures of the receptor, highlighting novel allosteric binding sites and providing additional information for previously identified binding sites. This has greatly enhanced our understanding of the functional properties of glycine receptors and expanded the structure activity relationships of novel pharmacophores. Despite this, glycine receptors are yet to be used as drug targets due to the difficulties in obtaining potent, selective modulators with favorable pharmacokinetic profiles that are devoid of side effects. This review presents a summary of the structural basis for how current compounds cause positive allosteric modulation of glycine receptors and discusses their therapeutic potential as analgesics. SIGNIFICANCE STATEMENT: Chronic pain is a major cause of disability, and in Western societies, this will only increase as the population ages. Despite the high level of prevalence and enormous socioeconomic burden incurred, treatment of chronic pain remains limited as it is often refractory to current analgesics, such as opioids. The National Institute for Drug Abuse has set finding effective, safe, nonaddictive strategies to manage chronic pain as their top priority. Positive allosteric modulators of glycine receptors may provide a therapeutic option.
Collapse
Affiliation(s)
- Casey I Gallagher
- Molecular Biomedicine, School of Medical Sciences, University of Sydney, Sydney, Australia (C.I.G., D.A.H., R.J.V.) and Biomedical Science, School of Health and Behavioural Sciences and Sunshine Coast Health Institute, University of the Sunshine Coast, Maroochydore, Australia (R.J.H.)
| | - Damien A Ha
- Molecular Biomedicine, School of Medical Sciences, University of Sydney, Sydney, Australia (C.I.G., D.A.H., R.J.V.) and Biomedical Science, School of Health and Behavioural Sciences and Sunshine Coast Health Institute, University of the Sunshine Coast, Maroochydore, Australia (R.J.H.)
| | - Robert J Harvey
- Molecular Biomedicine, School of Medical Sciences, University of Sydney, Sydney, Australia (C.I.G., D.A.H., R.J.V.) and Biomedical Science, School of Health and Behavioural Sciences and Sunshine Coast Health Institute, University of the Sunshine Coast, Maroochydore, Australia (R.J.H.)
| | - Robert J Vandenberg
- Molecular Biomedicine, School of Medical Sciences, University of Sydney, Sydney, Australia (C.I.G., D.A.H., R.J.V.) and Biomedical Science, School of Health and Behavioural Sciences and Sunshine Coast Health Institute, University of the Sunshine Coast, Maroochydore, Australia (R.J.H.)
| |
Collapse
|
3
|
Lara CO, Burgos CF, Silva-Grecchi T, Muñoz-Montesino C, Aguayo LG, Fuentealba J, Castro PA, Guzmán JL, Corringer PJ, Yévenes GE, Moraga-Cid G. Large Intracellular Domain-Dependent Effects of Positive Allosteric Modulators on Glycine Receptors. ACS Chem Neurosci 2019; 10:2551-2559. [PMID: 30893555 DOI: 10.1021/acschemneuro.9b00050] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Glycine receptors (GlyRs) are members of the pentameric ligand-gated ionic channel family (pLGICs) and mediate fast inhibitory neurotransmission in the brain stem and spinal cord. The function of GlyRs can be modulated by positive allosteric modulators (PAMs). So far, it is largely accepted that both the extracellular (ECD) and transmembrane (TMD) domains constitute the primary target for many of these PAMs. On the other hand, the contribution of the intracellular domain (ICD) to the PAM effects on GlyRs remains poorly understood. To gain insight about the role of the ICD in the pharmacology of GlyRs, we examined the contribution of each domain using a chimeric receptor. Two chimeras were generated, one consisting of the ECD of the prokaryotic homologue Gloeobacter violaceus ligand-gated ion channel (GLIC) fused to the TMD of the human α1GlyR lacking the ICD (Lily) and a second with the ICD (Lily-ICD). The sensitivity to PAMs of both chimeric receptors was studied using electrophysiological techniques. The Lily receptor showed a significant decrease in the sensitivity to four recognized PAMs. Remarkably, the incorporation of the ICD into the Lily background was sufficient to restore the wild-type α1GlyR sensitivity to these PAMs. Based on these data, we can suggest that the ICD is necessary to form a pLGIC having full sensitivity to positive allosteric modulators.
Collapse
Affiliation(s)
- Cesar O. Lara
- Departamento de Fisiologı́a, Facultad de Ciencias Biológicas, Universidad de Concepción, Chile
| | - Carlos F. Burgos
- Departamento de Fisiologı́a, Facultad de Ciencias Biológicas, Universidad de Concepción, Chile
| | - Tiare Silva-Grecchi
- Departamento de Fisiologı́a, Facultad de Ciencias Biológicas, Universidad de Concepción, Chile
| | - Carola Muñoz-Montesino
- Departamento de Fisiologı́a, Facultad de Ciencias Biológicas, Universidad de Concepción, Chile
| | - Luis G. Aguayo
- Departamento de Fisiologı́a, Facultad de Ciencias Biológicas, Universidad de Concepción, Chile
| | - Jorge Fuentealba
- Departamento de Fisiologı́a, Facultad de Ciencias Biológicas, Universidad de Concepción, Chile
| | - Patricio A. Castro
- Departamento de Fisiologı́a, Facultad de Ciencias Biológicas, Universidad de Concepción, Chile
| | - Jose L. Guzmán
- Departamento de Fisiologı́a, Facultad de Ciencias Biológicas, Universidad de Concepción, Chile
| | | | - Gonzalo E. Yévenes
- Departamento de Fisiologı́a, Facultad de Ciencias Biológicas, Universidad de Concepción, Chile
| | - Gustavo Moraga-Cid
- Departamento de Fisiologı́a, Facultad de Ciencias Biológicas, Universidad de Concepción, Chile
| |
Collapse
|
4
|
Sadek B, Oz M, Nurulain SM, Jayaprakash P, Latacz G, Kieć-Kononowicz K, Szymańska E. Phenylalanine derivatives with modulating effects on human α1-glycine receptors and anticonvulsant activity in strychnine-induced seizure model in male adult rats. Epilepsy Res 2017; 138:124-131. [PMID: 28554717 DOI: 10.1016/j.eplepsyres.2017.05.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 05/01/2017] [Accepted: 05/19/2017] [Indexed: 01/27/2023]
Abstract
The critical role of α1-glycine receptor (α1-GLYRs) in pathological conditions such as epilepsy is well known. In the present study, structure-activity relations for a series of phenylalanine derivatives carrying selected hydrogen bond acceptors were investigated on the functional properties of human α1-GLYR expressed in Xenopus oocytes. The results indicate that one particular substitution position appeared to be of special importance for control of ligand activity. Among tested ligands (1-8), the biphenyl derivative (2) provided the most promising antagonistic effect on α1-GLYRs, while its phenylbenzyl analogue (5) exhibited the highest potentiation effect. Moreover, ligand 5 with most promising potentiating effect showed in-vivo moderate protection when tested in strychnine (STR)-induced seizure model in male adult rats, whereas ligand 2 with highest antagonistic effect failed to provide appreciable anti(pro)convulsant effect. Furthermore, ligands 2 and 5 with the most promising effects on human α1-GLYRs were examined for their toxicity and potential neuroprotective effect against neurotoxin 6-hydroxydopamine (6-OHDA). The results show that ligands 2 and 5 possessed neither significant antiproliferative effects, nor necrotic and mitochondrial toxicity (up to concentration of 50μM). Moreover, ligand 2 showed weak neuroprotective effect at the 50μM against 100μM toxic dose of 6-OHDA. Our results indicate that modulatory effects of ligands 2 and 5 on human α1-GLYRs as well as on STR-induced convulsion can provide further insights for the design of therapeutic agents in treatment of epilepsy and other pathological conditions requiring enhanced activity of inhibitory glycine receptors.
Collapse
Affiliation(s)
- Bassem Sadek
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, P.O. Box 17666, United Arab Emirates.
| | - Murat Oz
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, P.O. Box 17666, United Arab Emirates; Department of Basic Medical Sciences, College of Medicine, Qatar University, Doha, Qatar
| | - Syed M Nurulain
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, P.O. Box 17666, United Arab Emirates; Department of Bioscience, COMSATS Institute of Information Technology, Islamabad 45550, Pakistan
| | - Petrilla Jayaprakash
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, P.O. Box 17666, United Arab Emirates
| | - Gniewomir Latacz
- Department of Technology and Biotechnology of Drugs Jagiellonian University Medical College, Medyczna 9, PL 30-688 Krakow, Poland
| | - Katarzyna Kieć-Kononowicz
- Department of Technology and Biotechnology of Drugs Jagiellonian University Medical College, Medyczna 9, PL 30-688 Krakow, Poland
| | - Ewa Szymańska
- Department of Technology and Biotechnology of Drugs Jagiellonian University Medical College, Medyczna 9, PL 30-688 Krakow, Poland
| |
Collapse
|
5
|
Burgos CF, Muñoz B, Guzman L, Aguayo LG. Ethanol effects on glycinergic transmission: From molecular pharmacology to behavior responses. Pharmacol Res 2015; 101:18-29. [PMID: 26158502 DOI: 10.1016/j.phrs.2015.07.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 07/01/2015] [Accepted: 07/01/2015] [Indexed: 10/23/2022]
Abstract
It is well accepted that ethanol is able to produce major health and economic problems associated to its abuse. Because of its intoxicating and addictive properties, it is necessary to analyze its effect in the central nervous system. However, we are only now learning about the mechanisms controlling the modification of important membrane proteins such as ligand-activated ion channels by ethanol. Furthermore, only recently are these effects being correlated to behavioral changes. Current studies show that the glycine receptor (GlyR) is a susceptible target for low concentrations of ethanol (5-40mM). GlyRs are relevant for the effects of ethanol because they are found in the spinal cord and brain stem where they primarily express the α1 subunit. More recently, the presence of GlyRs was described in higher regions, such as the hippocampus and nucleus accumbens, with a prevalence of α2/α3 subunits. Here, we review data on the following aspects of ethanol effects on GlyRs: (1) direct interaction of ethanol with amino acids in the extracellular or transmembrane domains, and indirect mechanisms through the activation of signal transduction pathways; (2) analysis of α2 and α3 subunits having different sensitivities to ethanol which allows the identification of structural requirements for ethanol modulation present in the intracellular domain and C-terminal region; (3) Genetically modified knock-in mice for α1 GlyRs that have an impaired interaction with G protein and demonstrate reduced ethanol sensitivity without changes in glycinergic transmission; and (4) GlyRs as potential therapeutic targets.
Collapse
Affiliation(s)
- Carlos F Burgos
- Laboratory of Neurophysiology, Department of Physiology, University of Concepción, Chile
| | - Braulio Muñoz
- Laboratory of Neurophysiology, Department of Physiology, University of Concepción, Chile
| | - Leonardo Guzman
- Laboratory of Molecular Neurobiology, Department of Physiology, University of Concepción, Chile
| | - Luis G Aguayo
- Laboratory of Neurophysiology, Department of Physiology, University of Concepción, Chile.
| |
Collapse
|
6
|
Burgos CF, Castro PA, Mariqueo T, Bunster M, Guzmán L, Aguayo LG. Evidence for α-helices in the large intracellular domain mediating modulation of the α1-glycine receptor by ethanol and Gβγ. J Pharmacol Exp Ther 2015; 352:148-55. [PMID: 25339760 PMCID: PMC4279101 DOI: 10.1124/jpet.114.217976] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2014] [Accepted: 10/21/2014] [Indexed: 12/19/2022] Open
Abstract
The α1-subunit containing glycine receptors (GlyRs) is potentiated by ethanol, in part, by intracellular Gβγ actions. Previous studies have suggested that molecular requirements in the large intracellular domain are involved; however, the lack of structural data about this region has made it difficult to describe a detailed mechanism. Using circular dichroism and molecular modeling, we generated a full model of the α1-GlyR, which includes the large intracellular domain and provides new information on structural requirements for allosteric modulation by ethanol and Gβγ. The data strongly suggest the existence of an α-helical conformation in the regions near transmembrane (TM)-3 and TM4 of the large intracellular domain. The secondary structure in the N-terminal region of the large intracellular domain near TM3 appeared critical for ethanol action, and this was tested using the homologous domain of the γ2-subunit of the GABAA receptor predicted to have little helical conformation. This region of γ2 was able to bind Gβγ and form a functional channel when combined with α1-GlyR, but it was not sensitive to ethanol. Mutations in the N- and C-terminal regions introduced to replace corresponding amino acids of the α1-GlyR sequence restored the ability to be modulated by ethanol and Gβγ. Recovery of the sensitivity to ethanol was associated with the existence of a helical conformation similar to α1-GlyR, thus being an essential secondary structural requirement for GlyR modulation by ethanol and G protein.
Collapse
Affiliation(s)
- Carlos F Burgos
- Laboratory of Neurophysiology, Department of Physiology (C.F.B., .P.A.C., T.M., L.G.A.), Laboratory of Molecular Neurobiology, Department of Physiology (L.G.), Laboratory of Molecular Biophysics, Department of Biochemistry and Molecular Biology (M.B.), and Ph.D. program in Pharmacology (T.M.), University of Concepción, Concepción, Chile
| | - Patricio A Castro
- Laboratory of Neurophysiology, Department of Physiology (C.F.B., .P.A.C., T.M., L.G.A.), Laboratory of Molecular Neurobiology, Department of Physiology (L.G.), Laboratory of Molecular Biophysics, Department of Biochemistry and Molecular Biology (M.B.), and Ph.D. program in Pharmacology (T.M.), University of Concepción, Concepción, Chile
| | - Trinidad Mariqueo
- Laboratory of Neurophysiology, Department of Physiology (C.F.B., .P.A.C., T.M., L.G.A.), Laboratory of Molecular Neurobiology, Department of Physiology (L.G.), Laboratory of Molecular Biophysics, Department of Biochemistry and Molecular Biology (M.B.), and Ph.D. program in Pharmacology (T.M.), University of Concepción, Concepción, Chile
| | - Marta Bunster
- Laboratory of Neurophysiology, Department of Physiology (C.F.B., .P.A.C., T.M., L.G.A.), Laboratory of Molecular Neurobiology, Department of Physiology (L.G.), Laboratory of Molecular Biophysics, Department of Biochemistry and Molecular Biology (M.B.), and Ph.D. program in Pharmacology (T.M.), University of Concepción, Concepción, Chile
| | - Leonardo Guzmán
- Laboratory of Neurophysiology, Department of Physiology (C.F.B., .P.A.C., T.M., L.G.A.), Laboratory of Molecular Neurobiology, Department of Physiology (L.G.), Laboratory of Molecular Biophysics, Department of Biochemistry and Molecular Biology (M.B.), and Ph.D. program in Pharmacology (T.M.), University of Concepción, Concepción, Chile
| | - Luis G Aguayo
- Laboratory of Neurophysiology, Department of Physiology (C.F.B., .P.A.C., T.M., L.G.A.), Laboratory of Molecular Neurobiology, Department of Physiology (L.G.), Laboratory of Molecular Biophysics, Department of Biochemistry and Molecular Biology (M.B.), and Ph.D. program in Pharmacology (T.M.), University of Concepción, Concepción, Chile
| |
Collapse
|
7
|
Piccoli S, Suku E, Garonzi M, Giorgetti A. Genome-wide Membrane Protein Structure Prediction. Curr Genomics 2013; 14:324-9. [PMID: 24403851 PMCID: PMC3763683 DOI: 10.2174/13892029113149990009] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Revised: 07/19/2013] [Accepted: 07/22/2013] [Indexed: 01/25/2023] Open
Abstract
Transmembrane proteins allow cells to extensively communicate with the external world in a very accurate and specific way. They form principal nodes in several signaling pathways and attract large interest in therapeutic intervention, as the majority pharmaceutical compounds target membrane proteins. Thus, according to the current genome annotation methods, a detailed structural/functional characterization at the protein level of each of the elements codified in the genome is also required. The extreme difficulty in obtaining high-resolution three-dimensional structures, calls for computational approaches. Here we review to which extent the efforts made in the last few years, combining the structural characterization of membrane proteins with protein bioinformatics techniques, could help describing membrane proteins at a genome-wide scale. In particular we analyze the use of comparative modeling techniques as a way of overcoming the lack of high-resolution three-dimensional structures in the human membrane proteome.
Collapse
Affiliation(s)
- Stefano Piccoli
- Applied Bioinformatics Group, Dept. of Biotechnology, University of Verona, strada Le grazie 15, 37134, Verona,
Italy
| | - Eda Suku
- Applied Bioinformatics Group, Dept. of Biotechnology, University of Verona, strada Le grazie 15, 37134, Verona,
Italy
| | - Marianna Garonzi
- Applied Bioinformatics Group, Dept. of Biotechnology, University of Verona, strada Le grazie 15, 37134, Verona,
Italy
| | - Alejandro Giorgetti
- Applied Bioinformatics Group, Dept. of Biotechnology, University of Verona, strada Le grazie 15, 37134, Verona,
Italy
- German Research School for Simulation Sciences, Juelich, Germany
- Center for Biomedical Computing (CBMC), University of Verona, strada Le grazie 8, 37134, Verona, Italy
| |
Collapse
|
8
|
McCracken LM, Blednov YA, Trudell JR, Benavidez JM, Betz H, Harris RA. Mutation of a zinc-binding residue in the glycine receptor α1 subunit changes ethanol sensitivity in vitro and alcohol consumption in vivo. J Pharmacol Exp Ther 2013; 344:489-500. [PMID: 23230213 PMCID: PMC3558822 DOI: 10.1124/jpet.112.197707] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Accepted: 09/05/2012] [Indexed: 11/22/2022] Open
Abstract
Ethanol is a widely used drug, yet an understanding of its sites and mechanisms of action remains incomplete. Among the protein targets of ethanol are glycine receptors (GlyRs), which are potentiated by millimolar concentrations of ethanol. In addition, zinc ions also modulate GlyR function, and recent evidence suggests that physiologic concentrations of zinc enhance ethanol potentiation of GlyRs. Here, we first built a homology model of a zinc-bound GlyR using the D80 position as a coordination site for a zinc ion. Next, we investigated in vitro the effects of zinc on ethanol action at recombinant wild-type (WT) and mutant α1 GlyRs containing the D80A substitution, which eliminates zinc potentiation. At D80A GlyRs, the effects of 50 and 200 mM ethanol were reduced as compared with WT receptors. Also, in contrast to what was seen with WT GlyRs, neither adding nor chelating zinc changed the magnitude of ethanol enhancement of mutant D80A receptors. Next, we evaluated the in vivo effects of the D80A substitution by using heterozygous Glra1(D80A) knock-in (KI) mice. The KI mice showed decreased ethanol consumption and preference, and they displayed increased startle responses compared with their WT littermates. Other behavioral tests, including ethanol-induced motor incoordination and strychnine-induced convulsions, revealed no differences between the KI and WT mice. Together, our findings indicate that zinc is critical in determining the effects of ethanol at GlyRs and suggest that zinc binding at the D80 position may be important for mediating some of the behavioral effects of ethanol action at GlyRs.
Collapse
Affiliation(s)
- Lindsay M McCracken
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, Texas, USA
| | | | | | | | | | | |
Collapse
|
9
|
de la Roche J, Leuwer M, Krampfl K, Haeseler G, Dengler R, Buchholz V, Ahrens J. 4-Chloropropofol enhances chloride currents in human hyperekplexic and artificial mutated glycine receptors. BMC Neurol 2012; 12:104. [PMID: 23006332 PMCID: PMC3517478 DOI: 10.1186/1471-2377-12-104] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Accepted: 09/19/2012] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND The mammalian neurological disorder hereditary hyperekplexia can be attributed to various mutations of strychnine sensitive glycine receptors. The clinical symptoms of "startle disease" predominantly occur in the newborn leading to convulsive hypertonia and an exaggerated startle response to unexpected mild stimuli. Amongst others, point mutations R271Q and R271L in the α1-subunit of strychnine sensitive glycine receptors show reduced glycine sensitivity and cause the clinical symptoms of hyperekplexia.Halogenation has been shown to be a crucial structural determinant for the potency of a phenolic compound to positively modulate glycine receptor function.The aim of this in vitro study was to characterize the effects of 4-chloropropofol (4-chloro-2,6-dimethylphenol) at four glycine receptor mutations. METHODS Glycine receptor subunits were expressed in HEK 293 cells and experiments were performed using the whole-cell patch-clamp technique. RESULTS 4-chloropropofol exerted a positive allosteric modulatory effect in a low sub-nanomolar concentration range at the wild type receptor (EC50 value of 0.08 ± 0.02 nM) and in a micromolar concentration range at the mutations (1.3 ± 0.6 μM, 0.1 ± 0.2 μM, 6.0 ± 2.3 μM and 55 ± 28 μM for R271Q, L, K and S267I, respectively). CONCLUSIONS 4-chloropropofol might be an effective compound for the activation of mutated glycine receptors in experimental models of startle disease.
Collapse
Affiliation(s)
- Jeanne de la Roche
- Clinic for Anesthesia and Critical Care Medicine, OE 8050, Hannover Medical School, Carl-Neuberg-Str, 1, 30625, Hannover, Germany.
| | | | | | | | | | | | | |
Collapse
|