1
|
Krámos B, Hadady Z, Makó A, Szántó G, Felföldi N, Magdó I, Bobok AÁ, Bata I, Román V, Visegrády A, Keserű G, Greiner I, Éles J. Novel-Type GABA B PAMs: Structure-Activity Relationship in Light of the Protein Structure. ACS Med Chem Lett 2024; 15:396-405. [PMID: 38505850 PMCID: PMC10945541 DOI: 10.1021/acsmedchemlett.3c00560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/16/2024] [Accepted: 02/20/2024] [Indexed: 03/21/2024] Open
Abstract
Selecting a known HTS hit with the pyrazolo[1,5-a]pyrimidine core, our project was started from CMPPE, and its optimization was driven by a ligand-based pharmacophore model developed on the basis of published GABAB positive allosteric modulators (PAMs). Our primary goal was to improve the potency by finding new enthalpic interactions. Therefore, we included the lipophilic ligand efficiency (LLE or LipE) as an objective function in the optimization that led to a carboxylic acid derivative (34). This lead candidate offers the possibility to improve potency without drastically inflating the physicochemical properties. Although the discovery of the novel carboxyl feature was surprising, it turned out to be an important element of the GABAB PAM pharmacophore that can be perfectly explained based on the new protein structures. Rationalizing the binding mode of 34, we analyzed the intersubunit PAM binding site of GABAB receptor using the publicly available experimental structures.
Collapse
Affiliation(s)
- Balázs Krámos
- Spectroscopic
Research Department, Gedeon Richter Plc., Gyömrői út
19-21, Budapest, 1103 Hungary
| | - Zsuzsa Hadady
- Chemistry
Department, Gedeon Richter Plc., Gyömrői út
19-21, Budapest, 1103 Hungary
| | - Attila Makó
- Chemistry
Department, Gedeon Richter Plc., Gyömrői út
19-21, Budapest, 1103 Hungary
| | - Gábor Szántó
- Chemistry
Department, Gedeon Richter Plc., Gyömrői út
19-21, Budapest, 1103 Hungary
| | - Nóra Felföldi
- Chemistry
Department, Gedeon Richter Plc., Gyömrői út
19-21, Budapest, 1103 Hungary
| | - Ildikó Magdó
- Spectroscopic
Research Department, Gedeon Richter Plc., Gyömrői út
19-21, Budapest, 1103 Hungary
| | - Amrita Ágnes Bobok
- Pharmacological
and Drug Safety Research, Gedeon Richter
Plc., Gyömrői
út 19-21, Budapest, 1103 Hungary
| | - Imre Bata
- Chemistry
Department, Gedeon Richter Plc., Gyömrői út
19-21, Budapest, 1103 Hungary
| | - Viktor Román
- Pharmacological
and Drug Safety Research, Gedeon Richter
Plc., Gyömrői
út 19-21, Budapest, 1103 Hungary
| | - András Visegrády
- Pharmacological
and Drug Safety Research, Gedeon Richter
Plc., Gyömrői
út 19-21, Budapest, 1103 Hungary
| | - György
M. Keserű
- Medicinal
Chemistry Research Group, Research Centre
for Natural Sciences, Magyar tudósok krt. 2, Budapest, 1117 Hungary
| | - István Greiner
- Research
and Development Director, Gedeon Richter
Plc., Gyömrői
út 19-21, Budapest, 1103 Hungary
| | - János Éles
- Head
of Medicinal Chemistry, Gedeon Richter Plc., Gyömrői út
19-21, Budapest, 1103 Hungary
| |
Collapse
|
2
|
Abstract
Gamma-aminobutyric acid (GABA), the main inhibitory neurotransmitter in the brain, acts at the ionotropic GABAA and GABAC receptors, and the metabotropic GABAB receptor. This chapter summarizes the studies that have investigated the role of the GABAB receptor in stress-related psychiatric disorders including anxiety and mood disorders. Overall, clinical and preclinical evidences strongly suggest that the GABAB receptor is a therapeutic candidate for depression and anxiety disorders. However, the clinical development of GABAB receptor-based drugs to treat these disorders has been hampered by their potential side-effects, particularly those of agonists. Nevertheless, the discovery of novel GABAB receptor allosteric modulators, and increasing understanding of the influence of specific intracellular GABAB receptor-associated proteins on GABAB receptor activity, may now pave the way towards GABAB receptor therapeutics in the treatment of mood and anxiety disorders.
Collapse
Affiliation(s)
- Daniela Felice
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - John F Cryan
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland.
- APC Microbiome Ireland, University College Cork, Cork, Ireland.
| | - Olivia F O'Leary
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland.
- APC Microbiome Ireland, University College Cork, Cork, Ireland.
| |
Collapse
|
3
|
GABA B Receptor Chemistry and Pharmacology: Agonists, Antagonists, and Allosteric Modulators. Curr Top Behav Neurosci 2021; 52:81-118. [PMID: 34036555 DOI: 10.1007/7854_2021_232] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The GABAB receptors are metabotropic G protein-coupled receptors (GPCRs) that mediate the actions of the primary inhibitory neurotransmitter, γ-aminobutyric acid (GABA). In the CNS, GABA plays an important role in behavior, learning and memory, cognition, and stress. GABA is also located throughout the gastrointestinal (GI) tract and is involved in the autonomic control of the intestine and esophageal reflex. Consequently, dysregulated GABAB receptor signaling is associated with neurological, mental health, and gastrointestinal disorders; hence, these receptors have been identified as key therapeutic targets and are the focus of multiple drug discovery efforts for indications such as muscle spasticity disorders, schizophrenia, pain, addiction, and gastroesophageal reflex disease (GERD). Numerous agonists, antagonists, and allosteric modulators of the GABAB receptor have been described; however, Lioresal® (Baclofen; β-(4-chlorophenyl)-γ-aminobutyric acid) is the only FDA-approved drug that selectively targets GABAB receptors in clinical use; undesirable side effects, such as sedation, muscle weakness, fatigue, cognitive deficits, seizures, tolerance and potential for abuse, limit their therapeutic use. Here, we review GABAB receptor chemistry and pharmacology, presenting orthosteric agonists, antagonists, and positive and negative allosteric modulators, and highlight the therapeutic potential of targeting GABAB receptor modulation for the treatment of various CNS and peripheral disorders.
Collapse
|
4
|
Porcu A, Mostallino R, Serra V, Melis M, Sogos V, Beggiato S, Ferraro L, Manetti F, Gianibbi B, Bettler B, Corelli F, Mugnaini C, Castelli MP. COR758, a negative allosteric modulator of GABA B receptors. Neuropharmacology 2021; 189:108537. [PMID: 33798546 DOI: 10.1016/j.neuropharm.2021.108537] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 03/20/2021] [Accepted: 03/22/2021] [Indexed: 10/21/2022]
Abstract
Allosteric modulators of G protein coupled receptors (GPCRs), including GABABRs (GABABRs), are promising therapeutic candidates. While several positive allosteric modulators (PAM) of GABABRs have been characterized, only recently the first negative allosteric modulator (NAM) has been described. In the present study, we report the characterization of COR758, which acts as GABABR NAM in rat cortical membranes and CHO cells stably expressing GABABRs (CHO-GABAB). COR758 failed to displace the antagonist [3H]CGP54626 from the orthosteric binding site of GABABRs showing that it acts through an allosteric binding site. Docking studies revealed a possible new allosteric binding site for COR758 in the intrahelical pocket of the GABAB1 monomer. COR758 inhibited basal and GABABR-stimulated O-(3-[35Sthio)-triphosphate ([35S]GTPγS) binding in brain membranes and blocked the enhancement of GABABR-stimulated [35S]GTPγS binding by the PAM GS39783. Bioluminescent resonance energy transfer (BRET) measurements in CHO-GABAB cells showed that COR758 inhibited G protein activation by GABA and altered GABABR subunit rearrangements. Additionally, the compound altered GABABR-mediated signaling such as baclofen-induced inhibition of cAMP production in transfected HEK293 cells, agonist-induced Ca2+ mobilization as well as baclofen and the ago-PAM CGP7930 induced phosphorylation of extracellular signal-regulated kinases (ERK1/2) in CHO-GABAB cells. COR758 also prevented baclofen-induced outward currents recorded from rat dopamine neurons, substantiating its property as a NAM for GABABRs. Altogether, these data indicate that COR758 inhibits G protein signaling by GABABRs, likely by interacting with an allosteric binding-site. Therefore, COR758 might serve as a scaffold to develop additional NAMs for therapeutic intervention.
Collapse
Affiliation(s)
- Alessandra Porcu
- Department of Biomedical Sciences, University of Cagliari, 09042, Monserrato, Italy; Department of Biomedicine, University of Basel, Klingelbergstrasse 50-70, CH-4056, Basel, Switzerland
| | - Rafaela Mostallino
- Department of Biomedical Sciences, University of Cagliari, 09042, Monserrato, Italy
| | - Valeria Serra
- Department of Biomedical Sciences, University of Cagliari, 09042, Monserrato, Italy
| | - Miriam Melis
- Department of Biomedical Sciences, University of Cagliari, 09042, Monserrato, Italy
| | - Valeria Sogos
- Department of Biomedical Sciences, University of Cagliari, 09042, Monserrato, Italy
| | - Sarah Beggiato
- Department of Life Sciences and Biotechnology, Section of Medicinal and Health Products, and LTTA Center, University of Ferrara, Ferrara, Italy; Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, 66100, Chieti, Italy
| | - Luca Ferraro
- Department of Life Sciences and Biotechnology, Section of Medicinal and Health Products, and LTTA Center, University of Ferrara, Ferrara, Italy
| | - Fabrizio Manetti
- Department of Biotechnology, Chemistry, and Pharmacy, University of Siena, I-53100, Siena, SI, Italy
| | - Beatrice Gianibbi
- Department of Biotechnology, Chemistry, and Pharmacy, University of Siena, I-53100, Siena, SI, Italy
| | - Bernhard Bettler
- Department of Biomedicine, University of Basel, Klingelbergstrasse 50-70, CH-4056, Basel, Switzerland
| | - Federico Corelli
- Department of Biotechnology, Chemistry, and Pharmacy, University of Siena, I-53100, Siena, SI, Italy
| | - Claudia Mugnaini
- Department of Biotechnology, Chemistry, and Pharmacy, University of Siena, I-53100, Siena, SI, Italy
| | - M Paola Castelli
- Department of Biomedical Sciences, University of Cagliari, 09042, Monserrato, Italy; Guy Everett Laboratory, University of Cagliari, 09042, Monserrato, Italy; Center of Excellence "Neurobiology of Addiction", University of Cagliari, 09042, Monserrato, Italy.
| |
Collapse
|
5
|
Ferlenghi F, Maccioni P, Mugnaini C, Brizzi A, Fara F, Mostallino R, Castelli MP, Colombo G, Mor M, Vacondio F, Corelli F. The GABAB receptor positive allosteric modulator COR659: In vitro metabolism, in vivo pharmacokinetics in rats, synthesis and pharmacological characterization of metabolically protected derivatives. Eur J Pharm Sci 2020; 155:105544. [DOI: 10.1016/j.ejps.2020.105544] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 08/05/2020] [Accepted: 08/31/2020] [Indexed: 01/19/2023]
|
6
|
Mugnaini C, Brizzi A, Mostallino R, Castelli MP, Corelli F. Structure optimization of positive allosteric modulators of GABA B receptors led to the unexpected discovery of antagonists/potential negative allosteric modulators. Bioorg Med Chem Lett 2020; 30:127443. [PMID: 32730942 DOI: 10.1016/j.bmcl.2020.127443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/21/2020] [Accepted: 07/23/2020] [Indexed: 11/25/2022]
Abstract
Positive allosteric modulators (PAMs) of GABAB receptor represent an interesting alternative to receptor agonists such as baclofen, as they act on the receptor in a more physiological way and thus are devoid of the side effects typically exerted by the agonists. Based on our interest in the identification of new GABAB receptor PAMs, we followed a merging approach to design new chemotypes starting from selected active compounds, such as GS39783, rac-BHFF, and BHF177, and we ended up with the synthesis of four different classes of compounds. The new compounds were tested alone or in the presence of 10 µM GABA using [35S]GTPγS binding assay to assess their functionality at the receptor. Unexpectedly, a number of them significantly inhibited GABA-stimulated GTPγS binding thus revealing a functional switch with respect to the prototype molecules. Further studies on selected compounds will clarify if they act as negative modulators of the receptor or, instead, as antagonists at the orthosteric binding site.
Collapse
Affiliation(s)
- Claudia Mugnaini
- Department of Biotechnology, Chemistry, and Pharmacy, University of Siena, I-53100 Siena, SI, Italy.
| | - Antonella Brizzi
- Department of Biotechnology, Chemistry, and Pharmacy, University of Siena, I-53100 Siena, SI, Italy
| | - Rafaela Mostallino
- Department of Biomedical Sciences, University of Cagliari, 09042 Monserrato, Italy
| | - Maria Paola Castelli
- Department of Biomedical Sciences, University of Cagliari, 09042 Monserrato, Italy; Guy Everett Laboratory, University of Cagliari, 09042 Monserrato, Italy; Center of Excellence "Neurobiology of Addiction", University of Cagliari, 09042 Monserrato, Italy.
| | - Federico Corelli
- Department of Biotechnology, Chemistry, and Pharmacy, University of Siena, I-53100 Siena, SI, Italy
| |
Collapse
|
7
|
Maccioni P, Colombo G, Lorrai I, Fara F, Carai MA, Gessa GL, Brizzi A, Mugnaini C, Corelli F. Anti-addictive properties of COR659 - Additional pharmacological evidence and comparison with a series of novel analogues. Alcohol 2019; 75:55-66. [PMID: 30445248 DOI: 10.1016/j.alcohol.2018.05.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 05/12/2018] [Accepted: 05/14/2018] [Indexed: 01/01/2023]
Abstract
A recent study found that COR659 (methyl 2-[(4-chlorophenyl)carboxamido]-4-ethyl-5-methylthiophene-3-carboxylate) reduced operant alcohol and chocolate self-administration in rats; COR659 also suppressed cue-induced reinstatement of chocolate seeking in rats. COR659 apparently exerts its effects via a composite mechanism, including positive allosteric modulation of the GABAB receptor and an action at the cannabinoid CB1 receptor. The present study investigated whether the reducing effect of COR659 on alcohol and chocolate self-administration was maintained after repeated treatment and if COR659 affected cue-induced reinstatement of alcohol seeking; additionally, it evaluated the ability of 9 structural analogues of COR659 - designed modifying the substituents on the phenylcarboxamido moiety and replacing the thiophene with the pyridine ring - to affect alcohol and chocolate self-administration. Alcohol self-administration experiments employed Sardinian alcohol-preferring (sP) rats trained to lever-respond for alcohol (15% v/v). Chocolate self-administration experiments employed Wistar rats trained to lever-respond for a chocolate solution (5% w/v Nesquik®). In the reinstatement experiment, previously extinguished lever-responding for alcohol in sP rats was reinstated by the non-contingent presentation of an alcohol-associated complex of cues. All drugs were tested at the doses of 0, 2.5, 5, and 10 mg/kg (i.p.). 10-Day treatment with COR659 produced a dose-related reduction of both alcohol and chocolate self-administration, with limited loss of efficacy on continuing treatment. Acute COR659 suppressed reinstatement of alcohol seeking. Among the 9 tested analogues, only COR657 (methyl 2-(benzoylamino)-4-ethyl-5-methylthiophene-3-carboxylate) decreased alcohol self-administration similarly to COR659; all other compounds produced modest, or even no, effect on alcohol self-administration. COR659 excluded, no compound altered chocolate self-administration. These results confirm and extend the ability of COR659 to reduce several behaviors motivated by alcohol and palatable food in rats. Comparison of COR659 to its analogues provided disparate results that do not currently allow any conclusive structure-activity relationship to be hypothesized, as their diverse pharmacological profile apparently does not depend on physicochemical properties.
Collapse
|
8
|
Porcu A, Melis M, Turecek R, Ullrich C, Mocci I, Bettler B, Gessa GL, Castelli MP. Rimonabant, a potent CB1 cannabinoid receptor antagonist, is a Gα i/o protein inhibitor. Neuropharmacology 2018; 133:107-120. [PMID: 29407764 DOI: 10.1016/j.neuropharm.2018.01.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 01/10/2018] [Accepted: 01/18/2018] [Indexed: 12/25/2022]
Abstract
Rimonabant is a potent and selective cannabinoid CB1 receptor antagonist widely used in animal and clinical studies. Besides its antagonistic properties, numerous studies have shown that, at micromolar concentrations rimonabant behaves as an inverse agonist at CB1 receptors. The mechanism underpinning this activity is unclear. Here we show that micromolar concentrations of rimonabant inhibited Gαi/o-type G proteins, resulting in a receptor-independent block of G protein signaling. Accordingly, rimonabant decreased basal and agonist stimulated [35S]GTPγS binding to cortical membranes of CB1- and GABAB-receptor KO mice and Chinese Hamster Ovary (CHO) cell membranes stably transfected with GABAB or D2 dopamine receptors. The structural analog of rimonabant, AM251, decreased basal and baclofen-stimulated GTPγS binding to rat cortical and CHO cell membranes expressing GABAB receptors. Rimonabant prevented G protein-mediated GABAB and D2 dopamine receptor signaling to adenylyl cyclase in Human Embryonic Kidney 293 cells and to G protein-coupled inwardly rectifying K+ channels (GIRK) in midbrain dopamine neurons of CB1 KO mice. Rimonabant suppressed GIRK gating induced by GTPγS in CHO cells transfected with GIRK, consistent with a receptor-independent action. Bioluminescent resonance energy transfer (BRET) measurements in living CHO cells showed that, in presence or absence of co-expressed GABAB receptors, rimonabant stabilized the heterotrimeric Gαi/o-protein complex and prevented conformational rearrangements induced by GABAB receptor activation. Rimonabant failed to inhibit Gαs-mediated signaling, supporting its specificity for Gαi/o-type G proteins. The inhibition of Gαi/o protein provides a new site of rimonabant action that may help to understand its pharmacological and toxicological effects occurring at high concentrations.
Collapse
Affiliation(s)
- Alessandra Porcu
- Department of Biomedical Sciences, University of Cagliari, 09042, Monserrato, Italy; Department of Biomedicine, University of Basel, Klingelbergstrasse 50-70, CH-4056, Basel, Switzerland
| | - Miriam Melis
- Department of Biomedical Sciences, University of Cagliari, 09042, Monserrato, Italy
| | - Rostislav Turecek
- Department of Biomedicine, University of Basel, Klingelbergstrasse 50-70, CH-4056, Basel, Switzerland
| | - Celine Ullrich
- Department of Biomedicine, University of Basel, Klingelbergstrasse 50-70, CH-4056, Basel, Switzerland
| | - Ignazia Mocci
- Institute of Translational Pharmacology, National Research Council of Italy (CNR) U.O.S. of Cagliari, 09010, Pula, Italy
| | - Bernhard Bettler
- Department of Biomedicine, University of Basel, Klingelbergstrasse 50-70, CH-4056, Basel, Switzerland
| | - Gian Luigi Gessa
- Department of Biomedical Sciences, University of Cagliari, 09042, Monserrato, Italy; Guy Everett Laboratory, University of Cagliari, 09042, Monserrato, Italy; Neuroscience Institute, National Research Council of Italy (CNR), Cagliari, Italy; Center of Excellence "Neurobiology of Addiction", University of Cagliari, 09042, Monserrato, Italy
| | - M Paola Castelli
- Department of Biomedical Sciences, University of Cagliari, 09042, Monserrato, Italy; Center of Excellence "Neurobiology of Addiction", University of Cagliari, 09042, Monserrato, Italy.
| |
Collapse
|
9
|
Mugnaini C, Rabbito A, Brizzi A, Palombi N, Petrosino S, Verde R, Di Marzo V, Ligresti A, Corelli F. Synthesis of novel 2-(1-adamantanylcarboxamido)thiophene derivatives. Selective cannabinoid type 2 (CB2) receptor agonists as potential agents for the treatment of skin inflammatory disease. Eur J Med Chem 2018; 161:239-251. [PMID: 30359820 DOI: 10.1016/j.ejmech.2018.09.070] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 09/24/2018] [Accepted: 09/28/2018] [Indexed: 01/13/2023]
Abstract
A set of CB2R ligands, based on the thiophene scaffold, was synthesized and evaluated in in vitro assays. Compounds 8c-i, k, l, bearing the 3-carboxylate and 2-(adamantan-1-yl)carboxamido groups together with apolar alkyl/aryl substituents at 5-position or at 4- and 5-positions of the thiophene ring possess high CB2R affinity at low nanomolar concentration, good receptor selectivity, and agonistic functional activity. The full agonist 8g, showing the best balance between receptor affinity and selectivity, was tested in vitro in an experimental model of allergic contact dermatitis and proved to be able to block the release of MCP-2 in HaCaT cells at 10 μM concentration.
Collapse
Affiliation(s)
- Claudia Mugnaini
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, Via Aldo Moro 2, 53100, Siena, Italy.
| | - Alessandro Rabbito
- Endocannabinoid Research Group, Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Via dei Campi Flegrei 34, 80078, Pozzuoli (Napoli), Italy
| | - Antonella Brizzi
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, Via Aldo Moro 2, 53100, Siena, Italy
| | - Nastasja Palombi
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, Via Aldo Moro 2, 53100, Siena, Italy
| | - Stefania Petrosino
- Endocannabinoid Research Group, Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Via dei Campi Flegrei 34, 80078, Pozzuoli (Napoli), Italy
| | - Roberta Verde
- Endocannabinoid Research Group, Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Via dei Campi Flegrei 34, 80078, Pozzuoli (Napoli), Italy
| | - Vincenzo Di Marzo
- Endocannabinoid Research Group, Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Via dei Campi Flegrei 34, 80078, Pozzuoli (Napoli), Italy
| | - Alessia Ligresti
- Endocannabinoid Research Group, Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Via dei Campi Flegrei 34, 80078, Pozzuoli (Napoli), Italy.
| | - Federico Corelli
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, Via Aldo Moro 2, 53100, Siena, Italy
| |
Collapse
|
10
|
2-Aminothiophene scaffolds: Diverse biological and pharmacological attributes in medicinal chemistry. Eur J Med Chem 2017; 140:465-493. [PMID: 28987607 DOI: 10.1016/j.ejmech.2017.09.039] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 09/02/2017] [Accepted: 09/19/2017] [Indexed: 12/30/2022]
Abstract
2-Aminothiophenes are important five-membered heterocyclic building blocks in organic synthesis, and the chemistry of these small molecules is still developing based on the discovery of cyclization by Gewald. Another attractive feature of 2-aminothiophene scaffolds is their ability to act as synthons for the synthesis of biological active thiophene-containing heterocycles, conjugates and hybrids. Currently, the biological actions of 2-aminothiophenes or their 2-N-substituted analogues are still being investigated because of their various mechanisms of action (e.g., pharmacophore and pharmacokinetic properties). Likewise, the 2-aminothiophene family is used as diverse promising selective inhibitors, receptors, and modulators in medicinal chemistry, and these compounds even exhibit effective pharmacological properties in the various clinical phases of appropriate diseases. In this review, major biological and pharmacological reports on 2-aminothiophenes and related compounds have been highlighted; most perspective drug-candidate hits were selected for discussion and described, along with additional synthetic pathways. In addition, we focused on the literature dedicated to 2-aminothiophenes and 2-N-substituted derivatives, which have been published from 2010 to 2017.
Collapse
|
11
|
Maccioni P, Colombo G, Lorrai I, Zaru A, Carai MAM, Gessa GL, Brizzi A, Mugnaini C, Corelli F. Suppressing effect of COR659 on alcohol, sucrose, and chocolate self-administration in rats: involvement of the GABA B and cannabinoid CB 1 receptors. Psychopharmacology (Berl) 2017; 234:2525-2543. [PMID: 28536867 DOI: 10.1007/s00213-017-4644-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 05/09/2017] [Indexed: 12/11/2022]
Abstract
RATIONALE AND OBJECTIVES COR659 [methyl2-(4-chlorophenylcarboxamido)-4-ethyl-5-methylthiophene-3-carboxylate] is a new, positive allosteric modulator (PAM) of the GABAB receptor. This study evaluated whether COR659 shared with previously tested GABAB PAMs the capacity to reduce alcohol self-administration in rats. RESULTS Treatment with non-sedative doses of COR659 (2.5, 5, and 10 mg/kg; i.p.) suppressed lever-responding for alcohol (15% v/v) in Sardinian alcohol-preferring (sP) rats under the fixed ratio (FR) 4 (FR4) and progressive ratio (PR) schedules of reinforcement; COR659 was more potent and effective than the reference GABAB PAM, GS39783. Treatment with COR659, but not GS39783, suppressed (a) lever-responding for a sucrose solution (1-3% w/v) in sP rats under the FR4 and PR schedules, (b) lever-responding for a chocolate solution [5% (w/v) Nesquik®] in Wistar rats under the FR10 and PR schedules, and (c) cue-induced reinstatement of chocolate seeking in Wistar rats. Treatment with COR659 was completely ineffective on lever-responding (FR10) for regular food pellets in food-deprived Wistar rats. Pretreatment with the GABAB receptor antagonist, SCH50911, partially blocked COR659-induced reduction of alcohol self-administration, being ineffective on reduction of chocolate self-administration. Pretreatment with the cannabinoid CB1 receptor antagonist, AM4113, fully blocked COR659-induced reduction of chocolate self-administration, being ineffective on reduction of alcohol self-administration. CONCLUSIONS COR659 might exert its behavioral effects via a composite mechanism: (i) positive allosteric modulation of the GABAB receptor, responsible for a large proportion of reduction of alcohol self-administration; (ii) an action at other receptor system(s), including the cannabinoid CB1 receptor, through which COR659 affects seeking and consumption of highly palatable foods.
Collapse
Affiliation(s)
- Paola Maccioni
- Neuroscience Institute, Section of Cagliari, National Research Council of Italy, 09042, Monserrato (CA), Italy
| | - Giancarlo Colombo
- Neuroscience Institute, Section of Cagliari, National Research Council of Italy, 09042, Monserrato (CA), Italy.
| | - Irene Lorrai
- Neuroscience Institute, Section of Cagliari, National Research Council of Italy, 09042, Monserrato (CA), Italy
| | - Alessandro Zaru
- Neuroscience Institute, Section of Cagliari, National Research Council of Italy, 09042, Monserrato (CA), Italy.,Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, 09042, Monserrato (CA), Italy
| | - Mauro A M Carai
- Cagliari Pharmacological Research, 09127, Cagliari (CA), Italy
| | - Gian Luigi Gessa
- Neuroscience Institute, Section of Cagliari, National Research Council of Italy, 09042, Monserrato (CA), Italy.,Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, 09042, Monserrato (CA), Italy
| | - Antonella Brizzi
- Department of Biotechnology, Chemistry, and Pharmacy, University of Siena, 53100, Siena (SI), Italy
| | - Claudia Mugnaini
- Department of Biotechnology, Chemistry, and Pharmacy, University of Siena, 53100, Siena (SI), Italy
| | - Federico Corelli
- Department of Biotechnology, Chemistry, and Pharmacy, University of Siena, 53100, Siena (SI), Italy
| |
Collapse
|
12
|
Ismaili L, Refouvelet B, Benchekroun M, Brogi S, Brindisi M, Gemma S, Campiani G, Filipic S, Agbaba D, Esteban G, Unzeta M, Nikolic K, Butini S, Marco-Contelles J. Multitarget compounds bearing tacrine- and donepezil-like structural and functional motifs for the potential treatment of Alzheimer's disease. Prog Neurobiol 2017; 151:4-34. [DOI: 10.1016/j.pneurobio.2015.12.003] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 11/11/2015] [Accepted: 12/11/2015] [Indexed: 01/16/2023]
|
13
|
Freyd T, Warszycki D, Mordalski S, Bojarski AJ, Sylte I, Gabrielsen M. Ligand-guided homology modelling of the GABAB2 subunit of the GABAB receptor. PLoS One 2017; 12:e0173889. [PMID: 28323850 PMCID: PMC5360267 DOI: 10.1371/journal.pone.0173889] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 02/28/2017] [Indexed: 11/18/2022] Open
Abstract
γ-aminobutyric acid (GABA) is the main inhibitory neurotransmitter in the central nervous system, and disturbances in the GABAergic system have been implicated in numerous neurological and neuropsychiatric diseases. The GABAB receptor is a heterodimeric class C G protein-coupled receptor (GPCR) consisting of GABAB1a/b and GABAB2 subunits. Two GABAB receptor ligand binding sites have been described, namely the orthosteric GABA binding site located in the extracellular GABAB1 Venus fly trap domain and the allosteric binding site found in the GABAB2 transmembrane domain. To date, the only experimentally solved three-dimensional structures of the GABAB receptor are of the Venus fly trap domain. GABAB receptor allosteric modulators, however, show great therapeutic potential, and elucidating the structure of the GABAB2 transmembrane domain may lead to development of novel drugs and increased understanding of the allosteric mechanism of action. Despite the lack of x-ray crystal structures of the GABAB2 transmembrane domain, multiple crystal structures belonging to other classes of GPCRs than class A have been released within the last years. More closely related template structures are now available for homology modelling of the GABAB receptor. Here, multiple homology models of the GABAB2 subunit of the GABAB receptor have been constructed using templates from class A, B and C GPCRs, and docking of five clusters of positive allosteric modulators and decoys has been undertaken to select models that enrich the active compounds. Using this ligand-guided approach, eight GABAB2 homology models have been chosen as possible structural representatives of the transmembrane domain of the GABAB2 subunit. To the best of our knowledge, the present study is the first to describe homology modelling of the transmembrane domain of the GABAB2 subunit and the docking of positive allosteric modulators in the receptor.
Collapse
Affiliation(s)
- Thibaud Freyd
- Department of Medical Biology, Faculty of Health Sciences, UiT - the Arctic University of Norway, Tromsø, Norway
| | - Dawid Warszycki
- Department of Medicinal Chemistry, Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Stefan Mordalski
- Department of Medicinal Chemistry, Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Andrzej J. Bojarski
- Department of Medicinal Chemistry, Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Ingebrigt Sylte
- Department of Medical Biology, Faculty of Health Sciences, UiT - the Arctic University of Norway, Tromsø, Norway
- * E-mail:
| | - Mari Gabrielsen
- Department of Medical Biology, Faculty of Health Sciences, UiT - the Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
14
|
Chemi G, Gemma S, Campiani G, Brogi S, Butini S, Brindisi M. Computational Tool for Fast in silico Evaluation of hERG K + Channel Affinity. Front Chem 2017; 5:7. [PMID: 28503546 PMCID: PMC5408157 DOI: 10.3389/fchem.2017.00007] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Accepted: 02/09/2017] [Indexed: 12/12/2022] Open
Abstract
The development of a novel comprehensive approach for the prediction of hERG activity is herein presented. Software Phase has been used to derive a 3D-QSAR model, employing as alignment rule a common pharmacophore built on a subset of 22 highly active compounds (threshold Ki: 50 nM) against hERG K+ channel. Five features comprised the pharmacophore: two aromatic rings (R1 and R2), one hydrogen-bond acceptor (A), one hydrophobic site (H), and one positive ionizable function (P). The sequential 3D-QSAR model developed with a set of 421 compounds (randomly divided in training and test set) yielded a test set (Q2) = 0.802 and proved to be predictive with respect to an external test set of 309 compounds that were not used to generate the model (rext_ts2 = 0.860). Furthermore, the model was submitted to an in silico validation for assessing the reliability of the approach, by applying a decoys set, evaluating the Güner and Henry score (GH) and the Enrichment Factor (EF), and by using the ROC curve analysis. The outcome demonstrated the high predictive power of the inclusive 3D-QSAR model developed for the hERG K+ channel blockers, confirming the fundamental validity of the chosen approach for obtaining a fast proprietary cardiotoxicity predictive tool to be employed for rationally designing compounds with reduced hERG K+ channel activity at the early steps of the drug discovery trajectory.
Collapse
Affiliation(s)
- Giulia Chemi
- European Research Centre for Drug Discovery (NatSynDrugs), University of SienaSiena, Italy.,Department of Biotechnology, Chemistry and Pharmacy, University of SienaSiena, Italy
| | - Sandra Gemma
- European Research Centre for Drug Discovery (NatSynDrugs), University of SienaSiena, Italy.,Department of Biotechnology, Chemistry and Pharmacy, University of SienaSiena, Italy
| | - Giuseppe Campiani
- European Research Centre for Drug Discovery (NatSynDrugs), University of SienaSiena, Italy.,Department of Biotechnology, Chemistry and Pharmacy, University of SienaSiena, Italy
| | - Simone Brogi
- European Research Centre for Drug Discovery (NatSynDrugs), University of SienaSiena, Italy.,Department of Biotechnology, Chemistry and Pharmacy, University of SienaSiena, Italy
| | - Stefania Butini
- European Research Centre for Drug Discovery (NatSynDrugs), University of SienaSiena, Italy.,Department of Biotechnology, Chemistry and Pharmacy, University of SienaSiena, Italy
| | - Margherita Brindisi
- European Research Centre for Drug Discovery (NatSynDrugs), University of SienaSiena, Italy.,Department of Biotechnology, Chemistry and Pharmacy, University of SienaSiena, Italy
| |
Collapse
|
15
|
Identification of novel fluorescent probes preventing PrP Sc replication in prion diseases. Eur J Med Chem 2017; 127:859-873. [DOI: 10.1016/j.ejmech.2016.10.064] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 10/12/2016] [Accepted: 10/31/2016] [Indexed: 12/11/2022]
|
16
|
Su Z, Qian S, Xue S, Wang C. DBU-mediated [4 + 1] annulations of donor–acceptor cyclopropanes with carbon disulfide or thiourea for synthesis of 2-aminothiophene-3-carboxylates. Org Biomol Chem 2017; 15:7878-7886. [DOI: 10.1039/c7ob01886j] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Fully substituted 2-aminothiophene-3-carboxylate derivatives were synthesized effectivelyviathe DBU-mediated [4 + 1] annulations of donor–acceptor cyclopropanes with carbon disulfide or thiourea.
Collapse
Affiliation(s)
- Zhenjie Su
- School of Chemistry and Chemical Engineering
- Yangzhou University
- Yangzhou 225002
- P. R. China
| | - Siran Qian
- School of Chemistry and Chemical Engineering
- Yangzhou University
- Yangzhou 225002
- P. R. China
| | - Shuwen Xue
- School of Chemistry and Chemical Engineering
- Yangzhou University
- Yangzhou 225002
- P. R. China
| | - Cunde Wang
- School of Chemistry and Chemical Engineering
- Yangzhou University
- Yangzhou 225002
- P. R. China
| |
Collapse
|
17
|
Porcu A, Lobina C, Giunta D, Solinas M, Mugnaini C, Castelli MP. In vitro and in vivo pharmacological characterization of SSD114, a novel GABAB positive allosteric modulator. Eur J Pharmacol 2016; 791:115-123. [PMID: 27578262 DOI: 10.1016/j.ejphar.2016.08.032] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 08/25/2016] [Accepted: 08/26/2016] [Indexed: 12/18/2022]
Abstract
Positive allosteric modulators (PAMs) of the GABAB receptor have emerged as a novel approach to the pharmacological manipulation of the GABAB receptor, enhancing the effects of receptor agonists with few side effects. Here, we identified N-cyclohexyl-4-methoxy-6-(4-(trifluoromethyl)phenyl)pyrimidin-2-amine (SSD114) as a new compound with activity as a GABAB PAM in in vitro and in vivo assays. SSD114 potentiated GABA-stimulated [35S]GTPγS binding to native GABAB receptors, whereas it had no effect when used alone. Its effect on GTPγS stimulation was suppressed when GABA-induced activation was blocked with CGP54626, a competitive antagonist of the GABAB receptor. SSD114 failed to potentiate WIN55,212,2-, morphine- and quinpirole-induced [35S]GTPγS binding to cortical and striatal membranes, respectively, indicating that it is a selective GABAB PAM. Increasing SSD114 fixed concentrations induced a leftward shift of the GABA concentration-response curve, enhancing the potency of GABA rather than its efficacy. SSD114 concentration-response curves in the presence of fixed concentrations of GABA (1, 10, and 20μM) revealed a potentiating effect on GABA-stimulated binding of [35S]GTPγS to rat cortical membranes, with EC50 values in the low micromolar range. Bioluminescence resonance energy transfer (BRET) experiments in Chinese Hamster Ovary (CHO)-cells expressing GABAB receptors showed that SSD114 potentiates the GABA inhibition of adenylyl-cyclase mediated by GABAB receptors. Our compound is also effective in vivo potentiating baclofen-induced sedation/hypnosis in mice, with no effect when tested alone. These findings indicate that SSD114, a molecule with a different chemical structure compared to known GABAB PAMs, is a novel GABAB PAM with potential usefulness in the GABAB-receptor research field.
Collapse
Affiliation(s)
- Alessandra Porcu
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy
| | - Carla Lobina
- Neuroscience Institute, National Research Council of Italy, Section of Cagliari, Cagliari, Italy
| | - Daniela Giunta
- Biomolecular Chemistry Institute, National Research Council of Italy, Section of Sassari, Sassari, Italy
| | - Maurizio Solinas
- Biomolecular Chemistry Institute, National Research Council of Italy, Section of Sassari, Sassari, Italy
| | - Claudia Mugnaini
- Department of Biotechnology Chemistry and Pharmacy, University of Siena, Siena, Italy
| | - M Paola Castelli
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy.
| |
Collapse
|
18
|
Brogi S, Giovani S, Brindisi M, Gemma S, Novellino E, Campiani G, Blackman MJ, Butini S. In silico study of subtilisin-like protease 1 (SUB1) from different Plasmodium species in complex with peptidyl-difluorostatones and characterization of potent pan-SUB1 inhibitors. J Mol Graph Model 2016; 64:121-130. [PMID: 26826801 PMCID: PMC5276822 DOI: 10.1016/j.jmgm.2016.01.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 12/04/2015] [Accepted: 01/16/2016] [Indexed: 11/23/2022]
Abstract
Homology models of four SUB1 orthologues from P. falciparum species were produced. We analyzed the binding mode of our previous difluorostatone inhibitors to six SUB1. In vitro activity of our difluorostatone-based inhibitors was correctly predicted. We derived a structure-based pan-SUB1 pharmacophore, and validated it in silico. We confirmed that development of pan-SUB1 inhibitors is a feasible task.
Plasmodium falciparum subtilisin-like protease 1 (SUB1) is a novel target for the development of innovative antimalarials. We recently described the first potent difluorostatone-based inhibitors of the enzyme ((4S)-(N-((N-acetyl-l-lysyl)-l-isoleucyl-l-threonyl-l-alanyl)-2,2-difluoro-3-oxo-4-aminopentanoyl)glycine (1) and (4S)-(N-((N-acetyl-l-isoleucyl)-l-threonyl-l-alanylamino)-2,2-difluoro-3-oxo-4-aminopentanoyl)glycine (2)). As a continuation of our efforts towards the definition of the molecular determinants of enzyme-inhibitor interaction, we herein propose the first comprehensive computational investigation of the SUB1 catalytic core from six different Plasmodium species, using homology modeling and molecular docking approaches. Investigation of the differences in the binding sites as well as the interactions of our inhibitors 1,2 with all SUB1 orthologues, allowed us to highlight the structurally relevant regions of the enzyme that could be targeted for developing pan-SUB1 inhibitors. According to our in silico predictions, compounds 1,2 have been demonstrated to be potent inhibitors of SUB1 from all three major clinically relevant Plasmodium species (P. falciparum, P. vivax, and P. knowlesi). We next derived multiple structure-based pharmacophore models that were combined in an inclusive pan-SUB1 pharmacophore (SUB1-PHA). This latter was validated by applying in silico methods, showing that it may be useful for the future development of potent antimalarial agents.
Collapse
Affiliation(s)
- Simone Brogi
- European Research Centre for Drug Discovery and Development (NatSynDrugs), University of Siena, via Aldo Moro 2, 53100, Siena, Italy; Dipartimento di Biotecnologie, Chimica e Farmacia, University of Siena, via Aldo Moro 2, 53100, Siena, Italy; Centro Interuniversitario di Ricerche sulla Malaria (CIRM), University of Perugia, Perugia, Italy
| | - Simone Giovani
- European Research Centre for Drug Discovery and Development (NatSynDrugs), University of Siena, via Aldo Moro 2, 53100, Siena, Italy; Dipartimento di Biotecnologie, Chimica e Farmacia, University of Siena, via Aldo Moro 2, 53100, Siena, Italy; Centro Interuniversitario di Ricerche sulla Malaria (CIRM), University of Perugia, Perugia, Italy
| | - Margherita Brindisi
- European Research Centre for Drug Discovery and Development (NatSynDrugs), University of Siena, via Aldo Moro 2, 53100, Siena, Italy; Dipartimento di Biotecnologie, Chimica e Farmacia, University of Siena, via Aldo Moro 2, 53100, Siena, Italy; Centro Interuniversitario di Ricerche sulla Malaria (CIRM), University of Perugia, Perugia, Italy
| | - Sandra Gemma
- European Research Centre for Drug Discovery and Development (NatSynDrugs), University of Siena, via Aldo Moro 2, 53100, Siena, Italy; Dipartimento di Biotecnologie, Chimica e Farmacia, University of Siena, via Aldo Moro 2, 53100, Siena, Italy; Centro Interuniversitario di Ricerche sulla Malaria (CIRM), University of Perugia, Perugia, Italy.
| | - Ettore Novellino
- European Research Centre for Drug Discovery and Development (NatSynDrugs), University of Siena, via Aldo Moro 2, 53100, Siena, Italy; Dipartimento di Farmacia, University of Naples Federico II, Via D. Montesano 49, 80131, Naples, Italy
| | - Giuseppe Campiani
- European Research Centre for Drug Discovery and Development (NatSynDrugs), University of Siena, via Aldo Moro 2, 53100, Siena, Italy; Dipartimento di Biotecnologie, Chimica e Farmacia, University of Siena, via Aldo Moro 2, 53100, Siena, Italy; Centro Interuniversitario di Ricerche sulla Malaria (CIRM), University of Perugia, Perugia, Italy.
| | - Michael J Blackman
- Division of Parasitology, MRC National Institute for Medical Research, Mill Hill, London NW7 1AA, UK
| | - Stefania Butini
- European Research Centre for Drug Discovery and Development (NatSynDrugs), University of Siena, via Aldo Moro 2, 53100, Siena, Italy; Dipartimento di Biotecnologie, Chimica e Farmacia, University of Siena, via Aldo Moro 2, 53100, Siena, Italy; Centro Interuniversitario di Ricerche sulla Malaria (CIRM), University of Perugia, Perugia, Italy
| |
Collapse
|
19
|
Copper-mediated N-Arylation of Methyl 2-Aminothiophene-3-carboxylate with Organoboron Reagents. Tetrahedron Lett 2015; 56:6839-6842. [PMID: 26576065 DOI: 10.1016/j.tetlet.2015.10.080] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
A practical protocol for the synthesis of N-arylated methyl 2-aminothiophene-3-carboxylate has been developed via Chan-Lam cross-coupling. The desired products were synthesized by cross-coupling of methyl 2-aminothiophene-3-carboxylate with both arylboronic acids and potassium aryltrifluoroborate salts in moderate to good yields. A broad range of functional groups was well tolerated.
Collapse
|
20
|
Brown JW, Moeller A, Schmidt M, Turner SC, Nimmrich V, Ma J, Rueter LE, van der Kam E, Zhang M. Anticonvulsant effects of structurally diverse GABA(B) positive allosteric modulators in the DBA/2J audiogenic seizure test: Comparison to baclofen and utility as a pharmacodynamic screening model. Neuropharmacology 2015; 101:358-69. [PMID: 26471422 DOI: 10.1016/j.neuropharm.2015.10.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 07/31/2015] [Accepted: 10/04/2015] [Indexed: 02/02/2023]
Abstract
The GABA(B) receptor has been indicated as a promising target for multiple CNS-related disorders. Baclofen, a prototypical orthosteric agonist, is used clinically for the treatment of spastic movement disorders, but is associated with unwanted side-effects, such as sedation and motor impairment. Positive allosteric modulators (PAM), which bind to a topographically-distinct site apart from the orthosteric binding pocket, may provide an improved side-effect profile while maintaining baclofen-like efficacy. GABA, the major inhibitory neurotransmitter in the CNS, plays an important role in the etiology and treatment of seizure disorders. Baclofen is known to produce anticonvulsant effects in the DBA/2J mouse audiogenic seizure test (AGS), suggesting it may be a suitable assay for assessing pharmacodynamic effects. Little is known about the effects of GABA(B) PAMs, however. The studies presented here sought to investigate the AGS test as a pharmacodynamic (PD) screening model for GABA(B) PAMs by comparing the profile of structurally diverse PAMs to baclofen. GS39783, rac-BHFF, CMPPE, A-1295120 (N-(3-(4-(4-chloro-3-fluorobenzyl)-6-methoxy-3,5-dioxo-4,5-dihydro-1,2,4-triazin-2(3H)-yl)phenyl)acetamide), and A-1474713 (N-(3-(4-(4-chlorobenzyl)-3,5-dioxo-4,5-dihydro-1,2,4-triazin-2(3H)-yl)phenyl)acetamide) all produced robust, dose-dependent anticonvulsant effects; a similar profile was observed with baclofen. Pre-treatment with the GABA(B) antagonist SCH50911 completely blocked the anticonvulsant effects of baclofen and CMPPE in the AGS test, indicating such effects are likely mediated by the GABA(B) receptor. In addition to the standard anticonvulsant endpoint of the AGS test, video tracking software was employed to assess potential drug-induced motor side-effects during the acclimation period of the test. This analysis was sensitive to detecting drug-induced changes in total distance traveled, which was used to establish a therapeutic index (TI = hypoactivity/anticonvulsant effects). Calculated TIs for A-1295120, CMPPE, rac-BHFF, GS39783, and A-1474713 were 5.31x, 5.00x, 4.74x, 3.41x, and 1.83x, respectively, whereas baclofen was <1. The results presented here suggest the DBA/2J mouse AGS test is a potentially useful screening model for detecting PD effects of GABA(B) PAMs and can provide an initial read-out on target-related motor side-effects. Furthermore, an improved TI was observed for PAMs compared to baclofen, indicating the PAM approach may be a viable therapeutic alternative to baclofen.
Collapse
Affiliation(s)
- Jordan W Brown
- Neuroscience Discovery, AbbVie, Inc., 1 North Waukegan Rd., North Chicago, IL 60064, United States.
| | - Achim Moeller
- Neuroscience Discovery, AbbVie Deutschland GmbH & Co KG, Knollstrasse, Ludwigshafen 67061, Germany
| | - Martin Schmidt
- Neuroscience Discovery, AbbVie Deutschland GmbH & Co KG, Knollstrasse, Ludwigshafen 67061, Germany
| | - Sean C Turner
- Neuroscience Discovery, AbbVie Deutschland GmbH & Co KG, Knollstrasse, Ludwigshafen 67061, Germany
| | - Volker Nimmrich
- Neuroscience Discovery, AbbVie Deutschland GmbH & Co KG, Knollstrasse, Ludwigshafen 67061, Germany
| | - Junli Ma
- Drug Metabolism and Pharmacokinetics, AbbVie, Inc., North Chicago, IL 60064, United States
| | - Lynne E Rueter
- Neuroscience Discovery, AbbVie, Inc., 1 North Waukegan Rd., North Chicago, IL 60064, United States
| | - Elizabeth van der Kam
- Neuroscience Discovery, AbbVie Deutschland GmbH & Co KG, Knollstrasse, Ludwigshafen 67061, Germany
| | - Min Zhang
- Neuroscience Discovery, AbbVie, Inc., 1 North Waukegan Rd., North Chicago, IL 60064, United States
| |
Collapse
|
21
|
Feng Z, Hu G, Ma S, Xie XQ. Computational Advances for the Development of Allosteric Modulators and Bitopic Ligands in G Protein-Coupled Receptors. AAPS JOURNAL 2015; 17:1080-95. [PMID: 25940084 DOI: 10.1208/s12248-015-9776-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 04/21/2015] [Indexed: 12/14/2022]
Abstract
Allosteric modulators of G protein-coupled receptors (GPCRs), which target at allosteric sites, have significant advantages against the corresponding orthosteric compounds including higher selectivity, improved chemical tractability or physicochemical properties, and reduced risk of receptor oversensitization. Bitopic ligands of GPCRs target both orthosteric and allosteric sites. Bitopic ligands can improve binding affinity, enhance subtype selectivity, stabilize receptors, and reduce side effects. Discovering allosteric modulators or bitopic ligands for GPCRs has become an emerging research area, in which the design of allosteric modulators is a key step in the detection of bitopic ligands. Radioligand binding and functional assays ([(35)S]GTPγS and ERK1/2 phosphorylation) are used to test the effects for potential modulators or bitopic ligands. High-throughput screening (HTS) in combination with disulfide trapping and fragment-based screening are used to aid the discovery of the allosteric modulators or bitopic ligands of GPCRs. When used alone, these methods are costly and can often result in too many potential drug targets, including false positives. Alternatively, low-cost and efficient computational approaches are useful in drug discovery of novel allosteric modulators and bitopic ligands to help refine the number of targets and reduce the false-positive rates. This review summarizes the state-of-the-art computational methods for the discovery of modulators and bitopic ligands. The challenges and opportunities for future drug discovery are also discussed.
Collapse
Affiliation(s)
- Zhiwei Feng
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, 3501 Terrace Street, 529 Salk Hall, Pittsburgh, Pennsylvania, 15261, USA
| | | | | | | |
Collapse
|
22
|
Inhibition of alcohol self-administration by positive allosteric modulators of the GABAB receptor in rats: lack of tolerance and potentiation of baclofen. Psychopharmacology (Berl) 2015; 232:1831-41. [PMID: 25420609 DOI: 10.1007/s00213-014-3815-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2014] [Accepted: 11/10/2014] [Indexed: 12/11/2022]
Abstract
RATIONALE Treatment with positive allosteric modulators (PAMs) of the GABAB receptor (GABAB PAMs) inhibits several alcohol-motivated behaviors in rodents, including operant, oral alcohol self-administration. OBJECTIVES The present study assessed the effects of (a) repeated administration of the GABAB PAMs, GS39783, and rac-BHFF and (b) a combination of an ineffective dose of either GS39783, or rac-BHFF, and an ineffective dose of the prototypic GABAB receptor agonist, baclofen, on operant, oral alcohol self-administration. METHODS Studies were conducted using selectively bred Sardinian alcohol-preferring (sP) rats exposed to a standard procedure of fixed ratio (FR) 4 (FR4) schedule of reinforcement for 15 % (v/v) alcohol. RESULTS Repeated treatment with GS39783 (50 mg/kg, i.g.) or rac-BHFF (50 mg/kg, i.g.) produced an initial 40 % reduction in number of lever responses for alcohol and amount of self-administered alcohol that was maintained unaltered throughout the 10-day period of the GS39783 treatment and increased throughout the 5-day period of the rac-BHFF treatment. Combination of per se ineffective doses of GS39783 (5 mg/kg, i.g.), or rac-BHFF (5 mg/kg, i.g.), and baclofen (1 mg/kg, i.p.) reduced, by 35-45 %, both number of lever responses for alcohol and amount of self-administered alcohol. CONCLUSIONS GS39783 and rac-BHFF (a) reduced alcohol reinforcing properties when given repeatedly, with no development of tolerance, and (b) potentiated baclofen effect. Both sets of data possess translational interest, as they suggest potential effectiveness of GABAB PAMs under chronic treatment and selective potentiation of baclofen effect.
Collapse
|
23
|
Brown KM, Roy KK, Hockerman GH, Doerksen RJ, Colby DA. Activation of the γ-Aminobutyric Acid Type B (GABA(B)) Receptor by Agonists and Positive Allosteric Modulators. J Med Chem 2015; 58:6336-47. [PMID: 25856547 DOI: 10.1021/jm5018913] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Since the discovery of the GABA(B) agonist and muscle relaxant baclofen, there have been substantial advancements in the development of compounds that activate the GABA(B) receptor as agonists or positive allosteric modulators. For the agonists, most of the existing structure-activity data apply to understanding the role of substituents on the backbone of GABA as well as replacing the carboxylic acid and amine groups. In the cases of the positive allosteric modulators, the allosteric binding site(s) and structure-activity relationships are less well-defined; however, multiple classes of molecules have been discovered. The recent report of the X-ray structure of the GABA(B) receptor with bound agonists and antagonists provides new insights for the development of compounds that bind the orthosteric site of this receptor. From a therapeutic perspective, these data have enabled efforts in drug discovery in areas of addiction-related behavior, the treatment of anxiety, and the control of muscle contractility.
Collapse
Affiliation(s)
- Katie M Brown
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University , West Lafayette, Indiana 47907, United States
| | - Kuldeep K Roy
- Department of Biomolecular Sciences, University of Mississippi , University, Mississippi 38677, United States
| | - Gregory H Hockerman
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University , West Lafayette, Indiana 47907, United States
| | - Robert J Doerksen
- Department of Biomolecular Sciences, University of Mississippi , University, Mississippi 38677, United States
| | - David A Colby
- Department of Biomolecular Sciences, University of Mississippi , University, Mississippi 38677, United States
| |
Collapse
|
24
|
Filip M, Frankowska M, Sadakierska-Chudy A, Suder A, Szumiec Ł, Mierzejewski P, Bienkowski P, Przegaliński E, Cryan JF. GABAB receptors as a therapeutic strategy in substance use disorders: Focus on positive allosteric modulators. Neuropharmacology 2015; 88:36-47. [DOI: 10.1016/j.neuropharm.2014.06.016] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 06/10/2014] [Accepted: 06/15/2014] [Indexed: 12/16/2022]
|
25
|
Brogi S, Tafi A, Désaubry L, Nebigil CG. Discovery of GPCR ligands for probing signal transduction pathways. Front Pharmacol 2014; 5:255. [PMID: 25506327 PMCID: PMC4246677 DOI: 10.3389/fphar.2014.00255] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 11/02/2014] [Indexed: 01/11/2023] Open
Abstract
G protein-coupled receptors (GPCRs) are seven integral transmembrane proteins that are the primary targets of almost 30% of approved drugs and continue to represent a major focus of pharmaceutical research. All of GPCR targeted medicines were discovered by classical medicinal chemistry approaches. After the first GPCR crystal structures were determined, the docking screens using these structures lead to discovery of more novel and potent ligands. There are over 360 pharmaceutically relevant GPCRs in the human genome and to date about only 30 of structures have been determined. For these reasons, computational techniques such as homology modeling and molecular dynamics simulations have proven their usefulness to explore the structure and function of GPCRs. Furthermore, structure-based drug design and in silico screening (High Throughput Docking) are still the most common computational procedures in GPCRs drug discovery. Moreover, ligand-based methods such as three-dimensional quantitative structure–selectivity relationships, are the ideal molecular modeling approaches to rationalize the activity of tested GPCR ligands and identify novel GPCR ligands. In this review, we discuss the most recent advances for the computational approaches to effectively guide selectivity and affinity of ligands. We also describe novel approaches in medicinal chemistry, such as the development of biased agonists, allosteric modulators, and bivalent ligands for class A GPCRs. Furthermore, we highlight some knockout mice models in discovering biased signaling selectivity.
Collapse
Affiliation(s)
- Simone Brogi
- European Research Centre for Drug Discovery and Development (NatSynDrugs), University of Siena Siena, Italy ; Department of Biotechnology, Chemistry and Pharmacy, University of Siena Siena, Italy
| | - Andrea Tafi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena Siena, Italy
| | - Laurent Désaubry
- Therapeutic Innovation Laboratory, UMR7200, CNRS/University of Strasbourg Illkirch, France
| | - Canan G Nebigil
- Receptor Signaling and Therapeutic Innovations, GPCR and Cardiovascular and Metabolic Regulations, Biotechnology and Cell Signaling Laboratory, UMR 7242, CNRS/University of Strasbourg - LabEx Medalis Illkirch, France
| |
Collapse
|
26
|
Chen LH, Sun B, Zhang Y, Xu TJ, Xia ZX, Liu JF, Nan FJ. Discovery of a Negative Allosteric Modulator of GABAB Receptors. ACS Med Chem Lett 2014; 5:742-7. [PMID: 25050158 PMCID: PMC4094264 DOI: 10.1021/ml500162z] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2013] [Accepted: 05/27/2014] [Indexed: 12/11/2022] Open
Abstract
Initialized from the scaffold of CGP7930, an allosteric agonist of GABAB receptors, a series of noncompetitive antagonists were discovered. Among these compounds, compounds 3, 6, and 14 decreased agonist GABA-induced maximal effect of IP3 production in HEK293 cells overexpressing GABAB receptors and Gqi9 proteins without changing the EC50. Compounds 3, 6, and 14 not only inhibited agonist baclofen-induced ERK1/2 phosphorylation but also blocked CGP7930-induced ERK1/2 phosphorylation in HEK293 cells overexpressing GABAB receptors. The results suggested that compounds 3, 6, and 14 are negative allosteric modulators of GABAB receptors. The representative compound 14 decreased GABA-induced IP3 production with IC50 of 37.9 μM and had no effect on other GPCR Class C members such as mGluR1, mGluR2, and mGluR5. Finally, we showed that compound 14 did not bind to the orthosteric binding sites of GABAB receptors, demonstrating that compound 14 negatively modulated GABAB receptors activity as a negative allosteric modulator.
Collapse
Affiliation(s)
- Lin-Hai Chen
- National
Center for Drug Screening, State Key Laboratory of Drug Research,
Shanghai Institute of Materia Medica, Chinese
Academy of Sciences, Shanghai, China
| | - Bing Sun
- Cellular
Signaling Laboratory, Key Laboratory of Molecular Biophysics of Ministry
of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yang Zhang
- Cellular
Signaling Laboratory, Key Laboratory of Molecular Biophysics of Ministry
of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Tong-Jie Xu
- Cellular
Signaling Laboratory, Key Laboratory of Molecular Biophysics of Ministry
of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhi-Xiong Xia
- Cellular
Signaling Laboratory, Key Laboratory of Molecular Biophysics of Ministry
of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jian-Feng Liu
- Cellular
Signaling Laboratory, Key Laboratory of Molecular Biophysics of Ministry
of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Fa-Jun Nan
- National
Center for Drug Screening, State Key Laboratory of Drug Research,
Shanghai Institute of Materia Medica, Chinese
Academy of Sciences, Shanghai, China
| |
Collapse
|
27
|
McCarson KE, Enna SJ. GABA pharmacology: the search for analgesics. Neurochem Res 2014; 39:1948-63. [PMID: 24532294 DOI: 10.1007/s11064-014-1254-x] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 01/28/2014] [Accepted: 01/31/2014] [Indexed: 12/28/2022]
Abstract
Decades of research have been devoted to defining the role of GABAergic transmission in nociceptive processing. Much of this work was performed using rigid, orthosteric GABA analogs created by Povl Krogsgaard-Larsen and his associates. A relationship between GABA and pain is suggested by the anatomical distribution of GABA receptors and the ability of some GABA agonists to alter nociceptive responsiveness. Outlined in this report are data supporting this proposition, with particular emphasis on the anatomical localization and function of GABA-containing neurons and the molecular and pharmacological properties of GABAA and GABAB receptor subtypes. Reference is made to changes in overall GABAergic tone, GABA receptor expression and activity as a function of the duration and intensity of a painful stimulus or exposure to GABAergic agents. Evidence is presented that the plasticity of this receptor system may be responsible for the variability in the antinociceptive effectiveness of compounds that influence GABA transmission. These findings demonstrate that at least some types of persistent pain are associated with a regionally selective decline in GABAergic tone, highlighting the need for agents that enhance GABA activity in the affected regions without compromising GABA function over the long-term. As subtype selective positive allosteric modulators may accomplish these goals, such compounds might represent a new class of analgesic drugs.
Collapse
Affiliation(s)
- Kenneth E McCarson
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Boulevard, Mail Stop 1018, Kansas City, KS, 66160, USA
| | | |
Collapse
|
28
|
Mugnaini C, Pedani V, Giunta D, Sechi B, Solinas M, Casti A, Castelli MP, Giorgi G, Corelli F. Synthesis, structural properties, and pharmacological evaluation of 2-(acylamino)thiophene-3-carboxamides and analogues thereof. RSC Adv 2014. [DOI: 10.1039/c3ra45546g] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
29
|
Brogi S, Papazafiri P, Roussis V, Tafi A. 3D-QSAR using pharmacophore-based alignment and virtual screening for discovery of novel MCF-7 cell line inhibitors. Eur J Med Chem 2013; 67:344-51. [DOI: 10.1016/j.ejmech.2013.06.048] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Revised: 05/10/2013] [Accepted: 06/19/2013] [Indexed: 02/06/2023]
|
30
|
Therapeutic potential of GABA(B) receptor ligands in drug addiction, anxiety, depression and other CNS disorders. Pharmacol Biochem Behav 2013; 110:174-84. [PMID: 23872369 DOI: 10.1016/j.pbb.2013.07.003] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Revised: 06/27/2013] [Accepted: 07/05/2013] [Indexed: 01/06/2023]
Abstract
Glutamate and γ-aminobutyric acid (GABA) are the major excitatory and inhibitory neurotransmitter systems, respectively in the central nervous system (CNS). Dysregulation, in any of these or both, has been implicated in various CNS disorders. GABA acts via ionotropic (GABA(A) and GABA(C) receptor) and metabotropic (GABA(B)) receptor. Dysregulation of GABAergic signaling and alteration in GABA(B) receptor expression has been implicated in various CNS disorders. Clinically, baclofen-a GABA(B) receptor agonist is available for the treatment of spasticity, dystonia etc., associated with various neurological disorders. Moreover, GABAB receptor ligands has also been suggested to be beneficial in various neuropsychiatric and neurodegenerative disorders. The present review is aimed to discuss the role of GABA(B) receptors and the possible outcomes of GABA(B) receptor modulation in CNS disorders.
Collapse
|
31
|
Mugnaini C, Pedani V, Casu A, Lobina C, Casti A, Maccioni P, Porcu A, Giunta D, Lamponi S, Solinas M, Dragoni S, Valoti M, Colombo G, Castelli MP, Gessa GL, Corelli F. Synthesis and pharmacological characterization of 2-(acylamino)thiophene derivatives as metabolically stable, orally effective, positive allosteric modulators of the GABAB receptor. J Med Chem 2013; 56:3620-35. [PMID: 23544432 DOI: 10.1021/jm400144w] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Two recently reported hit compounds, COR627 and COR628, underpinned the development of a series of 2-(acylamino)thiophene derivatives. Some of these compounds displayed significant activity in vitro as positive allosteric modulators of the GABAB receptor by potentiating GTPγS stimulation induced by GABA at 2.5 and 25 μM while failing to exhibit intrinsic agonist activity. Compounds were also found to be effective in vivo, potentiating baclofen-induced sedation/hypnosis in DBA mice when administered either intraperitoneally or intragastrically. Although displaying a lower potency in vitro than the reference compound GS39783, the new compounds 6, 10, and 11 exhibited a higher efficacy in vivo: combination of these compounds with a per se nonsedative dose of baclofen resulted in shorter onset and longer duration of the loss of righting reflex in mice. Test compounds showed cytotoxic effects at concentrations comparable to or higher than those of GS39783 or BHF177.
Collapse
Affiliation(s)
- Claudia Mugnaini
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, Via A. Moro, Siena, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Koek W, Cheng K, Rice KC. Discriminative stimulus effects of the GABAB receptor-positive modulator rac-BHFF: comparison with GABAB receptor agonists and drugs of abuse. J Pharmacol Exp Ther 2012; 344:553-60. [PMID: 23275067 DOI: 10.1124/jpet.112.202226] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
GABA(B) receptor-positive modulators are thought to have advantages as potential medications for anxiety, depression, and drug addiction. They may have fewer side effects than GABA(B) receptor agonists, because selective enhancement of activated receptors could have effects different from nonselective activation of all receptors. To examine this, pigeons were trained to discriminate the GABA(B) receptor-positive modulator (R,S)-5,7-di-tert-butyl-3-hydroxy-3-trifluoromethyl-3H-benzofuran-2-one (rac-BHFF) from its vehicle. The discriminative stimulus effects of rac-BHFF were not mimicked by the GABA(B) receptor agonists baclofen and γ-hydroxybutyrate (GHB), not by diazepam, and not by alcohol, cocaine, and nicotine, whose self-administration has been reported to be attenuated by GABA(B) receptor-positive modulators. The discriminative stimulus effects of rac-BHFF were not antagonized by the GABA(B) receptor antagonist 3-aminopropyl (diethoxymethyl)phosphinic acid (CGP35348) but were attenuated by the less efficacious GABA(B) receptor-positive modulator 2,6-di-tert-butyl-4-(3-hydroxy-2,2-dimethylpropyl)phenol (CGP7930), suggesting the possibility that rac-BHFF produces its discriminative stimulus effects by directly activating GABA(B2) subunits of GABA(B) receptors. At a dose 10-fold lower than the training dose, rac-BHFF enhanced the discriminative stimulus effects of baclofen, but not of GHB. This study provides evidence that the effects of GABA(B) receptor-positive modulators are not identical to those of GABA(B) receptor agonists. In addition, the results suggest that positive modulation of GABA(B) receptors does not produce discriminative stimulus effects similar to those of benzodiazepines, alcohol, cocaine, and nicotine. Finally, the finding that rac-BHFF enhanced effects of baclofen but not of GHB is consistent with converging evidence that the populations of GABA(B) receptors mediating the effects of baclofen and GHB are not identical.
Collapse
Affiliation(s)
- Wouter Koek
- Department of Psychiatry and Pharmacology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, Mail Code 7792, San Antonio, TX, USA.
| | | | | |
Collapse
|
33
|
Koek W, France CP, Cheng K, Rice KC. Effects of the GABAB receptor-positive modulators CGP7930 and rac-BHFF in baclofen- and γ-hydroxybutyrate-discriminating pigeons. J Pharmacol Exp Ther 2012; 341:369-76. [PMID: 22319197 DOI: 10.1124/jpet.111.190975] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
In vivo effects of GABA(B) receptor-positive modulators suggest them to have therapeutic potential to treat central nervous system disorders such as anxiety and drug abuse. Although these effects are thought to be mediated by positive modulation of GABA(B) receptors, such modulation has been examined primarily in vitro. This study further examined the in vivo properties of the GABA(B) receptor-positive modulators 2,6-di-tert-butyl-4-(3-hydroxy-2,2-dimethylpropyl) phenol (CGP7930) and (R,S)-5,7-di-tert-butyl-3-hydroxy-3-trifluoromethyl-3H-benzofuran-2-one (rac-BHFF). In pigeons discriminating baclofen from saline, γ-hydroxybutyrate (GHB) produced 100% baclofen-appropriate responding, and the GABA(B) antagonist 3-aminopropyl(dimethoxymethyl) phosphinic acid (CGP35348) blocked the effects of both drugs. CGP7930 and rac-BHFF produced at most 41 and 74% baclofen-appropriate responding, respectively, and enhanced the discriminative stimulus effects of baclofen, but not of GHB. In pigeons discriminating GHB from saline, CGP7930 and rac-BHFF produced at most 1 and 49% GHB-appropriate responding, respectively, and enhanced the effects of baclofen, but not of GHB. Enhancement of the discriminative stimulus effects of baclofen by rac-BHFF and CGP7930 is further evidence of their effectiveness as GABA(B) receptor-positive modulators in vivo. Furthermore, lack of complete substitution of the positive modulators rac-BHFF and CGP7930 for baclofen and GHB suggests that their discriminative stimulus effects differ from those of GABA(B) receptor agonists. Finally, together with converging evidence that the GABA(B) receptor populations mediating the effects of baclofen and GHB are not identical, the present findings suggest that these populations differ in their susceptibility to positive modulatory effects. Such differences could allow for more selective therapeutic targeting of the GABA(B) system.
Collapse
Affiliation(s)
- Wouter Koek
- Departments of Psychiatry and Pharmacology, University of Texas Health Science Center, 7703 Floyd Curl Drive, Mail Code 7792, San Antonio, TX 78229-3900, USA.
| | | | | | | |
Collapse
|