1
|
Faussner A, Deininger MM, Weber C, Steffens S. Direct addition of poly-lysine or poly-ethylenimine to the medium: A simple alternative to plate pre-coating. PLoS One 2022; 17:e0260173. [PMID: 35802710 PMCID: PMC9269970 DOI: 10.1371/journal.pone.0260173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 05/01/2022] [Indexed: 11/21/2022] Open
Abstract
For most cell culture experiments, it is indispensable that the cells are firmly anchored to culture plates, withstanding rinsing steps that can create shear forces and tolerating temperature changes without detaching. For semi-adherent cells such as the common HEK 293 or PC-12 cells, this could so far be obtained by time-consuming plate pre-coating with cationic polymer solutions. We report here, that i) pre-coating with the cheaper poly-ethylenimine (PEI) works as well as the commonly used poly-D-lysine (PDL), but more importantly and novel ii) that simple direct addition of either PEI (1.5 μg/ml) or PDL (2 μg/ml) to the cell culture medium results in strongly anchored HEK 293 cells, indistinguishable from ones seeded on pre-coated plates. Therefore, the replacement of plate pre-coating by direct addition of either PEI or PDL gives comparable excellent results, but is highly labour-, time-, and cost-efficient. Moreover, we could show that addition of PDL or PEI also works similarly well in animal-free culture using human platelet lysate instead of fetal bovine serum. Interestingly, additional experiments showed that strong cell attachment requires only cationic polymers but not fetal bovine serum or human platelet lysate added to the medium.
Collapse
Affiliation(s)
- Alexander Faussner
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilian-University (LMU), Munich, Germany
- * E-mail:
| | - Matthias M. Deininger
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilian-University (LMU), Munich, Germany
| | - Christian Weber
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilian-University (LMU), Munich, Germany
| | - Sabine Steffens
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilian-University (LMU), Munich, Germany
| |
Collapse
|
2
|
Chandrabalan A, Ramachandran R. Molecular mechanisms regulating Proteinase‐Activated Receptors (PARs). FEBS J 2021; 288:2697-2726. [DOI: 10.1111/febs.15829] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 03/10/2021] [Accepted: 03/18/2021] [Indexed: 12/13/2022]
Affiliation(s)
- Arundhasa Chandrabalan
- Department of Physiology and Pharmacology Schulich School of Medicine and Dentistry University of Western Ontario London Canada
| | - Rithwik Ramachandran
- Department of Physiology and Pharmacology Schulich School of Medicine and Dentistry University of Western Ontario London Canada
| |
Collapse
|
3
|
Stoddart LA, Kilpatrick LE, Corriden R, Kellam B, Briddon SJ, Hill SJ. Efficient G protein coupling is not required for agonist-mediated internalization and membrane reorganization of the adenosine A 3 receptor. FASEB J 2021; 35:e21211. [PMID: 33710641 PMCID: PMC9328438 DOI: 10.1096/fj.202001729rr] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 11/03/2020] [Accepted: 11/09/2020] [Indexed: 01/09/2023]
Abstract
Organization of G protein‐coupled receptors at the plasma membrane has been the focus of much recent attention. Advanced microscopy techniques have shown that these receptors can be localized to discrete microdomains and reorganization upon ligand activation is crucial in orchestrating their signaling. Here, we have compared the membrane organization and downstream signaling of a mutant (R108A, R3.50A) of the adenosine A3 receptor (A3AR) to that of the wild‐type receptor. Fluorescence Correlation Spectroscopy (FCS) studies with a fluorescent agonist (ABEA‐X‐BY630) demonstrated that both wild‐type and mutant receptors bind agonist with high affinity but in subsequent downstream signaling assays the R108A mutation abolished agonist‐mediated inhibition of cAMP production and ERK phosphorylation. In further FCS studies, both A3AR and A3AR R108A underwent similar agonist‐induced increases in receptor density and molecular brightness which were accompanied by a decrease in membrane diffusion after agonist treatment. Using bimolecular fluorescence complementation, experiments showed that the R108A mutant retained the ability to recruit β‐arrestin and these receptor/arrestin complexes displayed similar membrane diffusion and organization to that observed with wild‐type receptors. These data demonstrate that effective G protein signaling is not a prerequisite for agonist‐stimulated β‐arrestin recruitment and membrane reorganization of the A3AR.
Collapse
Affiliation(s)
- Leigh A Stoddart
- Cell Signalling and Pharmacology Research Group, Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, UK.,Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands, UK
| | - Laura E Kilpatrick
- Cell Signalling and Pharmacology Research Group, Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, UK.,Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands, UK.,School of Pharmacy, Biodiscovery Institute, University Park Nottingham, Nottingham, UK
| | - Ross Corriden
- Cell Signalling and Pharmacology Research Group, Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, UK.,Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands, UK
| | - Barrie Kellam
- Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands, UK.,School of Pharmacy, Biodiscovery Institute, University Park Nottingham, Nottingham, UK
| | - Stephen J Briddon
- Cell Signalling and Pharmacology Research Group, Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, UK.,Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands, UK
| | - Stephen J Hill
- Cell Signalling and Pharmacology Research Group, Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, UK.,Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands, UK
| |
Collapse
|
4
|
Gagnon M, Savard M, Jacques JF, Bkaily G, Geha S, Roucou X, Gobeil F. Potentiation of B2 receptor signaling by AltB2R, a newly identified alternative protein encoded in the human bradykinin B2 receptor gene. J Biol Chem 2021; 296:100329. [PMID: 33497625 PMCID: PMC7949122 DOI: 10.1016/j.jbc.2021.100329] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 01/12/2021] [Accepted: 01/21/2021] [Indexed: 12/27/2022] Open
Abstract
Recent functional and proteomic studies in eukaryotes (www.openprot.org) predict the translation of alternative open reading frames (AltORFs) in mature G-protein-coupled receptor (GPCR) mRNAs, including that of bradykinin B2 receptor (B2R). Our main objective was to determine the implication of a newly discovered AltORF resulting protein, termed AltB2R, in the known signaling properties of B2R using complementary methodological approaches. When ectopically expressed in HeLa cells, AltB2R presented predominant punctate cytoplasmic/perinuclear distribution and apparent cointeraction with B2R at plasma and endosomal/vesicular membranes. The presence of AltB2R increases intracellular [Ca2+] and ERK1/2-MAPK activation (via phosphorylation) following B2R stimulation. Moreover, HEK293A cells expressing mutant B2R lacking concomitant expression of AltB2R displayed significantly decreased maximal responses in agonist-stimulated Gαq-Gαi2/3-protein coupling, IP3 generation, and ERK1/2-MAPK activation as compared with wild-type controls. Conversely, there was no difference in cell-surface density as well as ligand-binding properties of B2R and in efficiencies of cognate agonists at promoting B2R internalization and β-arrestin 2 recruitment. Importantly, both AltB2R and B2R proteins were overexpressed in prostate and breast cancers, compared with their normal counterparts suggesting new associative roles of AltB2R in these diseases. Our study shows that BDKRB2 is a dual-coding gene and identifies AltB2R as a novel positive modulator of some B2R signaling pathways. More broadly, it also supports a new, unexpected alternative proteome for GPCRs, which opens new frontiers in fields of GPCR biology, diseases, and drug discovery.
Collapse
Affiliation(s)
- Maxime Gagnon
- Department of Biochemistry, Université de Sherbrooke, Sherbrooke, Québec, Canada; Institute of Pharmacology, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Martin Savard
- Department of Pharmacology & Physiology, Université de Sherbrooke, Sherbrooke, Québec, Canada; Institute of Pharmacology, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Jean-François Jacques
- Department of Pharmacology & Physiology, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Ghassan Bkaily
- Department of Immunology & Cellular Biology, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Sameh Geha
- Department of Pathology, Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, Québec, Canada
| | - Xavier Roucou
- Department of Biochemistry, Université de Sherbrooke, Sherbrooke, Québec, Canada; Institute of Pharmacology, Université de Sherbrooke, Sherbrooke, Québec, Canada.
| | - Fernand Gobeil
- Department of Pharmacology & Physiology, Université de Sherbrooke, Sherbrooke, Québec, Canada; Institute of Pharmacology, Université de Sherbrooke, Sherbrooke, Québec, Canada.
| |
Collapse
|
5
|
Koenen A, Babendreyer A, Schumacher J, Pasqualon T, Schwarz N, Seifert A, Deupi X, Ludwig A, Dreymueller D. The DRF motif of CXCR6 as chemokine receptor adaptation to adhesion. PLoS One 2017; 12:e0173486. [PMID: 28267793 PMCID: PMC5340378 DOI: 10.1371/journal.pone.0173486] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 02/21/2017] [Indexed: 12/23/2022] Open
Abstract
The CXC-chemokine receptor 6 (CXCR6) is a class A GTP-binding protein-coupled receptor (GPCRs) that mediates adhesion of leukocytes by interacting with the transmembrane cell surface-expressed chemokine ligand 16 (CXCL16), and also regulates leukocyte migration by interacting with the soluble shed variant of CXCL16. In contrast to virtually all other chemokine receptors with chemotactic activity, CXCR6 carries a DRF motif instead of the typical DRY motif as a key element in receptor activation and G protein coupling. In this work, modeling analyses revealed that the phenylalanine F3.51 in CXCR6 might have impact on intramolecular interactions including hydrogen bonds by this possibly changing receptor function. Initial investigations with embryonic kidney HEK293 cells and further studies with monocytic THP-1 cells showed that mutation of DRF into DRY does not influence ligand binding, receptor internalization, receptor recycling, and protein kinase B (AKT) signaling. Adhesion was slightly decreased in a time-dependent manner. However, CXCL16-induced calcium signaling and migration were increased. Vice versa, when the DRY motif of the related receptor CX3CR1 was mutated into DRF the migratory response towards CX3CL1 was diminished, indicating that the presence of a DRF motif generally impairs chemotaxis in chemokine receptors. Transmembrane and soluble CXCL16 play divergent roles in homeostasis, inflammation, and cancer, which can be beneficial or detrimental. Therefore, the DRF motif of CXCR6 may display a receptor adaptation allowing adhesion and cell retention by transmembrane CXCL16 but reducing the chemotactic response to soluble CXCL16. This adaptation may avoid permanent or uncontrolled recruitment of inflammatory cells as well as cancer metastasis.
Collapse
Affiliation(s)
- Andrea Koenen
- Institute of Pharmacology and Toxicology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Aaron Babendreyer
- Institute of Pharmacology and Toxicology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Julian Schumacher
- Institute of Pharmacology and Toxicology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Tobias Pasqualon
- Institute of Pharmacology and Toxicology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Nicole Schwarz
- Institute of Molecular and Cellular Anatomy, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Anke Seifert
- Institute of Pharmacology and Toxicology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Xavier Deupi
- Laboratory of Biomolecular Research and Condensed Matter Theory Group, Paul Scherrer Institute, Villigen, Switzerland
| | - Andreas Ludwig
- Institute of Pharmacology and Toxicology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Daniela Dreymueller
- Institute of Pharmacology and Toxicology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
6
|
Mocking TAM, Bosma R, Rahman SN, Verweij EWE, McNaught-Flores DA, Vischer HF, Leurs R. Molecular Aspects of Histamine Receptors. HISTAMINE RECEPTORS 2016. [DOI: 10.1007/978-3-319-40308-3_1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
7
|
|
8
|
Structure versus function—The impact of computational methods on the discovery of specific GPCR–ligands. Bioorg Med Chem 2015; 23:3907-12. [DOI: 10.1016/j.bmc.2015.03.026] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 03/06/2015] [Accepted: 03/09/2015] [Indexed: 12/26/2022]
|
9
|
Blaes N, Girolami JP. Targeting the 'Janus face' of the B2-bradykinin receptor. Expert Opin Ther Targets 2013; 17:1145-66. [PMID: 23957374 DOI: 10.1517/14728222.2013.827664] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Kinins are main active mediators of the kallikrein-kinin system (KKS) via bradykinin type 1 inducible (B1R) and type 2 constitutive (B2R) receptors. B2R mediates most physiological bradykinin (BK) responses, including vasodilation, natriuresis, NO, prostaglandins release. AREAS COVERED The article summarizes knowledge on kinins, B2R signaling and biological functions; highlights crosstalks between B2R and renin-angiotensin system (RAS). The double role (Janus face) in physiopathology, namely the beneficial protection of the endothelium, which forms the basis for the therapeutical utilization of B2 receptor agonists, on the one side, and the involvement of B2R in inflammation or infection diseases and in pain mechanisms, which justifies the use of B2R antagonists, on the other side, is extensively analyzed. EXPERT OPINION For decades, the B2R has been unconsciously activated during angiotensin-converting enzyme inhibitor (ACEI) or angiotensin receptor blocker (ARB) treatments. Whether direct B2R targeting with stable agonists could bring additional therapeutic benefit to RAS inhibition should be investigated. Efficacy, established in experimental models, should be confirmed by translational studies in cardiovascular pathologies, glaucoma, Duchenne cardiopathy and during brain cancer therapy. The other face of B2R is targeted by antagonists already approved to treat hereditary angioedema. The use of antagonists could be extended to other angioedema and efficacy tested against acute pain and inflammatory diseases.
Collapse
Affiliation(s)
- Nelly Blaes
- INSERM, U1048, Institute of Metabolic and Cardiovascular Diseases, I2MC, Université Paul Sabatier , F-31432, Toulouse , France
| | | |
Collapse
|
10
|
Enquist J, Sandén C, Skröder C, Mathis SA, Leeb-Lundberg LMF. Kinin-Stimulated B1 Receptor Signaling Depends on Receptor Endocytosis Whereas B2 Receptor Signaling Does Not. Neurochem Res 2013; 39:1037-47. [DOI: 10.1007/s11064-013-1126-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 07/31/2013] [Accepted: 08/03/2013] [Indexed: 12/11/2022]
|
11
|
Preininger AM, Meiler J, Hamm HE. Conformational flexibility and structural dynamics in GPCR-mediated G protein activation: a perspective. J Mol Biol 2013; 425:2288-98. [PMID: 23602809 DOI: 10.1016/j.jmb.2013.04.011] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 04/08/2013] [Accepted: 04/10/2013] [Indexed: 12/16/2022]
Abstract
Structure and dynamics of G proteins and their cognate receptors, both alone and in complex, are becoming increasingly accessible to experimental techniques. Understanding the conformational changes and timelines that govern these changes can lead to new insights into the processes of ligand binding and associated G protein activation. Experimental systems may involve the use of, or otherwise stabilize, non-native environments. This can complicate our understanding of structural and dynamic features of processes such as the ionic lock, tryptophan toggle, and G protein flexibility. While elements in the receptor's transmembrane helices and the C-terminal α5 helix of Gα undergo well-defined structural changes, regions subject to conformational flexibility may be important in fine-tuning the interactions between activated receptors and G proteins. The pairing of computational and experimental approaches will continue to provide powerful tools to probe the conformation and dynamics of receptor-mediated G protein activation.
Collapse
Affiliation(s)
- Anita M Preininger
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232-6600, USA.
| | | | | |
Collapse
|
12
|
Full and partial agonists of thromboxane prostanoid receptor unveil fine tuning of receptor superactive conformation and G protein activation. PLoS One 2013; 8:e60475. [PMID: 23555978 PMCID: PMC3610872 DOI: 10.1371/journal.pone.0060475] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Accepted: 02/26/2013] [Indexed: 01/14/2023] Open
Abstract
The intrahelical salt bridge between E/D3.49 and R3.50 within the E/DRY motif on helix 3 (H3) and the interhelical hydrogen bonding between the E/DRY and residues on H6 are thought to be critical in stabilizing the class A G protein-coupled receptors in their inactive state. Removal of these interactions is expected to generate constitutively active receptors. This study examines how neutralization of E3.49/6.30 in the thromboxane prostanoid (TP) receptor alters ligand binding, basal, and agonist-induced activity and investigates the molecular mechanisms of G protein activation. We demonstrate here that a panel of full and partial agonists showed an increase in affinity and potency for E129V and E240V mutants. Yet, even augmenting the sensitivity to detect constitutive activity (CA) with overexpression of the receptor or the G protein revealed resistance to an increase in basal activity, while retaining fully the ability to cause agonist-induced signaling. However, direct G protein activation measured through bioluminescence resonance energy transfer (BRET) indicates that these mutants more efficiently communicate and/or activate their cognate G proteins. These results suggest the existence of additional constrains governing the shift of TP receptor to its active state, together with an increase propensity of these mutants to agonist-induced signaling, corroborating their definition as superactive mutants. The particular nature of the TP receptor as somehow “resistant” to CA should be examined in the context of its pathophysiological role in the cardiovascular system. Evolutionary forces may have favored regulation mechanisms leading to low basal activity and selected against more highly active phenotypes.
Collapse
|