1
|
Wong KS, Cheung HW, Choi YC, To NS, Wan TSM, Ho ENM. Screening and confirmation of recombinant human follistatin in equine plasma for doping control purposes. Drug Test Anal 2024; 16:259-267. [PMID: 37401514 DOI: 10.1002/dta.3540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 04/19/2023] [Accepted: 06/15/2023] [Indexed: 07/05/2023]
Abstract
Recombinant human follistatin (rhFST) is a potential performance-enhancing agent owing to its stimulating effect on muscle growth. Administration of rhFST to athletes is prohibited in human sports by the World Anti-Doping Agency (WADA) and in horseracing according to Article 6 of the International Agreement on Breeding, Racing and Wagering published by the International Federation of Horseracing Authorities (IFHA). For effective control of the potential misuse of rhFST in flat racing, methods for screening and confirmatory analysis are required. This paper describes the development and validation of a complete solution for detecting rhFST and confirming its presence in plasma samples collected from racehorses. A high-throughput analysis of rhFST with a commercially available enzyme-linked immunosorbent assay (ELISA) was evaluated for the screening of equine plasma samples. Any suspicious finding would then be subjected to a confirmatory analysis using immunocapture, followed by nano-liquid chromatography/high-resolution tandem mass spectrometry (nanoLC-MS/HRMS). The confirmation of rhFST by nanoLC-MS/HRMS was achieved by comparing the retention times and relative abundances of three characteristic product-ions with those from the reference standard in accordance with the industry criteria published by the Association of Official Racing Chemists. The two methods achieved comparable limit of detection (~2.5-5 ng/mL) and limit of confirmation (2.5 ng/mL or below), as well as adequate specificity, precision and reproducibility. To our knowledge, this is the first report of the screening and confirmation methods for rhFST in equine samples.
Collapse
Affiliation(s)
- Kin-Sing Wong
- Racing Laboratory, The Hong Kong Jockey Club, Sha Tin Racecourse, Sha Tin, N. T., Hong Kong, China
| | - Hiu Wing Cheung
- Racing Laboratory, The Hong Kong Jockey Club, Sha Tin Racecourse, Sha Tin, N. T., Hong Kong, China
| | - Yung-Ching Choi
- Racing Laboratory, The Hong Kong Jockey Club, Sha Tin Racecourse, Sha Tin, N. T., Hong Kong, China
| | - Ning-Sum To
- Racing Laboratory, The Hong Kong Jockey Club, Sha Tin Racecourse, Sha Tin, N. T., Hong Kong, China
| | - Terence S M Wan
- Racing Laboratory, The Hong Kong Jockey Club, Sha Tin Racecourse, Sha Tin, N. T., Hong Kong, China
| | - Emmie N M Ho
- Racing Laboratory, The Hong Kong Jockey Club, Sha Tin Racecourse, Sha Tin, N. T., Hong Kong, China
| |
Collapse
|
2
|
Hu Y, Recouvreux MS, Haro M, Taylan E, Taylor-Harding B, Walts AE, Karlan BY, Orsulic S. INHBA(+) cancer-associated fibroblasts generate an immunosuppressive tumor microenvironment in ovarian cancer. NPJ Precis Oncol 2024; 8:35. [PMID: 38360876 PMCID: PMC10869703 DOI: 10.1038/s41698-024-00523-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 01/24/2024] [Indexed: 02/17/2024] Open
Abstract
Effective targeting of cancer-associated fibroblasts (CAFs) is hindered by the lack of specific biomarkers and a poor understanding of the mechanisms by which different populations of CAFs contribute to cancer progression. While the role of TGFβ in CAFs is well-studied, less attention has been focused on a structurally and functionally similar protein, Activin A (encoded by INHBA). Here, we identified INHBA(+) CAFs as key players in tumor promotion and immunosuppression. Spatiotemporal analyses of patient-matched primary, metastatic, and recurrent ovarian carcinomas revealed that aggressive metastatic tumors enriched in INHBA(+) CAFs were also enriched in regulatory T cells (Tregs). In ovarian cancer mouse models, intraperitoneal injection of the Activin A neutralizing antibody attenuated tumor progression and infiltration with pro-tumorigenic subsets of myofibroblasts and macrophages. Downregulation of INHBA in human ovarian CAFs inhibited pro-tumorigenic CAF functions. Co-culture of human ovarian CAFs and T cells revealed the dependence of Treg differentiation on direct contact with INHBA(+) CAFs. Mechanistically, INHBA/recombinant Activin A in CAFs induced the autocrine expression of PD-L1 through SMAD2-dependent signaling, which promoted Treg differentiation. Collectively, our study identified an INHBA(+) subset of immunomodulatory pro-tumoral CAFs as a potential therapeutic target in advanced ovarian cancers which typically show a poor response to immunotherapy.
Collapse
Affiliation(s)
- Ye Hu
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Maria Sol Recouvreux
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Marcela Haro
- Women's Cancer Program, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Enes Taylan
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Barbie Taylor-Harding
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Ann E Walts
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Beth Y Karlan
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA
- Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Sandra Orsulic
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA.
- Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, CA, 90095, USA.
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA.
- United States Department of Veterans Affairs, Greater Los Angeles Healthcare System, Los Angeles, CA, 90073, USA.
| |
Collapse
|
3
|
Favaloro EJ, Pasalic L, Lippi G. How often are parenteral anticoagulants administered by parents? J Thromb Haemost 2022; 20:2746-2750. [PMID: 36129394 PMCID: PMC9828405 DOI: 10.1111/jth.15887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 09/17/2022] [Indexed: 01/13/2023]
Abstract
Parenteral anticoagulants are a class of anticoagulants that need to be administered non-orally, usually by injection or infusion. There are a variety of such agents, but heparin reflects the most frequently used. Being alerted to an error in a prior publication in which the word "parenteral" was inadvertently replaced by the word "parental," it became clear that even experienced authors make such errors, which could then remain undetected by reviewers and editors, thus leading to failure in correction of same before publication. Given this is likely to be a somewhat ongoing error, we undertook a PubMed search of the literature to identify that "parentally administered" anticoagulants, as well as "parental" administration of other compounds, seems to be evident throughout the literature. We hope this report acts to raise awareness and help avoid similar errors in the future.
Collapse
Affiliation(s)
- Emmanuel J. Favaloro
- Haematology, Institute of Clinical Pathology and Medical Research (ICPMR), NSW Health PathologyWestmead HospitalWestmeadNew South WalesAustralia
- Sydney Centres for Thrombosis and HaemostasisWestmeadNew South WalesAustralia
- School of Dentistry and Medical Sciences, Faculty of Science and HealthCharles Sturt UniversityWagga WaggaNew South WalesAustralia
- School of Medical Sciences, Faculty of Medicine and Health, University of SydneyWestmead HospitalWestmeadNew South WalesAustralia
| | - Leonardo Pasalic
- Haematology, Institute of Clinical Pathology and Medical Research (ICPMR), NSW Health PathologyWestmead HospitalWestmeadNew South WalesAustralia
- Sydney Centres for Thrombosis and HaemostasisWestmeadNew South WalesAustralia
- Westmead Clinical SchoolUniversity of SydneyWestmeadNew South WalesAustralia
| | - Giuseppe Lippi
- Section of Clinical BiochemistryUniversity of VeronaVeronaItaly
| |
Collapse
|
4
|
Ozawa T, Morikawa M, Morishita Y, Ogikubo K, Itoh F, Koinuma D, Nygren PÅ, Miyazono K. Systemic administration of monovalent follistatin-like 3-Fc-fusion protein increases muscle mass in mice. iScience 2021; 24:102488. [PMID: 34113826 PMCID: PMC8170004 DOI: 10.1016/j.isci.2021.102488] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 03/11/2021] [Accepted: 04/27/2021] [Indexed: 02/07/2023] Open
Abstract
Targeting the signaling pathway of growth differentiation factor 8 (GDF8), also known as myostatin, has been regarded as a promising strategy to increase muscle mass in the elderly and in patients. Accumulating evidence in animal models and clinical trials has indicated that a rational approach is to inhibit a limited number of transforming growth factor β (TGF-β) family ligands, including GDF8 and activin A, without affecting other members. Here, we focused on one of the endogenous antagonists against TGF-β family ligands, follistatin-like 3 (FSTL3), which mainly binds and neutralizes activins, GDF8, and GDF11. Although bivalent human FSTL3 Fc-fusion protein was rapidly cleared from mouse circulation similar to follistatin (FST)-Fc, monovalent FSTL3-Fc (mono-FSTL3-Fc) generated with the knobs-into-holes technology exhibited longer serum half-life. Systemic administration of mono-FSTL3-Fc in mice induced muscle fiber hypertrophy and increased muscle mass in vivo. Our results indicate that the monovalent FSTL3-based therapy overcomes the difficulties of current anti-GDF8 therapies. FSTL3-Fc has a more specific binding profile for TGF-β family ligands than ActRIIB-Fc. Bivalent two-armed FSTL3-Fc is rapidly cleared from mouse circulation. Monovalent FSTL3-Fc has longer serum half-life and causes systemic muscle hypertrophy. ActRIIB-Fc-related side effects are not detected in monovalent FSTL3-Fc-treated mice.
Collapse
Affiliation(s)
- Takayuki Ozawa
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Masato Morikawa
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yasuyuki Morishita
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kazuki Ogikubo
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Fumiko Itoh
- Laboratory of Cardiovascular Medicine, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Daizo Koinuma
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Per-Åke Nygren
- Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, AlbaNova University Center, Royal Institute of Technology, 106 91 Stockholm, Sweden.,Science for Life Laboratory, 171 65 Solna, Sweden
| | - Kohei Miyazono
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
5
|
Walker RG, Kattamuri C, Goebel EJ, Zhang F, Hammel M, Tainer JA, Linhardt RJ, Thompson TB. Heparin-mediated dimerization of follistatin. Exp Biol Med (Maywood) 2021; 246:467-482. [PMID: 33197333 PMCID: PMC7885052 DOI: 10.1177/1535370220966296] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 09/22/2020] [Indexed: 11/16/2022] Open
Abstract
Heparin and heparan sulfate (HS) are highly sulfated polysaccharides covalently bound to cell surface proteins, which directly interact with many extracellular proteins, including the transforming growth factor-β (TGFβ) family ligand antagonist, follistatin 288 (FS288). Follistatin neutralizes the TGFβ ligands, myostatin and activin A, by forming a nearly irreversible non-signaling complex by surrounding the ligand and preventing interaction with TGFβ receptors. The FS288-ligand complex has higher affinity than unbound FS288 for heparin/HS, which accelerates ligand internalization and lysosomal degradation; however, limited information is available for how FS288 interactions with heparin affect ligand binding. Using surface plasmon resonance (SPR) we show that preincubation of FS288 with heparin/HS significantly decreased the association kinetics for both myostatin and activin A with seemingly no effect on the dissociation rate. This observation is dependent on the heparin/HS chain length where small chain lengths less than degree of polymerization 10 (dp10) did not alter association rates but chain lengths >dp10 decreased association rates. In an attempt to understand the mechanism for this observation, we uncovered that heparin induced dimerization of follistatin. Consistent with our SPR results, we found that dimerization only occurs with heparin molecules >dp10. Small-angle X-ray scattering of the FS288 heparin complex supports that FS288 adopts a dimeric configuration that is similar to the FS288 dimer in the ligand-bound state. These results indicate that heparin mediates dimerization of FS288 in a chain-length-dependent manner that reduces the ligand association rate, but not the dissociation rate or antagonistic activity of FS288.
Collapse
Affiliation(s)
- Ryan G Walker
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati, College of Medicine, Cincinnati, Ohio 45267, USA
| | - Chandramohan Kattamuri
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati, College of Medicine, Cincinnati, Ohio 45267, USA
| | - Erich J Goebel
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati, College of Medicine, Cincinnati, Ohio 45267, USA
| | - Fuming Zhang
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, USA
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, USA
| | - Michal Hammel
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - John A Tainer
- Molecular and Cellular Oncology and Cancer Biology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA
| | - Robert J Linhardt
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, USA
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, USA
| | - Thomas B Thompson
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati, College of Medicine, Cincinnati, Ohio 45267, USA
| |
Collapse
|
6
|
Reichel C, Gmeiner G, Thevis M. Detection of black market follistatin 344. Drug Test Anal 2020; 11:1675-1697. [DOI: 10.1002/dta.2741] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 11/21/2019] [Accepted: 11/21/2019] [Indexed: 12/31/2022]
Affiliation(s)
- Christian Reichel
- Doping Control Laboratory Seibersdorf, Seibersdorf Labor GmbH, A‐2444 Seibersdorf Austria
- European Monitoring Center for Emerging Doping AgentsGerman Sport University Cologne Am Sportpark Muengersdorf 6 50933 Cologne Germany
| | - Günter Gmeiner
- Doping Control Laboratory Seibersdorf, Seibersdorf Labor GmbH, A‐2444 Seibersdorf Austria
| | - Mario Thevis
- Institute of Biochemistry/Center for Preventive Doping ResearchGerman Sport University Cologne Am Sportpark Muengersdorf 6 50933 Cologne Germany
- European Monitoring Center for Emerging Doping AgentsGerman Sport University Cologne Am Sportpark Muengersdorf 6 50933 Cologne Germany
| |
Collapse
|
7
|
Pearsall RS, Davies MV, Cannell M, Li J, Widrick J, Mulivor AW, Wallner S, Troy ME, Spaits M, Liharska K, Sako D, Castonguay R, Keates S, Grinberg AV, Suragani RNVS, Kumar R. Follistatin-based ligand trap ACE-083 induces localized hypertrophy of skeletal muscle with functional improvement in models of neuromuscular disease. Sci Rep 2019; 9:11392. [PMID: 31388039 PMCID: PMC6684588 DOI: 10.1038/s41598-019-47818-w] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 07/17/2019] [Indexed: 12/13/2022] Open
Abstract
Skeletal muscle is under inhibitory homeostatic regulation by multiple ligands of the transforming growth factor-β (TGFβ) superfamily. Follistatin is a secreted protein that promotes muscle growth and function by sequestering these ligands extracellularly. In the present study, we evaluated the potential of ACE-083 – a locally acting, follistatin-based fusion protein – as a novel therapeutic agent for focal or asymmetric myopathies. Characterization of ACE-083 in vitro revealed its high affinity for heparin and extracellular matrix while surface plasmon resonance and cell-based assays confirmed that ACE-083 binds and potently neutralizes myostatin, activin A, activin B and growth differentiation factor 11 (GDF11). Intramuscular administration of ACE-083 caused localized, dose-dependent hypertrophy of the injected muscle in wild-type mice and mouse models of Charcot-Marie-Tooth disease (CMT) and Duchenne muscular dystrophy, with no evidence of systemic muscle effects or endocrine perturbation. Importantly, ACE-083 also increased the force of isometric contraction in situ by the injected tibialis anterior muscle in wild-type mice and disease models and increased ankle dorsiflexion torque in CMT mice. Our results demonstrate the potential of ACE-083 as a therapeutic agent for patients with CMT, muscular dystrophy and other disorders with focal or asymmetric muscle atrophy or weakness.
Collapse
Affiliation(s)
| | | | - M Cannell
- Acceleron Pharma, Cambridge, MA, USA
| | - J Li
- Acceleron Pharma, Cambridge, MA, USA
| | - J Widrick
- Division of Genetics and Genomics, The Manton Center for Orphan Disease Research, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - A W Mulivor
- Acceleron Pharma, Cambridge, MA, USA.,The Hospital for Sick Children, Toronto, Ontario, Canada
| | - S Wallner
- Acceleron Pharma, Cambridge, MA, USA.,NovaRock Biotherapeutics, Princeton, NJ, USA
| | - M E Troy
- Acceleron Pharma, Cambridge, MA, USA
| | - M Spaits
- Acceleron Pharma, Cambridge, MA, USA
| | - K Liharska
- Acceleron Pharma, Cambridge, MA, USA.,Dragonfly Therapeutics, Waltham, MA, USA
| | - D Sako
- Acceleron Pharma, Cambridge, MA, USA
| | | | - S Keates
- Acceleron Pharma, Cambridge, MA, USA
| | - A V Grinberg
- Acceleron Pharma, Cambridge, MA, USA.,Dragonfly Therapeutics, Waltham, MA, USA
| | | | - R Kumar
- Acceleron Pharma, Cambridge, MA, USA
| |
Collapse
|
8
|
Ghiselli G. Heparin Binding Proteins as Therapeutic Target: An Historical Account and Current Trends. MEDICINES (BASEL, SWITZERLAND) 2019; 6:E80. [PMID: 31362364 PMCID: PMC6789896 DOI: 10.3390/medicines6030080] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 07/16/2019] [Accepted: 07/18/2019] [Indexed: 12/16/2022]
Abstract
The polyanionic nature and the ability to interact with proteins with different affinities are properties of sulfated glycosaminoglycans (GAGs) that determine their biological function. In designing drugs affecting the interaction of proteins with GAGs the challenge has been to generate agents with high binding specificity. The example to emulated has been a heparin-derived pentasaccharide that binds to antithrombin-III with high affinity. However, the portability of this model to other biological situations is questioned on several accounts. Because of their structural flexibility, oligosaccharides with different sulfation and uronic acid conformation can display the same binding proficiency to different proteins and produce comparable biological effects. This circumstance represents a formidable obstacle to the design of drugs based on the heparin scaffold. The conceptual framework discussed in this article is that through a direct intervention on the heparin-binding functionality of proteins is possible to achieve a high degree of action specificity. This objective is currently pursued through two strategies. The first makes use of small molecules for which in the text we provide examples from past and present literature concerning angiogenic factors and enzymes. The second approach entails the mutagenesis of the GAG-binding site of proteins as a means to generate a new class of biologics of therapeutic interest.
Collapse
Affiliation(s)
- Giancarlo Ghiselli
- Independent Researcher, 1326 Spruce Street Suite 706, Philadephia, PA 19107, USA.
| |
Collapse
|
9
|
A sensitive antibody-free 2D-LC–MS/MS assay for the quantitation of myostatin in the serum of different species. Bioanalysis 2019; 11:957-970. [DOI: 10.4155/bio-2018-0311] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Aim: Myostatin (MSTN) is an attractive therapeutic target for the treatment of muscle degeneration-related diseases and is being evaluated as a target engagement biomarker. Methods: A sensitive 2D-LC–MS/MS assay was developed to quantify MSTN in different animal species. Sample preparation involved SDS denaturation of serum proteins followed by tryptic digestion and peptide enrichment by SPE. Results: The assay was validated with LLOQ of 2.5 ng/ml in rat and monkey serum. The precision was within 13.7%, and the bias was within ±12.6% for all quality control samples in authentic matrices. Conclusion: This new assay was successfully applied to measure MSTN in mouse, rat, monkey and human serum. The total MSTN in rat and monkey serum was elevated following administration of an MSTN inhibitor.
Collapse
|
10
|
Fahmy-Garcia S, Farrell E, Witte-Bouma J, Robbesom-van den Berge I, Suarez M, Mumcuoglu D, Walles H, Kluijtmans SGJM, van der Eerden BCJ, van Osch GJVM, van Leeuwen JPTM, van Driel M. Follistatin Effects in Migration, Vascularization, and Osteogenesis in vitro and Bone Repair in vivo. Front Bioeng Biotechnol 2019; 7:38. [PMID: 30881954 PMCID: PMC6405513 DOI: 10.3389/fbioe.2019.00038] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 02/13/2019] [Indexed: 12/16/2022] Open
Abstract
The use of biomaterials and signaling molecules to induce bone formation is a promising approach in the field of bone tissue engineering. Follistatin (FST) is a glycoprotein able to bind irreversibly to activin A, a protein that has been reported to inhibit bone formation. We investigated the effect of FST in critical processes for bone repair, such as cell recruitment, osteogenesis and vascularization, and ultimately its use for bone tissue engineering. In vitro, FST promoted mesenchymal stem cell (MSC) and endothelial cell (EC) migration as well as essential steps in the formation and expansion of the vasculature such as EC tube-formation and sprouting. FST did not enhance osteogenic differentiation of MSCs, but increased committed osteoblast mineralization. In vivo, FST was loaded in an in situ gelling formulation made by alginate and recombinant collagen-based peptide microspheres and implanted in a rat calvarial defect model. Two FST variants (FST288 and FST315) with major differences in their affinity to cell-surface proteoglycans, which may influence their effect upon in vivo bone repair, were tested. In vitro, most of the loaded FST315 was released over 4 weeks, contrary to FST288, which was mostly retained in the biomaterial. However, none of the FST variants improved in vivo bone healing compared to control. These results demonstrate that FST enhances crucial processes needed for bone repair. Further studies need to investigate the optimal FST carrier for bone regeneration.
Collapse
Affiliation(s)
- Shorouk Fahmy-Garcia
- Department of Orthopedics, Erasmus MC, University Medical Center, Rotterdam, Netherlands.,Department of Internal Medicine, Erasmus MC, University Medical Center, Rotterdam, Netherlands
| | - Eric Farrell
- Department of Oral and Maxillofacial Surgery, Erasmus MC, University Medical Center, Rotterdam, Netherlands
| | - Janneke Witte-Bouma
- Department of Oral and Maxillofacial Surgery, Erasmus MC, University Medical Center, Rotterdam, Netherlands
| | | | - Melva Suarez
- Institute of Tissue Engineering and Regenerative Medicine, Julius-Maximillians University Würzburg, Würzburg, Germany
| | - Didem Mumcuoglu
- Department of Orthopedics, Erasmus MC, University Medical Center, Rotterdam, Netherlands.,Fujifilm Manufacturing Europe B.V., Tilburg, Netherlands
| | - Heike Walles
- Institute of Tissue Engineering and Regenerative Medicine, Julius-Maximillians University Würzburg, Würzburg, Germany
| | | | - Bram C J van der Eerden
- Department of Internal Medicine, Erasmus MC, University Medical Center, Rotterdam, Netherlands
| | - Gerjo J V M van Osch
- Department of Orthopedics, Erasmus MC, University Medical Center, Rotterdam, Netherlands.,Department of Otorhinolaryngology, Head and Neck Surgery, Erasmus MC, University Medical Center, Rotterdam, Netherlands
| | | | - Marjolein van Driel
- Department of Internal Medicine, Erasmus MC, University Medical Center, Rotterdam, Netherlands
| |
Collapse
|
11
|
Lodberg A, van der Eerden BCJ, Boers-Sijmons B, Thomsen JS, Brüel A, van Leeuwen JPTM, Eijken M. A follistatin-based molecule increases muscle and bone mass without affecting the red blood cell count in mice. FASEB J 2019; 33:6001-6010. [PMID: 30759349 DOI: 10.1096/fj.201801969rr] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Inhibitors of the activin receptor signaling pathway (IASPs) have become candidate therapeutics for sarcopenia and bone remodeling disorders because of their ability to increase muscle and bone mass. However, IASPs utilizing activin type IIA and IIB receptors are also potent stimulators of erythropoiesis, a feature that may restrict their usage to anemic patients because of increased risk of venous thromboembolism. Based on the endogenous TGF-β superfamily antagonist follistatin (FST), a molecule in the IASP class, FSTΔHBS-mFc, was generated and tested in both ovariectomized and naive BALB/c and C57BL/6 mice. In ovariectomized mice, FSTΔHBS-mFc therapy dose-dependently increased cancellous bone mass up to 42% and improved bone microstructural indices. For the highest dosage of FSTΔHBS-mFc (30 mg/kg, 2 times/wk), the increase in cancellous bone mass was similar to that observed with parathyroid hormone therapy (1-34, 80 µg/kg, 5 times/wk). Musculus quadriceps femoris mass dose-dependently increased up to 21% in ovariectomized mice. In both ovariectomized and naive mice, FSTΔHBS-mFc therapy did not influence red blood cell count or hematocrit or hemoglobin levels. If the results are reproduced, a human FSTΔHBS-mFc version could be applicable in patients with musculoskeletal conditions irrespective of hematocrit status.-Lodberg, A., van der Eerden, B. C. J., Boers-Sijmons, B., Thomsen, J. S., Brüel, A., van Leeuwen, J. P. T. M., Eijken, M. A follistatin-based molecule increases muscle and bone mass without affecting the red blood cell count in mice.
Collapse
Affiliation(s)
- Andreas Lodberg
- Department of Pulmonary Medicine, Aarhus University Hospital, Aarhus, Denmark.,Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | | | - Bianca Boers-Sijmons
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | | | - Annemarie Brüel
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | | | - Marco Eijken
- Department of Renal Medicine, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Immunology, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
12
|
Castonguay R, Lachey J, Wallner S, Strand J, Liharska K, Watanabe AE, Cannell M, Davies MV, Sako D, Troy ME, Krishnan L, Mulivor AW, Li H, Keates S, Alexander MJ, Pearsall RS, Kumar R. Follistatin-288-Fc Fusion Protein Promotes Localized Growth of Skeletal Muscle. J Pharmacol Exp Ther 2018; 368:435-445. [PMID: 30563942 DOI: 10.1124/jpet.118.252304] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 12/06/2018] [Indexed: 12/19/2022] Open
Abstract
Follistatin is an endogenous glycoprotein that promotes growth and repair of skeletal muscle by sequestering inhibitory ligands of the transforming growth factor-β superfamily and may therefore have therapeutic potential for neuromuscular diseases. Here, we sought to determine the suitability of a newly engineered follistatin fusion protein (FST288-Fc) to promote localized, rather than systemic, growth of skeletal muscle by capitalizing on the intrinsic heparin-binding ability of the follistatin-288 isoform. As determined by surface plasmon resonance and cell-based assays, FST288-Fc binds to activin A, activin B, myostatin (growth differentiation factor GDF8), and GDF11 with high affinity and neutralizes their activity in vitro. Intramuscular administration of FST288-Fc in mice induced robust, dose-dependent growth of the targeted muscle but not of surrounding or contralateral muscles, in contrast to the systemic effects of a locally administered fusion protein incorporating activin receptor type IIB (ActRIIB-Fc). Furthermore, systemic administration of FST288-Fc in mice did not alter muscle mass or body composition as determined by NMR, which again contrasts with the pronounced systemic activity of ActRIIB-Fc when administered by the same route. Subsequent analysis revealed that FST288-Fc in the circulation undergoes rapid proteolysis, thereby restricting its activity to individual muscles targeted by intramuscular administration. These results indicate that FST288-Fc can produce localized growth of skeletal muscle in a targeted manner with reduced potential for undesirable systemic effects. Thus, FST288-Fc and similar agents may be beneficial in the treatment of disorders with muscle atrophy that is focal, asymmetric, or otherwise heterogeneous.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Huiming Li
- Acceleron Pharma, Cambridge, Massachusetts
| | | | | | | | - Ravi Kumar
- Acceleron Pharma, Cambridge, Massachusetts
| |
Collapse
|
13
|
Iskenderian A, Liu N, Deng Q, Huang Y, Shen C, Palmieri K, Crooker R, Lundberg D, Kastrapeli N, Pescatore B, Romashko A, Dumas J, Comeau R, Norton A, Pan J, Rong H, Derakhchan K, Ehmann DE. Myostatin and activin blockade by engineered follistatin results in hypertrophy and improves dystrophic pathology in mdx mouse more than myostatin blockade alone. Skelet Muscle 2018; 8:34. [PMID: 30368252 PMCID: PMC6204036 DOI: 10.1186/s13395-018-0180-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Accepted: 10/14/2018] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Myostatin antagonists are being developed as therapies for Duchenne muscular dystrophy due to their strong hypertrophic effects on skeletal muscle. Engineered follistatin has the potential to combine the hypertrophy of myostatin antagonism with the anti-inflammatory and anti-fibrotic effects of activin A antagonism. METHODS Engineered follistatin was administered to C57BL/6 mice for 4 weeks, and muscle mass and myofiber size was measured. In the mdx model, engineered follistatin was dosed for 12 weeks in two studies comparing to an Fc fusion of the activin IIB receptor or an anti-myostatin antibody. Functional measurements of grip strength and tetanic force were combined with tissue analysis for markers of necrosis, inflammation, and fibrosis to evaluate improvement in dystrophic pathology. RESULTS In wild-type and mdx mice, dose-dependent increases in muscle mass and quadriceps myofiber size were observed for engineered follistatin. In mdx, increases in grip strength and tetanic force were combined with improvements in muscle markers for necrosis, inflammation, and fibrosis. Improvements in dystrophic pathology were greater for engineered follistatin than the anti-myostatin antibody. CONCLUSIONS Engineered follistatin generated hypertrophy and anti-fibrotic effects in the mdx model.
Collapse
Affiliation(s)
- Andrea Iskenderian
- Discovery Therapeutics, Shire Pharmaceuticals, Lexington, MA, USA.,Drug Discovery, Shire, Cambridge, MA, USA
| | - Nan Liu
- Discovery Therapeutics, Shire Pharmaceuticals, Lexington, MA, USA.,Drug Discovery, Shire, Cambridge, MA, USA
| | - Qingwei Deng
- Research, Shire Pharmaceuticals, Lexington, MA, 02421, USA.,Drug Discovery, Shire, Cambridge, MA, USA
| | - Yan Huang
- Discovery Therapeutics, Shire Pharmaceuticals, Lexington, MA, USA.,Drug Discovery, Shire, Cambridge, MA, USA
| | - Chuan Shen
- Discovery Therapeutics, Shire Pharmaceuticals, Lexington, MA, USA.,Drug Discovery, Shire, Cambridge, MA, USA
| | - Kathleen Palmieri
- Research, Shire Pharmaceuticals, Lexington, MA, 02421, USA.,Drug Discovery, Shire, Cambridge, MA, USA
| | - Robert Crooker
- Research, Shire Pharmaceuticals, Lexington, MA, 02421, USA.,Drug Discovery, Shire, Cambridge, MA, USA
| | - Dianna Lundberg
- Discovery Therapeutics, Shire Pharmaceuticals, Lexington, MA, USA.,Drug Discovery, Shire, Cambridge, MA, USA
| | - Niksa Kastrapeli
- Discovery Therapeutics, Shire Pharmaceuticals, Lexington, MA, USA.,Drug Discovery, Shire, Cambridge, MA, USA
| | - Brian Pescatore
- Discovery Therapeutics, Shire Pharmaceuticals, Lexington, MA, USA.,Drug Discovery, Shire, Cambridge, MA, USA
| | - Alla Romashko
- Discovery Therapeutics, Shire Pharmaceuticals, Lexington, MA, USA.,Drug Discovery, Shire, Cambridge, MA, USA
| | - John Dumas
- Discovery Therapeutics, Shire Pharmaceuticals, Lexington, MA, USA.,Drug Discovery, Shire, Cambridge, MA, USA
| | - Robert Comeau
- Discovery Therapeutics, Shire Pharmaceuticals, Lexington, MA, USA.,Drug Discovery, Shire, Cambridge, MA, USA
| | - Angela Norton
- Discovery Therapeutics, Shire Pharmaceuticals, Lexington, MA, USA.,Drug Discovery, Shire, Cambridge, MA, USA
| | - Jing Pan
- Discovery Therapeutics, Shire Pharmaceuticals, Lexington, MA, USA.,Drug Discovery, Shire, Cambridge, MA, USA
| | - Haojing Rong
- Nonclinical Development, Shire Pharmaceuticals, Lexington, MA, USA.,Drug Discovery, Shire, Cambridge, MA, USA
| | - Katayoun Derakhchan
- Nonclinical Development, Shire Pharmaceuticals, Lexington, MA, USA.,Drug Discovery, Shire, Cambridge, MA, USA
| | - David E Ehmann
- Research, Shire Pharmaceuticals, Lexington, MA, 02421, USA. .,Drug Discovery, Shire, Cambridge, MA, USA.
| |
Collapse
|
14
|
Schumann C, Nguyen DX, Norgard M, Bortnyak Y, Korzun T, Chan S, Lorenz AS, Moses AS, Albarqi HA, Wong L, Michaelis K, Zhu X, Alani AWG, Taratula OR, Krasnow S, Marks DL, Taratula O. Increasing lean muscle mass in mice via nanoparticle-mediated hepatic delivery of follistatin mRNA. Am J Cancer Res 2018; 8:5276-5288. [PMID: 30555546 PMCID: PMC6276093 DOI: 10.7150/thno.27847] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 10/02/2018] [Indexed: 12/12/2022] Open
Abstract
Muscle atrophy occurs during chronic diseases, resulting in diminished quality of life and compromised treatment outcomes. There is a high demand for therapeutics that increase muscle mass while abrogating the need for special dietary and exercise requirements. Therefore, we developed an efficient nanomedicine approach capable of increasing muscle mass. Methods: The therapy is based on nanoparticle-mediated delivery of follistatin messenger RNA (mRNA) to the liver after subcutaneous administration. The delivered mRNA directs hepatic cellular machinery to produce follistatin, a glycoprotein that increases lean mass through inhibition of negative regulators of muscle mass (myostatin and activin A). These factors are elevated in numerous disease states, thereby providing a target for therapeutic intervention. Results: Animal studies validated that mRNA-loaded nanoparticles enter systemic circulation following subcutaneous injection, accumulate and internalize in the liver, where the mRNA is translated into follistatin. Follistatin serum levels were elevated for 72 h post injection and efficiently reduced activin A and myostatin serum concentrations. After eight weeks of repeated injections, the lean mass of mice in the treatment group was ~10% higher when compared to that of the controls. Conclusion: Based on the obtained results demonstrating an increased muscle mass as well as restricted fat accumulation, this nanoplatform might be a milestone in the development of mRNA technologies and the treatment of muscle wasting disorders.
Collapse
|
15
|
Shen C, Iskenderian A, Lundberg D, He T, Palmieri K, Crooker R, Deng Q, Traylor M, Gu S, Rong H, Ehmann D, Pescatore B, Strack-Logue B, Romashko A, Baviello G, Gill J, Zhang B, Meiyappan M, Pan C, Norton AW. Protein Engineering on Human Recombinant Follistatin: Enhancing Pharmacokinetic Characteristics for Therapeutic Application. J Pharmacol Exp Ther 2018; 366:291-302. [DOI: 10.1124/jpet.118.248195] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 05/07/2018] [Indexed: 01/10/2023] Open
|
16
|
Nicolas N, Muir JA, Hayward S, Chen JL, Stanton PG, Gregorevic P, de Kretser DM, Loveland KL, Bhushan S, Meinhardt A, Fijak M, Hedger MP. Induction of experimental autoimmune orchitis in mice: responses to elevated circulating levels of the activin-binding protein, follistatin. Reproduction 2017; 154:293-305. [PMID: 28667125 DOI: 10.1530/rep-17-0010] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 06/22/2017] [Accepted: 06/30/2017] [Indexed: 12/20/2022]
Abstract
Experimental autoimmune orchitis (EAO) is a rodent model of chronic testicular inflammation that mimics the pathology observed in some types of human infertility. In a previous study, testicular expression of the inflammatory/immunoregulatory cytokine, activin A, was elevated in adult mice during the onset of EAO, indicating a potential role in the regulation of the disease. Consequently, we examined the development of EAO in mice with elevated levels of follistatin, an endogenous activin antagonist, as a potential therapeutic approach to testicular inflammation. Prior to EAO induction, mice received a single intramuscular injection of a non-replicative recombinant adeno-associated viral vector carrying a gene cassette of the circulating form of follistatin, FST315 (FST group). Serum follistatin levels were increased 5-fold in the FST group compared with the control empty vector (EV) group at 30 and 50 days of EAO, but intra-testicular levels of follistatin or activin A were not significantly altered. Induction of EAO was reduced, but not prevented, with mild-to-severe damage in 75% of the EV group and 40% of the FST group, at 50 days following immunisation with testicular homogenate. However, the EAO damage score (based on disruption of the blood-testis barrier, apoptosis, testicular damage and fibrosis) and extent of intratesticular inflammation (expression of inflammatory mediators) were directly proportional to the levels of activin A measured in the testis at 50 days. These data implicate activin A in the progression of EAO, thereby providing a potential therapeutic target; however, elevating circulating follistatin levels were not sufficient to prevent EAO development.
Collapse
Affiliation(s)
- Nour Nicolas
- Department of Anatomy and Cell Biology, Justus Liebig University, Giessen, Germany.,Hudson Institute of Medical Research, Clayton, Australia
| | - Julie A Muir
- Hudson Institute of Medical Research, Clayton, Australia
| | - Susan Hayward
- Hudson Institute of Medical Research, Clayton, Australia
| | - Justin L Chen
- Hudson Institute of Medical Research, Clayton, Australia.,Baker IDI Heart and Diabetes Institute, Melbourne, Australia
| | | | - Paul Gregorevic
- Baker IDI Heart and Diabetes Institute, Melbourne, Australia
| | - David M de Kretser
- Hudson Institute of Medical Research, Clayton, Australia.,Department of Anatomy and Developmental Biology, Monash University, Melbourne, Australia
| | - Kate L Loveland
- Hudson Institute of Medical Research, Clayton, Australia.,School of Clinical Sciences, Monash University, Melbourne, Australia
| | - Sudhanshu Bhushan
- Department of Anatomy and Cell Biology, Justus Liebig University, Giessen, Germany
| | - Andreas Meinhardt
- Department of Anatomy and Cell Biology, Justus Liebig University, Giessen, Germany.,Hudson Institute of Medical Research, Clayton, Australia
| | - Monika Fijak
- Department of Anatomy and Cell Biology, Justus Liebig University, Giessen, Germany
| | - Mark P Hedger
- Hudson Institute of Medical Research, Clayton, Australia.,Department of Anatomy and Developmental Biology, Monash University, Melbourne, Australia
| |
Collapse
|
17
|
Sopko R, Mugford JW, Lehmann A, Shapiro RI, Rushe M, Kulkarni A, Worrall J, Amatucci J, Wen D, Pederson NE, Minesinger BK, Arndt JW, Pepinsky B. Engineering potent long-acting variants of the Wnt inhibitor DKK2. Protein Eng Des Sel 2017; 30:359-372. [PMID: 28180900 PMCID: PMC5425732 DOI: 10.1093/protein/gzx007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 01/19/2017] [Indexed: 11/15/2022] Open
Abstract
Wnt signaling pathways are required for a wide variety of biological processes ranging from embryonic development to tissue repair and regeneration. Dickkopf-2 (DKK2) is classically defined as a canonical Wnt inhibitor, though it may play a role in activating non-canonical Wnt pathways in the context of endothelial network formation after acute injury. Here we report the discovery of a fusion partner for a DKK2 polypeptide that significantly improves the expression, biochemical properties and pharmacokinetics (PK) of the DKK2 polypeptide. Specifically, human serum albumin (HSA) was identified as a highly effective fusion partner. Substitution of selected amino acid residues in DKK2 designed to decrease heparan sulfate binding by HSA-DKK2 variants, further improved the PK properties of the molecule in rodents. The HSA-DKK2 variants were monomeric, as thermally stable as wild type, and active as measured by their ability to bind to and prevent phosphorylation of the Wnt coreceptor LRP6. Our engineering efforts resulted in potent long-lived variants of the canonical Wnt inhibitor DKK2, applicable for Wnt pathway manipulation either by systematic delivery or focused administration at sites of tissue injury.
Collapse
Affiliation(s)
- Richelle Sopko
- Department of Cell and Protein Sciences, Biogen, Cambridge, MA 02142, USA
| | - Joshua W Mugford
- Department of Cell and Protein Sciences, Biogen, Cambridge, MA 02142, USA
| | - Andreas Lehmann
- Department of Cell and Protein Sciences, Biogen, Cambridge, MA 02142, USA
| | - Renée I Shapiro
- Department of Cell and Protein Sciences, Biogen, Cambridge, MA 02142, USA
| | - Mia Rushe
- Department of Cell and Protein Sciences, Biogen, Cambridge, MA 02142, USA
| | - Abhishek Kulkarni
- Department of Cell and Protein Sciences, Biogen, Cambridge, MA 02142, USA
| | - Joseph Worrall
- Department of Cell and Protein Sciences, Biogen, Cambridge, MA 02142, USA
| | - Joseph Amatucci
- Department of Cell and Protein Sciences, Biogen, Cambridge, MA 02142, USA
| | - Dingyi Wen
- Department of Cell and Protein Sciences, Biogen, Cambridge, MA 02142, USA
| | - Nels E Pederson
- Department of Cell and Protein Sciences, Biogen, Cambridge, MA 02142, USA
| | | | - Joseph W Arndt
- Department of Cell and Protein Sciences, Biogen, Cambridge, MA 02142, USA
| | - Blake Pepinsky
- Department of Cell and Protein Sciences, Biogen, Cambridge, MA 02142, USA
| |
Collapse
|
18
|
Testicular activin and follistatin levels are elevated during the course of experimental autoimmune epididymo-orchitis in mice. Sci Rep 2017; 7:42391. [PMID: 28205525 PMCID: PMC5304336 DOI: 10.1038/srep42391] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 01/10/2017] [Indexed: 12/26/2022] Open
Abstract
Experimental autoimmune epididymo-orchitis (EAEO) is a model of chronic inflammation, induced by immunisation with testicular antigens, which reproduces the pathology of some types of human infertility. Activins A and B regulate spermatogenesis and steroidogenesis, but are also pro-inflammatory, pro-fibrotic cytokines. Expression of the activins and their endogenous antagonists, inhibin and follistatin, was examined in murine EAEO. Adult untreated and adjuvant-treated control mice showed no pathology. All mice immunised with testis antigens developed EAEO by 50 days, characterised by loss of germ cells, immune cell infiltration and fibrosis in the testis, similar to biopsies from human inflamed testis. An increase of total CD45+ leukocytes, comprising CD3+ T cells, CD4 + CD8− and CD4 + CD25+ T cells, and a novel population of CD4 + CD8+ double positive T cells was also detected in EAEO testes. This was accompanied by increased expression of TNF, MCP-1 and IL-10. Activin A and B and follistatin protein levels were elevated in EAEO testes, with peak activin expression during the active phase of the disease, whereas mRNA expression of the inhibin B subunits (Inha and Inhbb) and activin receptor subunits (Acvr1b and Acvr2b) were downregulated. These data suggest that activin–follistatin regulation may play a role during the development of EAEO.
Collapse
|
19
|
Mulloy B, Hogwood J, Gray E, Lever R, Page CP. Pharmacology of Heparin and Related Drugs. Pharmacol Rev 2016; 68:76-141. [PMID: 26672027 DOI: 10.1124/pr.115.011247] [Citation(s) in RCA: 227] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Heparin has been recognized as a valuable anticoagulant and antithrombotic for several decades and is still widely used in clinical practice for a variety of indications. The anticoagulant activity of heparin is mainly attributable to the action of a specific pentasaccharide sequence that acts in concert with antithrombin, a plasma coagulation factor inhibitor. This observation has led to the development of synthetic heparin mimetics for clinical use. However, it is increasingly recognized that heparin has many other pharmacological properties, including but not limited to antiviral, anti-inflammatory, and antimetastatic actions. Many of these activities are independent of its anticoagulant activity, although the mechanisms of these other activities are currently less well defined. Nonetheless, heparin is being exploited for clinical uses beyond anticoagulation and developed for a wide range of clinical disorders. This article provides a "state of the art" review of our current understanding of the pharmacology of heparin and related drugs and an overview of the status of development of such drugs.
Collapse
Affiliation(s)
- Barbara Mulloy
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (B.M., C.P.P.); National Institute for Biological Standards and Control, Potters Bar, Hertfordshire, United Kingdom (J.H., E.G.); and University College London School of Pharmacy, London, United Kingdom (R.L.)
| | - John Hogwood
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (B.M., C.P.P.); National Institute for Biological Standards and Control, Potters Bar, Hertfordshire, United Kingdom (J.H., E.G.); and University College London School of Pharmacy, London, United Kingdom (R.L.)
| | - Elaine Gray
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (B.M., C.P.P.); National Institute for Biological Standards and Control, Potters Bar, Hertfordshire, United Kingdom (J.H., E.G.); and University College London School of Pharmacy, London, United Kingdom (R.L.)
| | - Rebecca Lever
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (B.M., C.P.P.); National Institute for Biological Standards and Control, Potters Bar, Hertfordshire, United Kingdom (J.H., E.G.); and University College London School of Pharmacy, London, United Kingdom (R.L.)
| | - Clive P Page
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (B.M., C.P.P.); National Institute for Biological Standards and Control, Potters Bar, Hertfordshire, United Kingdom (J.H., E.G.); and University College London School of Pharmacy, London, United Kingdom (R.L.)
| |
Collapse
|
20
|
Walker RG, Poggioli T, Katsimpardi L, Buchanan SM, Oh J, Wattrus S, Heidecker B, Fong YW, Rubin LL, Ganz P, Thompson TB, Wagers AJ, Lee RT. Biochemistry and Biology of GDF11 and Myostatin: Similarities, Differences, and Questions for Future Investigation. Circ Res 2016; 118:1125-41; discussion 1142. [PMID: 27034275 DOI: 10.1161/circresaha.116.308391] [Citation(s) in RCA: 149] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Accepted: 03/07/2016] [Indexed: 02/06/2023]
Abstract
Growth differentiation factor 11 (GDF11) and myostatin (or GDF8) are closely related members of the transforming growth factor β superfamily and are often perceived to serve similar or overlapping roles. Yet, despite commonalities in protein sequence, receptor utilization and signaling, accumulating evidence suggests that these 2 ligands can have distinct functions in many situations. GDF11 is essential for mammalian development and has been suggested to regulate aging of multiple tissues, whereas myostatin is a well-described negative regulator of postnatal skeletal and cardiac muscle mass and modulates metabolic processes. In this review, we discuss the biochemical regulation of GDF11 and myostatin and their functions in the heart, skeletal muscle, and brain. We also highlight recent clinical findings with respect to a potential role for GDF11 and/or myostatin in humans with heart disease. Finally, we address key outstanding questions related to GDF11 and myostatin dynamics and signaling during development, growth, and aging.
Collapse
Affiliation(s)
- Ryan G Walker
- From the Department of Molecular Genetics, College of Medicine, University of Cincinnati, OH (R.G.W., T.B.T.); Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, MA (T.P., L.K., S.M.B., J.O., S.W., L.L.R., A.J.W., R.T.L.); Department of Neuroscience, Institut Pasteur, Paris, France (L.K.); Cardiovascular Division (T.P.), Department of Medicine, Brigham Regenerative Medicine Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (Y.W.F., R.T.L.); Section on Islet Cell and Regenerative Biology, Joslin Diabetes Center, Boston, MA (J.O., S.W., A.J.W.); Division of Cardiology, Universitäres Herzzentrum, Zürich, Switzerland (B.H.); Department of Medicine, University of California, San Francisco (B.H., P.G.); and Division of Cardiology, San Francisco General Hospital, CA (P.G.)
| | - Tommaso Poggioli
- From the Department of Molecular Genetics, College of Medicine, University of Cincinnati, OH (R.G.W., T.B.T.); Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, MA (T.P., L.K., S.M.B., J.O., S.W., L.L.R., A.J.W., R.T.L.); Department of Neuroscience, Institut Pasteur, Paris, France (L.K.); Cardiovascular Division (T.P.), Department of Medicine, Brigham Regenerative Medicine Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (Y.W.F., R.T.L.); Section on Islet Cell and Regenerative Biology, Joslin Diabetes Center, Boston, MA (J.O., S.W., A.J.W.); Division of Cardiology, Universitäres Herzzentrum, Zürich, Switzerland (B.H.); Department of Medicine, University of California, San Francisco (B.H., P.G.); and Division of Cardiology, San Francisco General Hospital, CA (P.G.)
| | - Lida Katsimpardi
- From the Department of Molecular Genetics, College of Medicine, University of Cincinnati, OH (R.G.W., T.B.T.); Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, MA (T.P., L.K., S.M.B., J.O., S.W., L.L.R., A.J.W., R.T.L.); Department of Neuroscience, Institut Pasteur, Paris, France (L.K.); Cardiovascular Division (T.P.), Department of Medicine, Brigham Regenerative Medicine Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (Y.W.F., R.T.L.); Section on Islet Cell and Regenerative Biology, Joslin Diabetes Center, Boston, MA (J.O., S.W., A.J.W.); Division of Cardiology, Universitäres Herzzentrum, Zürich, Switzerland (B.H.); Department of Medicine, University of California, San Francisco (B.H., P.G.); and Division of Cardiology, San Francisco General Hospital, CA (P.G.)
| | - Sean M Buchanan
- From the Department of Molecular Genetics, College of Medicine, University of Cincinnati, OH (R.G.W., T.B.T.); Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, MA (T.P., L.K., S.M.B., J.O., S.W., L.L.R., A.J.W., R.T.L.); Department of Neuroscience, Institut Pasteur, Paris, France (L.K.); Cardiovascular Division (T.P.), Department of Medicine, Brigham Regenerative Medicine Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (Y.W.F., R.T.L.); Section on Islet Cell and Regenerative Biology, Joslin Diabetes Center, Boston, MA (J.O., S.W., A.J.W.); Division of Cardiology, Universitäres Herzzentrum, Zürich, Switzerland (B.H.); Department of Medicine, University of California, San Francisco (B.H., P.G.); and Division of Cardiology, San Francisco General Hospital, CA (P.G.)
| | - Juhyun Oh
- From the Department of Molecular Genetics, College of Medicine, University of Cincinnati, OH (R.G.W., T.B.T.); Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, MA (T.P., L.K., S.M.B., J.O., S.W., L.L.R., A.J.W., R.T.L.); Department of Neuroscience, Institut Pasteur, Paris, France (L.K.); Cardiovascular Division (T.P.), Department of Medicine, Brigham Regenerative Medicine Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (Y.W.F., R.T.L.); Section on Islet Cell and Regenerative Biology, Joslin Diabetes Center, Boston, MA (J.O., S.W., A.J.W.); Division of Cardiology, Universitäres Herzzentrum, Zürich, Switzerland (B.H.); Department of Medicine, University of California, San Francisco (B.H., P.G.); and Division of Cardiology, San Francisco General Hospital, CA (P.G.)
| | - Sam Wattrus
- From the Department of Molecular Genetics, College of Medicine, University of Cincinnati, OH (R.G.W., T.B.T.); Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, MA (T.P., L.K., S.M.B., J.O., S.W., L.L.R., A.J.W., R.T.L.); Department of Neuroscience, Institut Pasteur, Paris, France (L.K.); Cardiovascular Division (T.P.), Department of Medicine, Brigham Regenerative Medicine Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (Y.W.F., R.T.L.); Section on Islet Cell and Regenerative Biology, Joslin Diabetes Center, Boston, MA (J.O., S.W., A.J.W.); Division of Cardiology, Universitäres Herzzentrum, Zürich, Switzerland (B.H.); Department of Medicine, University of California, San Francisco (B.H., P.G.); and Division of Cardiology, San Francisco General Hospital, CA (P.G.)
| | - Bettina Heidecker
- From the Department of Molecular Genetics, College of Medicine, University of Cincinnati, OH (R.G.W., T.B.T.); Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, MA (T.P., L.K., S.M.B., J.O., S.W., L.L.R., A.J.W., R.T.L.); Department of Neuroscience, Institut Pasteur, Paris, France (L.K.); Cardiovascular Division (T.P.), Department of Medicine, Brigham Regenerative Medicine Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (Y.W.F., R.T.L.); Section on Islet Cell and Regenerative Biology, Joslin Diabetes Center, Boston, MA (J.O., S.W., A.J.W.); Division of Cardiology, Universitäres Herzzentrum, Zürich, Switzerland (B.H.); Department of Medicine, University of California, San Francisco (B.H., P.G.); and Division of Cardiology, San Francisco General Hospital, CA (P.G.)
| | - Yick W Fong
- From the Department of Molecular Genetics, College of Medicine, University of Cincinnati, OH (R.G.W., T.B.T.); Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, MA (T.P., L.K., S.M.B., J.O., S.W., L.L.R., A.J.W., R.T.L.); Department of Neuroscience, Institut Pasteur, Paris, France (L.K.); Cardiovascular Division (T.P.), Department of Medicine, Brigham Regenerative Medicine Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (Y.W.F., R.T.L.); Section on Islet Cell and Regenerative Biology, Joslin Diabetes Center, Boston, MA (J.O., S.W., A.J.W.); Division of Cardiology, Universitäres Herzzentrum, Zürich, Switzerland (B.H.); Department of Medicine, University of California, San Francisco (B.H., P.G.); and Division of Cardiology, San Francisco General Hospital, CA (P.G.)
| | - Lee L Rubin
- From the Department of Molecular Genetics, College of Medicine, University of Cincinnati, OH (R.G.W., T.B.T.); Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, MA (T.P., L.K., S.M.B., J.O., S.W., L.L.R., A.J.W., R.T.L.); Department of Neuroscience, Institut Pasteur, Paris, France (L.K.); Cardiovascular Division (T.P.), Department of Medicine, Brigham Regenerative Medicine Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (Y.W.F., R.T.L.); Section on Islet Cell and Regenerative Biology, Joslin Diabetes Center, Boston, MA (J.O., S.W., A.J.W.); Division of Cardiology, Universitäres Herzzentrum, Zürich, Switzerland (B.H.); Department of Medicine, University of California, San Francisco (B.H., P.G.); and Division of Cardiology, San Francisco General Hospital, CA (P.G.)
| | - Peter Ganz
- From the Department of Molecular Genetics, College of Medicine, University of Cincinnati, OH (R.G.W., T.B.T.); Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, MA (T.P., L.K., S.M.B., J.O., S.W., L.L.R., A.J.W., R.T.L.); Department of Neuroscience, Institut Pasteur, Paris, France (L.K.); Cardiovascular Division (T.P.), Department of Medicine, Brigham Regenerative Medicine Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (Y.W.F., R.T.L.); Section on Islet Cell and Regenerative Biology, Joslin Diabetes Center, Boston, MA (J.O., S.W., A.J.W.); Division of Cardiology, Universitäres Herzzentrum, Zürich, Switzerland (B.H.); Department of Medicine, University of California, San Francisco (B.H., P.G.); and Division of Cardiology, San Francisco General Hospital, CA (P.G.)
| | - Thomas B Thompson
- From the Department of Molecular Genetics, College of Medicine, University of Cincinnati, OH (R.G.W., T.B.T.); Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, MA (T.P., L.K., S.M.B., J.O., S.W., L.L.R., A.J.W., R.T.L.); Department of Neuroscience, Institut Pasteur, Paris, France (L.K.); Cardiovascular Division (T.P.), Department of Medicine, Brigham Regenerative Medicine Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (Y.W.F., R.T.L.); Section on Islet Cell and Regenerative Biology, Joslin Diabetes Center, Boston, MA (J.O., S.W., A.J.W.); Division of Cardiology, Universitäres Herzzentrum, Zürich, Switzerland (B.H.); Department of Medicine, University of California, San Francisco (B.H., P.G.); and Division of Cardiology, San Francisco General Hospital, CA (P.G.)
| | - Amy J Wagers
- From the Department of Molecular Genetics, College of Medicine, University of Cincinnati, OH (R.G.W., T.B.T.); Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, MA (T.P., L.K., S.M.B., J.O., S.W., L.L.R., A.J.W., R.T.L.); Department of Neuroscience, Institut Pasteur, Paris, France (L.K.); Cardiovascular Division (T.P.), Department of Medicine, Brigham Regenerative Medicine Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (Y.W.F., R.T.L.); Section on Islet Cell and Regenerative Biology, Joslin Diabetes Center, Boston, MA (J.O., S.W., A.J.W.); Division of Cardiology, Universitäres Herzzentrum, Zürich, Switzerland (B.H.); Department of Medicine, University of California, San Francisco (B.H., P.G.); and Division of Cardiology, San Francisco General Hospital, CA (P.G.).
| | - Richard T Lee
- From the Department of Molecular Genetics, College of Medicine, University of Cincinnati, OH (R.G.W., T.B.T.); Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, MA (T.P., L.K., S.M.B., J.O., S.W., L.L.R., A.J.W., R.T.L.); Department of Neuroscience, Institut Pasteur, Paris, France (L.K.); Cardiovascular Division (T.P.), Department of Medicine, Brigham Regenerative Medicine Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (Y.W.F., R.T.L.); Section on Islet Cell and Regenerative Biology, Joslin Diabetes Center, Boston, MA (J.O., S.W., A.J.W.); Division of Cardiology, Universitäres Herzzentrum, Zürich, Switzerland (B.H.); Department of Medicine, University of California, San Francisco (B.H., P.G.); and Division of Cardiology, San Francisco General Hospital, CA (P.G.).
| |
Collapse
|
21
|
Namwanje M, Brown CW. Activins and Inhibins: Roles in Development, Physiology, and Disease. Cold Spring Harb Perspect Biol 2016; 8:cshperspect.a021881. [PMID: 27328872 DOI: 10.1101/cshperspect.a021881] [Citation(s) in RCA: 155] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Since their original discovery as regulators of follicle-stimulating hormone (FSH) secretion and erythropoiesis, the TGF-β family members activin and inhibin have been shown to participate in a variety of biological processes, from the earliest stages of embryonic development to highly specialized functions in terminally differentiated cells and tissues. Herein, we present the history, structures, signaling mechanisms, regulation, and biological processes in which activins and inhibins participate, including several recently discovered biological activities and functional antagonists. The potential therapeutic relevance of these advances is also discussed.
Collapse
Affiliation(s)
- Maria Namwanje
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030
| | - Chester W Brown
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030 Department of Pediatrics, Baylor College of Medicine, Houston, Texas 77030 Texas Children's Hospital, Houston, Texas 77030
| |
Collapse
|
22
|
Tseng FY, Chen YT, Chi YC, Chen PL, Yang WS. Serum Levels of Follistatin Are Positively Associated With Serum-Free Thyroxine Levels in Patients With Hyperthyroidism or Euthyroidism. Medicine (Baltimore) 2016; 95:e2661. [PMID: 26844494 PMCID: PMC4748911 DOI: 10.1097/md.0000000000002661] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Follistatin is a glycoprotein with various biologic functions that plays a role in adipocyte differentiation, muscle stimulation, anti-inflammation, and energy homeostasis. Thyroid hormones influence energy expenditure, glucose, and lipid metabolism. The association between serum follistatin level and thyroid function statuses has seldom been evaluated.The objectives of this study were to compare serum follistatin concentrations in different thyroid function statuses and to evaluate the associations between serum follistatin and free thyroxine (fT4) levels.In this study, 30 patients with hyperthyroidism (HY group) and 30 euthyroid individuals (EU group) were recruited. The patients of HY group were treated with antithyroid regimens as clinically indicated, whereas no medication was given to EU group. The demographic and anthropometric characteristics, biochemical data, serum levels of follistatin, and thyroid function of both groups at baseline and at the 6th month were compared. Data of all patients were pooled for the analysis of the associations between the levels of follistatin and fT4.At baseline, the HY group had significantly higher serum follistatin levels than the EU group (median [Q1, Q3]: 1.81 [1.33, 2.78] vs 1.13 [0.39, 1.45] ng/mL, P < 0.001). When treated with antithyroid regimens, the follistatin serum levels in HY group decreased to 1.54 [1.00, 1.88] ng/mL at the 6th month. In all patients, the serum levels of follistatin were positively associated with fT4 levels at baseline (β = 0.54, P = 0.005) and at the 6th month (β = 0.59, P < 0.001). The association between follistatin and fT4 levels remained significant in the stepwise multivariate regression analysis, both initially and at the 6th month.In comparison to the EU group, patients with hyperthyroidism had higher serum follistatin levels, which decreased after receiving antithyroid treatment. In addition, the serum follistatin concentrations were positively associated with serum fT4 levels in patients with hyperthyroidism or euthyroidism.
Collapse
Affiliation(s)
- Fen-Yu Tseng
- From the Division of Endocrinology & Metabolism, Department of Internal Medicine, National Taiwan University Hospital (F-YT, P-LC, W-SY); Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University (Y-TC, Y-CC, W-SY); Department of Medical Genetics, National Taiwan University Hospital, National Taiwan University (P-LC); and Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei, Taiwan (P-LC)
| | | | | | | | | |
Collapse
|
23
|
Datta-Mannan A, Huang L, Pereira J, Yaden B, Korytko A, Croy JE. Insights into the Impact of Heterogeneous Glycosylation on the Pharmacokinetic Behavior of Follistatin-Fc–Based Biotherapeutics. Drug Metab Dispos 2015; 43:1882-90. [DOI: 10.1124/dmd.115.064519] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 09/08/2015] [Indexed: 11/22/2022] Open
|
24
|
Walker RG, Thompson TB. Fibronectin-based scaffold domain proteins that bind myostatin: a patent evaluation of WO2014043344. Expert Opin Ther Pat 2015; 25:619-24. [PMID: 25632990 DOI: 10.1517/13543776.2015.1007954] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Muscular dystrophies (MD) are commonly characterized by progressive loss of muscle mass and function. It is hypothesized that therapeutic blockade of the TGF-β ligand myostatin, a negative regulator of muscle mass, will stimulate muscle growth and restore muscle function. Although many anti-myostatin targets are currently being pursued in the clinical setting, the efficacies of the tested molecules have shown mixed results. The patent WO2014043344 describes a novel approach for myostatin inhibition using a modified fibronectin type III domain that could potentially be used to treat MD and other muscle-related pathologies.
Collapse
Affiliation(s)
- Ryan G Walker
- University of Cincinnati, College of Medicine, Department of Molecular Genetics, Biochemistry and Microbiology , Cincinnati, OH, 45267 , USA
| | | |
Collapse
|
25
|
O'Connell KE, Guo W, Serra C, Beck M, Wachtman L, Hoggatt A, Xia D, Pearson C, Knight H, O'Connell M, Miller AD, Westmoreland SV, Bhasin S. The effects of an ActRIIb receptor Fc fusion protein ligand trap in juvenile simian immunodeficiency virus-infected rhesus macaques. FASEB J 2014; 29:1165-75. [PMID: 25466897 DOI: 10.1096/fj.14-257543] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 11/05/2014] [Indexed: 01/16/2023]
Abstract
There are no approved therapies for muscle wasting in children infected with human immunodeficiency virus (HIV), which portends poor disease outcomes. To determine whether a soluble ActRIIb receptor Fc fusion protein (ActRIIB.Fc), a ligand trap for TGF-β/activin family members including myostatin, can prevent or restore loss of lean body mass and body weight in simian immunodeficiency virus (SIV)-infected juvenile rhesus macaques (Macaca mulatta). Fourteen pair-housed, juvenile male rhesus macaques were inoculated with SIVmac239 and, 4 wk postinoculation (WPI) treated with intramuscular injections of 10 mg ⋅ kg(-1) ⋅ wk(-1) ActRIIB.Fc or saline placebo. Body weight, lean body mass, SIV titers, and somatometric measurements were assessed monthly for 16 wk. Age-matched SIV-infected rhesus macaques were injected with saline. Intervention groups did not differ at baseline. Gains in lean mass were significantly greater in the ActRIIB.Fc group than in the placebo group (P < 0.001). Administration of ActRIIB.Fc was associated with greater gains in body weight (P = 0.01) and upper arm circumference than placebo. Serum CD4(+) T-lymphocyte counts and SIV copy numbers did not differ between groups. Administration of ActRIIB.Fc was associated with higher muscle expression of myostatin than placebo. ActRIIB.Fc effectively blocked and reversed loss of body weight, lean mass, and fat mass in juvenile SIV-infected rhesus macaques.
Collapse
Affiliation(s)
- Karyn E O'Connell
- *Department of Comparative Pathology, New England Primate Research Center, Southborough, Massachusetts, USA; and Research Program in Men's Health: Aging and Metabolism, Boston Claude D. Pepper Older Americans Independence Center, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Wen Guo
- *Department of Comparative Pathology, New England Primate Research Center, Southborough, Massachusetts, USA; and Research Program in Men's Health: Aging and Metabolism, Boston Claude D. Pepper Older Americans Independence Center, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Carlo Serra
- *Department of Comparative Pathology, New England Primate Research Center, Southborough, Massachusetts, USA; and Research Program in Men's Health: Aging and Metabolism, Boston Claude D. Pepper Older Americans Independence Center, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Matthew Beck
- *Department of Comparative Pathology, New England Primate Research Center, Southborough, Massachusetts, USA; and Research Program in Men's Health: Aging and Metabolism, Boston Claude D. Pepper Older Americans Independence Center, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Lynn Wachtman
- *Department of Comparative Pathology, New England Primate Research Center, Southborough, Massachusetts, USA; and Research Program in Men's Health: Aging and Metabolism, Boston Claude D. Pepper Older Americans Independence Center, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Amber Hoggatt
- *Department of Comparative Pathology, New England Primate Research Center, Southborough, Massachusetts, USA; and Research Program in Men's Health: Aging and Metabolism, Boston Claude D. Pepper Older Americans Independence Center, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Dongling Xia
- *Department of Comparative Pathology, New England Primate Research Center, Southborough, Massachusetts, USA; and Research Program in Men's Health: Aging and Metabolism, Boston Claude D. Pepper Older Americans Independence Center, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Chris Pearson
- *Department of Comparative Pathology, New England Primate Research Center, Southborough, Massachusetts, USA; and Research Program in Men's Health: Aging and Metabolism, Boston Claude D. Pepper Older Americans Independence Center, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Heather Knight
- *Department of Comparative Pathology, New England Primate Research Center, Southborough, Massachusetts, USA; and Research Program in Men's Health: Aging and Metabolism, Boston Claude D. Pepper Older Americans Independence Center, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Micheal O'Connell
- *Department of Comparative Pathology, New England Primate Research Center, Southborough, Massachusetts, USA; and Research Program in Men's Health: Aging and Metabolism, Boston Claude D. Pepper Older Americans Independence Center, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Andrew D Miller
- *Department of Comparative Pathology, New England Primate Research Center, Southborough, Massachusetts, USA; and Research Program in Men's Health: Aging and Metabolism, Boston Claude D. Pepper Older Americans Independence Center, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Susan V Westmoreland
- *Department of Comparative Pathology, New England Primate Research Center, Southborough, Massachusetts, USA; and Research Program in Men's Health: Aging and Metabolism, Boston Claude D. Pepper Older Americans Independence Center, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Shalender Bhasin
- *Department of Comparative Pathology, New England Primate Research Center, Southborough, Massachusetts, USA; and Research Program in Men's Health: Aging and Metabolism, Boston Claude D. Pepper Older Americans Independence Center, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
26
|
Ostrovidov S, Hosseini V, Ahadian S, Fujie T, Parthiban SP, Ramalingam M, Bae H, Kaji H, Khademhosseini A. Skeletal muscle tissue engineering: methods to form skeletal myotubes and their applications. TISSUE ENGINEERING. PART B, REVIEWS 2014; 20:403-36. [PMID: 24320971 PMCID: PMC4193686 DOI: 10.1089/ten.teb.2013.0534] [Citation(s) in RCA: 163] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Accepted: 12/05/2013] [Indexed: 12/25/2022]
Abstract
Skeletal muscle tissue engineering (SMTE) aims to repair or regenerate defective skeletal muscle tissue lost by traumatic injury, tumor ablation, or muscular disease. However, two decades after the introduction of SMTE, the engineering of functional skeletal muscle in the laboratory still remains a great challenge, and numerous techniques for growing functional muscle tissues are constantly being developed. This article reviews the recent findings regarding the methodology and various technical aspects of SMTE, including cell alignment and differentiation. We describe the structure and organization of muscle and discuss the methods for myoblast alignment cultured in vitro. To better understand muscle formation and to enhance the engineering of skeletal muscle, we also address the molecular basics of myogenesis and discuss different methods to induce myoblast differentiation into myotubes. We then provide an overview of different coculture systems involving skeletal muscle cells, and highlight major applications of engineered skeletal muscle tissues. Finally, potential challenges and future research directions for SMTE are outlined.
Collapse
Affiliation(s)
- Serge Ostrovidov
- WPI-Advanced Institute for Materials Research, Tohoku University, Sendai, Japan
| | - Vahid Hosseini
- Laboratory of Applied Mechanobiology, Department of Health Sciences and Technology, ETH, Zurich, Switzerland
| | - Samad Ahadian
- WPI-Advanced Institute for Materials Research, Tohoku University, Sendai, Japan
| | - Toshinori Fujie
- WPI-Advanced Institute for Materials Research, Tohoku University, Sendai, Japan
- Department of Life Science and Medical Bioscience, Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | | | - Murugan Ramalingam
- WPI-Advanced Institute for Materials Research, Tohoku University, Sendai, Japan
- Faculté de Chirurgie Dentaire, Université de Strasbourg, Strasbourg Cedex, France
- Centre for Stem Cell Research, Christian Medical College Campus, Vellore, India
| | - Hojae Bae
- College of Animal Bioscience and Technology, Department of Bioindustrial Technologies, Konkuk University, Hwayang-dong, Kwangjin-gu, Seoul, Republic of Korea
| | - Hirokazu Kaji
- Department of Bioengineering and Robotics, Graduate School of Engineering, Tohoku University, Sendai, Japan
| | - Ali Khademhosseini
- WPI-Advanced Institute for Materials Research, Tohoku University, Sendai, Japan
- Department of Maxillofacial Biomedical Engineering, Institute of Oral Biology, School of Dentistry, Kyung Hee University, Seoul, Republic of Korea
- Center for Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, Massachusetts, United States
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts, United States
- Department of Physics, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
27
|
Yaden BC, Croy JE, Wang Y, Wilson JM, Datta-Mannan A, Shetler P, Milner A, Bryant HU, Andrews J, Dai G, Krishnan V. Follistatin: a novel therapeutic for the improvement of muscle regeneration. J Pharmacol Exp Ther 2014; 349:355-71. [PMID: 24627466 DOI: 10.1124/jpet.113.211169] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Follistatin (FST) is a member of the tissue growth factor β family and is a secreted glycoprotein that antagonizes many members of the family, including activin A, growth differentiation factor 11, and myostatin. The objective of this study was to explore the use of an engineered follistatin therapeutic created by fusing FST315 lacking heparin binding activity to the N terminus of a murine IgG1 Fc (FST315-ΔHBS-Fc) as a systemic therapeutic agent in models of muscle injury. Systemic administration of this molecule was found to increase body weight and lean muscle mass after weekly administration in normal mice. Subsequently, we tested this agent in several models of muscle injury, which were chosen based on their severity of damage and their ability to reflect clinical settings. FST315-ΔHBS-Fc treatment proved to be a potent inducer of muscle remodeling and regeneration. FST315-ΔHBS-Fc induced improvements in muscle repair after injury/atrophy by modulating the early inflammatory phase allowing for increased macrophage density, and Pax7-positive cells leading to an accelerated restoration of myofibers and muscle function. Collectively, these data demonstrate the benefits of a therapeutically viable form of FST that can be leveraged as an alternate means of ameliorating muscle regeneration.
Collapse
Affiliation(s)
- Benjamin C Yaden
- Department of Biology, School of Science, Center for Regenerative Biology and Medicine, Indiana University-Purdue University, Indianapolis, Indiana (B.C.Y., J.M.W., G.D.); and Musculoskeletal Research (B.C.Y., Y.W., P.S., A.M., H.U.B., J.A., V.K.), Departments of Drug Disposition Development/Commercialization, and Biotechnology Discovery Research (J.E.C., A.D.-M.), and Translational Sciences-Molecular Pathology, Lilly Research Laboratories, Indianapolis, Indiana (J.M.W.)
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|