1
|
Li Z, Fang F, Li Y, Lv X, Zheng R, Jiao P, Wang Y, Zhu G, Jin Z, Xu X, Qiu Y, Zhang G, Li Z, Liu Z, Zhang L. Carbazole and tetrahydro-carboline derivatives as dopamine D 3 receptor antagonists with the multiple antipsychotic-like properties. Acta Pharm Sin B 2023; 13:4553-4577. [PMID: 37969740 PMCID: PMC10638516 DOI: 10.1016/j.apsb.2023.07.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 06/28/2023] [Accepted: 07/19/2023] [Indexed: 11/17/2023] Open
Abstract
Dopamine D3 receptor (D3R) is implicated in multiple psychotic symptoms. Increasing the D3R selectivity over dopamine D2 receptor (D2R) would facilitate the antipsychotic treatments. Herein, novel carbazole and tetrahydro-carboline derivatives were reported as D3R selective ligands. Through a structure-based virtual screen, ZLG-25 (D3R Ki = 685 nmol/L; D2R Ki > 10,000 nmol/L) was identified as a novel D3R selective bitopic ligand with a carbazole scaffold. Scaffolds hopping led to the discovery of novel D3R-selective analogs with tetrahydro-β-carboline or tetrahydro-γ-carboline core. Further functional studies showed that most derivatives acted as hD3R-selective antagonists. Several lead compounds could dose-dependently inhibit the MK-801-induced hyperactivity. Additional investigation revealed that 23j and 36b could decrease the apomorphine-induced climbing without cataleptic reaction. Furthermore, 36b demonstrated unusual antidepressant-like activity in the forced swimming tests and the tail suspension tests, and alleviated the MK-801-induced disruption of novel object recognition in mice. Additionally, preliminary studies confirmed the favorable PK/PD profiles, no weight gain and limited serum prolactin levels in mice. These results revealed that 36b provided potential opportunities to new antipsychotic drugs with the multiple antipsychotic-like properties.
Collapse
Affiliation(s)
- Zhongtang Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Fan Fang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yiyan Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xuehui Lv
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Ruqiu Zheng
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Peili Jiao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yuxi Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Guiwang Zhu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Zefang Jin
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xiangqing Xu
- Jiangsu Nhwa Pharmaceutical Co., Ltd., Xuzhou 221116, China
| | - Yinli Qiu
- Jiangsu Nhwa Pharmaceutical Co., Ltd., Xuzhou 221116, China
| | - Guisen Zhang
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Zhongjun Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Zhenming Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Liangren Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| |
Collapse
|
2
|
Li Z, Zhu G, Liu X, Gao T, Fang F, Dou X, Li Y, Zheng R, Jin H, Zhang L, Liu Z, Zhang L. The structure-based optimization of 3-substituted indolin-2-one derivatives as potent and isoform-selective c-Jun N-terminal kinase 3 (JNK3) inhibitors and biological evaluation. Eur J Med Chem 2023; 250:115167. [PMID: 36764123 DOI: 10.1016/j.ejmech.2023.115167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 01/28/2023] [Accepted: 01/28/2023] [Indexed: 02/05/2023]
Abstract
An indolin-2-(4-thiazolidinone) scaffold was previously shown to be a novel chemotype for JNK3 inhibition. However, more in vivo applications were limited due to the unconfirmed configuration and poor physicochemical properties. Here, the indolin-2-(4-thiazolidinone) scaffold validated the absolute configuration; substituents on the scaffold were optimized. Extensive structure activity relationship (SAR) studies were performed using kinase activity assays, thus leading to potent and highly selective JNK3 inhibitors with neuroprotective activity and good oral bioavailability. One lead compound, A53, was a potent and selective JNK3 inhibitor (IC50 = 78 nM) that had significant inhibition (>80% at 1 μM) to only JNK3 in a 398-kinase panel. A53 had low inhibition against JNK3 and high stability (t1/2(α) = 0.98 h, t1/2(β) = 2.74 h) during oral administration. A modeling study of A53 in human JNK3 showed that the indolin-2-(4-thiazolidinone)-based JNK3 inhibitor with a 5-position-substituted hydrophilic group offered improved kinase inhibition.
Collapse
Affiliation(s)
- Zhongtang Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Guiwang Zhu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Xiaoang Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Tongfei Gao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Fan Fang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Xiaodong Dou
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Yiyan Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Ruqiu Zheng
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Hongwei Jin
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Liangren Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China.
| | - Zhenming Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China.
| | - Lihe Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| |
Collapse
|
3
|
Abstract
Dystonia is by far the most intrusive and invalidating extrapyramidal side effect of potent classical antipsychotic drugs. Antipsychotic drug-induced dystonia is classified in both acute and tardive forms. The incidence of drug-induced dystonia is associated with the affinity to inhibitory dopamine D2 receptors. Particularly acute dystonia can be treated with anticholinergic drugs, but the tardive form may also respond to such antimuscarinic treatment, which contrasts their effects in tardive dyskinesia. Combining knowledge of the pathophysiology of primary focal dystonia with the anatomical and pharmacological organization of the extrapyramidal system may shed some light on the mechanism of antipsychotic drug-induced dystonia. A suitable hypothesis is derived from the understanding that focal dystonia may be due to a faulty processing of somatosensory input, so leading to inappropriate execution of well-trained motor programmes. Neuroplastic alterations of the sensitivity of extrapyramidal medium-sized spiny projection neurons to stimulation, which are induced by the training of specific complex movements, lead to the sophisticated execution of these motor plans. The sudden and non-selective disinhibition of indirect pathway medium-sized spiny projection neurons by blocking dopamine D2 receptors may distort this process. Shutting down the widespread influence of tonically active giant cholinergic interneurons on all medium-sized spiny projection neurons by blocking muscarinic receptors may result in a reduction of the influence of extrapyramidal cortical-striatal-thalamic-cortical regulation. Furthermore, striatal cholinergic interneurons have an important role to play in integrating cerebellar input with the output of cerebral cortex, and are also targeted by dopaminergic nigrostriatal fibres affecting dopamine D2 receptors.
Collapse
Affiliation(s)
- Anton JM Loonen
- Groningen Research Institute of Pharmacy, Pharmacotherapy, -Epidemiology and -Economics, University of Groningen, Groningen, The Netherlands
- Geestelijke GezondheidsZorg Westelijk Noord-Brabant (GGZ WNB), Mental Health Hospital, Halsteren, The Netherlands
| | - Svetlana A Ivanova
- Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russian Federation
- National Research Tomsk Polytechnic University, Tomsk, Russian Federation
- Siberian State Medical University, Tomsk, Russian Federation
| |
Collapse
|
4
|
Abstract
Catalepsy - an immobile state in which individuals fail to change imposed postures - can be induced by haloperidol. In rats, the pattern of haloperidol-induced catalepsy is very similar to that observed in Parkinson's disease (PD). As some PD symptoms seem to depend on the patient's emotional state, and as anxiety disorders are common in PD, it is possible that the central mechanisms regulating emotional and cataleptic states interplay. Previously, we showed that haloperidol impaired contextual-induced alarm calls in rats, without affecting footshock-evoked calls. Here, we evaluated the influence of distinct aversive stimulations on the haloperidol-induced catalepsy. First, male Wistar rats were subjected to catalepsy tests to establish a baseline state after haloperidol or saline administration. Next, distinct cohorts were exposed to open-field; elevated plus-maze; open-arm confinement; inescapable footshocks; contextual conditioned fear; or corticosterone administration. Subsequently, catalepsy tests were performed again. Haloperidol-induced catalepsy was verified in all drug-treated animals. Exposure to open-field, elevated plus-maze, open-arm confinement, footshocks, or administration of corticosterone had no significant effect on haloperidol-induced catalepsy. Contextual conditioned fear, which is supposed to promote a more intense fear, increased catalepsy over time. Our findings suggest that only specific defensive circuitries modulate the nigrostriatal system mediating the haloperidol-induced cataleptic state.
Collapse
|
5
|
Cao X, Zhang Y, Chen Y, Qiu Y, Yu M, Xu X, Liu X, Liu BF, Zhang L, Zhang G. Synthesis and Biological Evaluation of Fused Tricyclic Heterocycle Piperazine (Piperidine) Derivatives As Potential Multireceptor Atypical Antipsychotics. J Med Chem 2018; 61:10017-10039. [PMID: 30383372 DOI: 10.1021/acs.jmedchem.8b01096] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Herein, a novel series of multireceptor ligands was developed as polypharmacological antipsychotic agents using the designed multiple ligand approach between dopamine receptors and serotonin receptors. Among them, compound 47 possessed unique pharmacological features, exhibiting high affinities for D2, D3, 5-HT1A, 5-HT2A, and 5-HT6 receptors and low efficacy at the off-target receptors (5-HT2C, histamine H1, and adrenergic α1 receptor). Compound 47 showed dose-dependent inhibition of apomorphine- and MK-801-induced motor behavior, and the conditioned avoidance response with low cataleptic effect. Moreover, compound 47 resulted nonsignificantly serum prolactin levels and weight gain change compared with risperidone. Additionally, compound 47 possessed a favorable pharmacokinetic profile with oral bioavailability of 58.8% in rats. Furthermore, compound 47 displayed procognition properties in a novel object recognition task in rats. Taken together, compound 47 may constitute a novel class of atypical antipsychotic drugs for schizophrenia.
Collapse
Affiliation(s)
- Xudong Cao
- Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology , Huazhong University of Science and Technology , Wuhan 430074 , China
| | - Yifang Zhang
- Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology , Huazhong University of Science and Technology , Wuhan 430074 , China
| | - Yin Chen
- Jiangsu Nhwa Pharmaceutical Co., Ltd. 69 Democratic South Road , Xuzhou , Jiangsu 221116 , China
| | - Yinli Qiu
- Jiangsu Nhwa Pharmaceutical Co., Ltd. 69 Democratic South Road , Xuzhou , Jiangsu 221116 , China
| | - Minquan Yu
- Jiangsu Nhwa Pharmaceutical Co., Ltd. 69 Democratic South Road , Xuzhou , Jiangsu 221116 , China
| | - Xiangqing Xu
- Jiangsu Nhwa Pharmaceutical Co., Ltd. 69 Democratic South Road , Xuzhou , Jiangsu 221116 , China
| | - Xin Liu
- Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology , Huazhong University of Science and Technology , Wuhan 430074 , China
| | - Bi-Feng Liu
- Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology , Huazhong University of Science and Technology , Wuhan 430074 , China
| | - Liangren Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences , Peking University , Beijing 100191 , China
| | - Guisen Zhang
- Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology , Huazhong University of Science and Technology , Wuhan 430074 , China.,Jiangsu Nhwa Pharmaceutical Co., Ltd. 69 Democratic South Road , Xuzhou , Jiangsu 221116 , China
| |
Collapse
|
6
|
Xu M, Wang Y, Yang F, Wu C, Wang Z, Ye B, Jiang X, Zhao Q, Li J, Liu Y, Zhang J, Tian G, He Y, Shen J, Jiang H. Synthesis and biological evaluation of a series of multi-target N-substituted cyclic imide derivatives with potential antipsychotic effect. Eur J Med Chem 2018; 145:74-85. [PMID: 29324345 DOI: 10.1016/j.ejmech.2017.12.099] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 12/29/2017] [Accepted: 12/30/2017] [Indexed: 12/17/2022]
Abstract
In the present study, a series of multi-target N-substituted cyclic imide derivatives which possessed potent dopamine D2, serotonin 5-HT1A and 5-HT2A receptors properties were synthesized and evaluated as potential antipsychotics. Among these compounds, (3aR,4R,7S,7aS)-2-(4-(4-(benzo[b]thiophen-4-yl)piperazin-1-yl)butyl)-3a,4,7,7a-tetrahydro-1H-4,7-methanoisoindole-1,3(2H)-dione hydrochloride (3d) held a promising pharmacological profile. 3d not only showed potent and balanced in vitro activities on D2/5-HT1A/5-HT2A receptors, but also endowed with low to moderate activities on 5-HT2C, H1, α1A, M3 receptors and hERG channel, suggesting a low liability to induce side effects such as weight gain, orthostatic hypotension and QT prolongation. In animal behavioral studies, 3d reduced phencyclidine-induced hyperlocomotion with a high threshold for catalepsy induction. Compound 3d was selected as a potential antipsychotic candidate for further development.
Collapse
Affiliation(s)
- Mingshuo Xu
- CAS Key Laboratory for Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Yu Wang
- CAS Key Laboratory for Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Feipu Yang
- CAS Key Laboratory for Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Chunhui Wu
- Topharman Shanghai Co., Ltd, 1088 Chuansha Road, Shanghai 201209, China
| | - Zhen Wang
- CAS Key Laboratory for Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Bin Ye
- Topharman Shanghai Co., Ltd, 1088 Chuansha Road, Shanghai 201209, China
| | - Xiangrui Jiang
- CAS Key Laboratory for Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Qingjie Zhao
- CAS Key Laboratory for Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Jianfeng Li
- CAS Key Laboratory for Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Yongjian Liu
- Topharman Shanghai Co., Ltd, 1088 Chuansha Road, Shanghai 201209, China
| | - Junchi Zhang
- CAS Key Laboratory for Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Guanghui Tian
- Topharman Shanghai Co., Ltd, 1088 Chuansha Road, Shanghai 201209, China
| | - Yang He
- CAS Key Laboratory for Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China.
| | - Jingshan Shen
- CAS Key Laboratory for Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Hualiang Jiang
- CAS Key Laboratory for Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| |
Collapse
|
7
|
Lister J, Andreazza AC, Navaid B, Wilson VS, Teo C, Nesarajah Y, Wilson AA, Nobrega JN, Fletcher PJ, Remington G. Lipoic acid and haloperidol-induced vacuous chewing movements: Implications for prophylactic antioxidant use in tardive dyskinesia. Prog Neuropsychopharmacol Biol Psychiatry 2017; 72:23-29. [PMID: 27565433 DOI: 10.1016/j.pnpbp.2016.08.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Revised: 08/03/2016] [Accepted: 08/20/2016] [Indexed: 01/30/2023]
Abstract
Tardive dyskinesia (TD), a potentially irreversible antipsychotic (AP)-related movement disorder, is a risk with all currently available antipsychotics. AP-induced vacuous chewing movements (VCMs) in rats, a preclinical model of TD, can be attenuated by antioxidant-based treatments although there is a shortage of well-designed studies. Lipoic acid (LA) represents a candidate antioxidant for the treatment of oxidative stress-related nervous system disorders; accordingly, its effects on AP-induced VCMs and striatal oxidative stress were examined. Rats treated with haloperidol decanoate (HAL; 21mg/kg every 3weeks, IM) for 12weeks were concurrently treated with LA (10 or 20mg/kg, PO). VCMs were assessed weekly by a blinded rater, and locomotor activity was evaluated as were striatal lipid peroxidation markers and serum HAL levels. VCMs were decreased by the lower dose (nonsignificant), whereas a significant increase was recorded with the higher dose of LA. HAL decreased locomotor activity and this was unaffected by LA. Striatal malondialdehyde (MDA) levels in HAL-treated rats were reduced by both LA doses, while 4-hydroxynonenal (4-HNE) levels were predictive of final VCM scores (averaged across weeks 10-12). Study limitations include differences between antipsychotics in terms of oxidative stress, LA dosing, choice of biomarkers for lipid peroxidation, and generalizability to TD in humans. Collectively, current preclinical evidence does not support a "protective" role for antioxidants in preventing TD or its progression, although clinical evidence offers limited evidence supporting such an approach.
Collapse
Affiliation(s)
- Joshua Lister
- Centre for Addiction and Mental Health, Toronto, ON, Canada; Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Ana C Andreazza
- Centre for Addiction and Mental Health, Toronto, ON, Canada; Institute of Medical Science, University of Toronto, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Bushra Navaid
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | | | - Celine Teo
- Centre for Addiction and Mental Health, Toronto, ON, Canada
| | | | - Alan A Wilson
- Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - José N Nobrega
- Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Department of Psychology, University of Toronto, Toronto, ON, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Paul J Fletcher
- Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Department of Psychology, University of Toronto, Toronto, ON, Canada
| | - Gary Remington
- Centre for Addiction and Mental Health, Toronto, ON, Canada; Institute of Medical Science, University of Toronto, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
8
|
Ogawa LM, Vallender EJ. Genetic substructure in cynomolgus macaques (Macaca fascicularis) on the island of Mauritius. BMC Genomics 2014; 15:748. [PMID: 25174998 PMCID: PMC4167525 DOI: 10.1186/1471-2164-15-748] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 08/21/2014] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Nonhuman primates are commonly used in biomedical research as animal models of human disease and behavior. Compared to common rodent models, nonhuman primates are genetically, physiologically, behaviorally and neurologically more similar to humans owing to more recent shared ancestry and therefore provide the advantage of greater translational validity in preclinical studies. The cynomolgus macaque (Macaca fascicularis) is one of the most commonly used nonhuman primates in academic and industry settings, yet population genetic research has revealed significant substructure throughout the species distribution that may confound studies. Cynomolgus monkeys introduced to Mauritius specifically have previously been thought to maintain the least genetic heterogeneity of all cynomolgus monkeys, although recent work, including work from our lab, suggests macaques from Mauritius too may harbor cryptic substructure. RESULTS To evaluate putative substructure in Mauritian cynomolgus macaques, we designed a panel of 96 single nucleotide polymorphisms based on preliminary findings from previous work to screen 246 of cynomolgus monkeys from two primary suppliers. Results from this study support substructure in Mauritian macaques and suggest a minimum of two populations and maybe three on Mauritius, with moderate admixture. CONCLUSION These findings inform the natural history of these monkeys suggesting either a previously unrecognized physical or ecological barrier to gene flow on Mauritius and/or the breakdown of historic substructure resulting from the history of macaque introduction to the island. These findings are relevant to ongoing research using these models in part because of increased appreciation of segregating common variation with functional effects and may be used to better inform animal selection in preclinical research.
Collapse
Affiliation(s)
- Lisa M Ogawa
- New England Primate Research Center, Harvard Medical School, Southborough, MA 01772 USA
| | - Eric J Vallender
- New England Primate Research Center, Harvard Medical School, Southborough, MA 01772 USA
| |
Collapse
|