1
|
Remes A, Arif R, Franz M, Jungmann A, Zaradzki M, Puehler T, Md MBH, Frey N, Karck M, Kallenbach K, Hecker M, Müller OJ, Wagner AH. AAV-mediated AP-1 decoy oligonucleotide expression inhibits aortic elastolysis in a mouse model of marfan syndrome. Cardiovasc Res 2021; 117:2459-2473. [PMID: 33471064 DOI: 10.1093/cvr/cvab012] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 03/02/2019] [Accepted: 01/12/2021] [Indexed: 01/05/2023] Open
Abstract
AIMS Marfan syndrome is one of the most common inherited disorders of connective tissue caused by fibrillin-1 mutations, characterized by enhanced transcription factor AP-1 DNA binding activity and subsequently abnormally increased expression and activity of matrix-metalloproteinases (MMPs). We aimed to establish a novel adeno-associated virus (AAV)-based strategy for long-term expression of an AP-1 neutralising RNA hairpin (hp) decoy oligonucleotide (dON) in the aorta to prevent aortic elastolysis in a murine model of Marfan syndrome. METHODS AND RESULTS Using fibrillin-1 hypomorphic mice (mgR/mgR), aortic grafts from young (9 weeks old) donor mgR/mgR mice were transduced ex vivo with AAV vectors and implanted as infrarenal aortic interposition grafts in mgR/mgR mice. Grafts were explanted after 30 days. For in vitro studies isolated primary aortic smooth muscle cells from mgR/mgR mice were used. Elastica-van-Giesson staining visualized elastolysis, ROS production was assessed using DHE staining. RNA F.I.S.H. verified AP-1 hp dON generation in the ex vivo transduced aortic tissue. MMP expression and activity were assessed by western blotting and immunoprecipitation combined with zymography.Transduction resulted in stable therapeutic dON expression in endothelial and smooth muscle cells. MMP expression and activity, ROS formation as well as expression of monocyte chemoattractant protein-1 were significantly reduced. Monocyte graft infiltration declined and the integrity of the elastin architecture was maintained. RNAseq analyzis confirmed the beneficial effect of AP-1 neutralisation on the pro-inflammatory environment in smooth muscle cells. CONCLUSIONS This novel approach protects from deterioration of aortic stability by sustained delivery of nucleic acids-based therapeutics and further elucidated how to interfere with the mechanism of elastolysis. TRANSLATIONAL PERSPECTIVE This study provides a novel single treatment option to achieve long-term expression of a transcription factor AP-1 neutralising decoy oligonucleotide in the aorta of mgR/mgR mice with the potential to prevent life-threatening elastolysis and aortic complications.
Collapse
Affiliation(s)
- Anca Remes
- Department of Internal Medicine III, University of Kiel, and University Hospital Schleswig-Holstein, Kiel, and German Centre for Cardiovascular Research, Partner Site, Hamburg/Kiel/Lübeck, Germany.,Institute of Physiology and Pathophysiology, Heidelberg University, Germany
| | - Rawa Arif
- Department of Cardiac Surgery, University Hospital Heidelberg, Germany
| | - Maximilian Franz
- Department of Cardiac Surgery, University Hospital Heidelberg, Germany
| | | | - Marcin Zaradzki
- Department of Cardiac Surgery, University Hospital Heidelberg, Germany
| | - Thomas Puehler
- Department of Cardiac and Vascular Surgery, University of Kiel and University Hospital Schleswig-Holstein, Kiel, Germany
| | | | - Norbert Frey
- Department of Internal Medicine III, University of Kiel, and University Hospital Schleswig-Holstein, Kiel, and German Centre for Cardiovascular Research, Partner Site, Hamburg/Kiel/Lübeck, Germany.,Internal Medicine III, University Hospital Heidelberg, Germany
| | - Matthias Karck
- Department of Cardiac Surgery, University Hospital Heidelberg, Germany
| | | | - Markus Hecker
- Institute of Physiology and Pathophysiology, Heidelberg University, Germany
| | - Oliver J Müller
- Department of Internal Medicine III, University of Kiel, and University Hospital Schleswig-Holstein, Kiel, and German Centre for Cardiovascular Research, Partner Site, Hamburg/Kiel/Lübeck, Germany
| | - Andreas H Wagner
- Institute of Physiology and Pathophysiology, Heidelberg University, Germany
| |
Collapse
|
2
|
Ishizu T, Higo S, Masumura Y, Kohama Y, Shiba M, Higo T, Shibamoto M, Nakagawa A, Morimoto S, Takashima S, Hikoso S, Sakata Y. Targeted Genome Replacement via Homology-directed Repair in Non-dividing Cardiomyocytes. Sci Rep 2017; 7:9363. [PMID: 28839205 PMCID: PMC5571012 DOI: 10.1038/s41598-017-09716-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 07/28/2017] [Indexed: 01/06/2023] Open
Abstract
Although high-throughput sequencing can elucidate the genetic basis of hereditary cardiomyopathy, direct interventions targeting pathological mutations have not been established. Furthermore, it remains uncertain whether homology-directed repair (HDR) is effective in non-dividing cardiomyocytes. Here, we demonstrate that HDR-mediated genome editing using CRISPR/Cas9 is effective in non-dividing cardiomyocytes. Transduction of adeno-associated virus (AAV) containing sgRNA and repair template into cardiomyocytes constitutively expressing Cas9 efficiently introduced a fluorescent protein to the C-terminus of Myl2. Imaging-based sequential evaluation of endogenously tagged protein revealed that HDR occurs in cardiomyocytes, independently of DNA synthesis. We sought to repair a pathological mutation in Tnnt2 in cardiomyocytes of cardiomyopathy model mice. An sgRNA that avoided the mutated exon minimized deleterious effects on Tnnt2 expression, and AAV-mediated HDR achieved precise genome correction at a frequency of ~12.5%. Thus, targeted genome replacement via HDR is effective in non-dividing cardiomyocytes, and represents a potential therapeutic tool for targeting intractable cardiomyopathy.
Collapse
Affiliation(s)
- Takamaru Ishizu
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
| | - Shuichiro Higo
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan.
| | - Yuki Masumura
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
| | - Yasuaki Kohama
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
| | - Mikio Shiba
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
| | - Tomoaki Higo
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
| | - Masato Shibamoto
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
| | - Akito Nakagawa
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
| | - Sachio Morimoto
- Department of Health and Medical Care, International University of Health and Welfare, Okawa, Fukuoka, 831-8501, Japan
| | - Seiji Takashima
- Department of Medical Biochemistry, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
| | - Shungo Hikoso
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan.,Department of Medical Therapeutics for Heart Failure, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
| | - Yasushi Sakata
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
3
|
Abstract
Since the advent of the generation of human induced pluripotent stem cells (hiPSCs), numerous protocols have been developed to differentiate hiPSCs into cardiomyocytes and then subsequently assess their ability to recapitulate the properties of adult human cardiomyocytes. However, hiPSC-derived cardiomyocytes (hiPSC-CMs) are often assessed in single-cell assays. A shortcoming of these assays is the limited ability to characterize the physiological parameters of cardiomyocytes, such as contractile force, due to random orientations. This protocol describes the differentiation of cardiomyocytes from hiPSCs, which occurs within 14 d. After casting, cardiomyocytes undergo 3D assembly. This produces fibrin-based engineered heart tissues (EHTs)-in a strip format-that generate force under auxotonic stretch conditions. 10-15 d after casting, the EHTs can be used for contractility measurements. This protocol describes parallel expansion of hiPSCs; standardized generation of defined embryoid bodies, growth factor and small-molecule-based cardiac differentiation; and standardized generation of EHTs. To carry out the protocol, experience in advanced cell culture techniques is required.
Collapse
|
4
|
Abstract
The prognosis of patients with coronary artery disease and stroke has improved substantially over the last decade as a result of advances in primary and secondary preventive care as well as novel interventional approaches, including the development of drug-eluting stents and balloons. Despite this progress, however, cardiovascular disease remains the leading cause of death in industrialized nations. Sustained efforts to elucidate the underlying mechanisms of atherogenesis, reperfusion-induced cardiac injury, and ischemic heart failure have led to the identification of several target genes as key players in the development and progression of atherosclerotic vascular disease. This knowledge has now enabled genetic therapeutic modulation not only for inherited diseases with a single gene defect, such as familial hypercholesterolemia, but also for multifactorial disorders. This review will focus on approaches in adeno-associated viral (AAV)-mediated gene therapy for atherosclerosis and its long-term sequelae.
Collapse
|