1
|
Braniff N, Joshi T, Cassidy T, Trogdon M, Kumar R, Poels K, Allen R, Musante CJ, Shtylla B. An integrated quantitative systems pharmacology virtual population approach for calibration with oncology efficacy endpoints. CPT Pharmacometrics Syst Pharmacol 2024. [PMID: 39508122 DOI: 10.1002/psp4.13270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/23/2024] [Accepted: 10/10/2024] [Indexed: 11/08/2024] Open
Abstract
In drug development, quantitative systems pharmacology (QSP) models are becoming an increasingly important mathematical tool for understanding response variability and for generating predictions to inform development decisions. Virtual populations are essential for sampling uncertainty and potential variability in QSP model predictions, but many clinical efficacy endpoints can be difficult to capture with QSP models that typically rely on mechanistic biomarkers. In oncology, challenges are particularly significant when connecting tumor size with time-to-event endpoints like progression-free survival while also accounting for censoring due to consent withdrawal, loss in follow-up, or safety criteria. Here, we expand on our prior work and propose an extended virtual population selection algorithm that can jointly match tumor burden dynamics and progression-free survival times in the presence of censoring. We illustrate the core components of our algorithm through simulation and calibration of a signaling pathway model that was fitted to clinical data for a small molecule targeted inhibitor. This methodology provides an approach that can be tailored to other virtual population simulations aiming to match survival endpoints for solid-tumor clinical datasets.
Collapse
Affiliation(s)
- Nathan Braniff
- Pharmacometrics & Systems Pharmacology, Pfizer Inc., La Jolla, California, USA
| | | | - Tyler Cassidy
- Pharmacometrics & Systems Pharmacology, Pfizer Inc., Cambridge, Massachusetts, USA
| | - Michael Trogdon
- Pharmacometrics & Systems Pharmacology, Pfizer Inc., La Jolla, California, USA
| | | | - Kamrine Poels
- Pharmacometrics & Systems Pharmacology, Pfizer Inc., La Jolla, California, USA
| | - Richard Allen
- Pharmacometrics & Systems Pharmacology, Pfizer Inc., Cambridge, Massachusetts, USA
| | - Cynthia J Musante
- Pharmacometrics & Systems Pharmacology, Pfizer Inc., Cambridge, Massachusetts, USA
| | - Blerta Shtylla
- Pharmacometrics & Systems Pharmacology, Pfizer Inc., La Jolla, California, USA
| |
Collapse
|
2
|
Baba K, Goto Y. Lorlatinib as a treatment for ALK-positive lung cancer. Future Oncol 2022; 18:2745-2766. [PMID: 35787143 DOI: 10.2217/fon-2022-0184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Lorlatinib, a third-generation ALK tyrosine kinase inhibitor, has been approved as a treatment for ALK-positive lung cancer. This review provides information regarding the pharmacology and clinical features of lorlatinib, including its efficacy and associated adverse events. Pivotal clinical trials are discussed along with the current status of lorlatinib as a treatment for ALK-positive lung cancer and future therapeutic challenges.
Collapse
Affiliation(s)
- Keisuke Baba
- Department of Thoracic Oncology, National Cancer Center Hospital, Chuo-ku, Tokyo, Japan
| | - Yasushi Goto
- Department of Thoracic Oncology, National Cancer Center Hospital, Chuo-ku, Tokyo, Japan
| |
Collapse
|
3
|
Foo J, Basanta D, Rockne RC, Strelez C, Shah C, Ghaffarian K, Mumenthaler SM, Mitchell K, Lathia JD, Frankhouser D, Branciamore S, Kuo YH, Marcucci G, Vander Velde R, Marusyk A, Hang S, Hari K, Jolly MK, Hatzikirou H, Poels K, Spilker M, Shtylla B, Robertson-Tessi M, Anderson ARA. Roadmap on plasticity and epigenetics in cancer. Phys Biol 2022; 19. [PMID: 35078159 PMCID: PMC9190291 DOI: 10.1088/1478-3975/ac4ee2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 01/25/2022] [Indexed: 11/22/2022]
Abstract
The role of plasticity and epigenetics in shaping cancer evolution and response to therapy has taken center stage with recent technological advances including single cell sequencing. This roadmap article is focused on state-of-the-art mathematical and experimental approaches to interrogate plasticity in cancer, and addresses the following themes and questions: is there a formal overarching framework that encompasses both non-genetic plasticity and mutation-driven somatic evolution? How do we measure and model the role of the microenvironment in influencing/controlling non-genetic plasticity? How can we experimentally study non-genetic plasticity? Which mathematical techniques are required or best suited? What are the clinical and practical applications and implications of these concepts?
Collapse
Affiliation(s)
- Jasmine Foo
- University of Minnesota System, School of Mathematics, Minneapolis, Minnesota, 55455-2020, UNITED STATES
| | - David Basanta
- Integrated Mathematical Oncology, H Lee Moffitt Cancer Center and Research Center Inc, H Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, MRC-3 West/IMO, Tampa, Florida 33612USA, Tampa, Florida, 33612-9416, UNITED STATES
| | - Russell C Rockne
- Computational and Quantitative Medicine; Division of Mathematical Oncology, Beckman Research Institute, 1500 E Duarte Rd, Rose Vogel Building (74), Duarte, California, 91010, UNITED STATES
| | - Carly Strelez
- Lawrence J. Ellison Institute , Transformative Medicine, Los Angeles, CA 90064, UNITED STATES
| | - Curran Shah
- Lawrence J. Ellison Institute , Transformative Medicine, Los Angeles, CA 90064, UNITED STATES
| | - Kimya Ghaffarian
- Lawrence J. Ellison Institute , Transformative Medicine, Los Angeles, CA 90064, UNITED STATES
| | - Shannon M Mumenthaler
- Lawrence J. Ellison Institute , Transformative Medicine, Los Angeles, CA 90064, UNITED STATES
| | - Kelly Mitchell
- Department of Cardiovascular & Metabolic Sciences, Cleveland Clinic, Lerner Research Institute, Cleveland, Ohio, 44195-5243, UNITED STATES
| | - Justin D Lathia
- Department of Cardiovascular & Metabolic Sciences, Cleveland Clinic, Lerner Research Institute, Cleveland, Ohio, 44195-5243, UNITED STATES
| | - David Frankhouser
- Computational and Quantitative Medicine; Division of Mathematical Oncology, Beckman Research Institute, 1500 E Duarte Rd, Rose Vogel Building (74), Duarte, California, 91010, UNITED STATES
| | - Sergio Branciamore
- Computational and Quantitative Medicine; Division of Mathematical Oncology, Beckman Research Institute, 1500 E Duarte Rd, Rose Vogel Building (74), Duarte, California, 91010, UNITED STATES
| | - Ya-Huei Kuo
- Hematologic Malignancies Translational Science, City of Hope National Medical Center, Beckman Research Institute, 1500 E Duarte Rd, Rose Vogel Building (74), Duarte, California, 91010, UNITED STATES
| | - Guido Marcucci
- Hematologic Malignancies Translational Science, City of Hope National Medical Center, Beckman Research Institute, 1500 E Duarte Rd, Rose Vogel Building (74), Duarte, California, 91010, UNITED STATES
| | - Robert Vander Velde
- Department of Cancer Physiology, H Lee Moffitt Cancer Center and Research Center Inc, H Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, MRC-3 West/IMO, Tampa, Florida 33612USA, Tampa, Florida, 33612-9416, UNITED STATES
| | - Andriy Marusyk
- Cancer Physiology, Moffitt Cancer Center, 12902 USF Magnolia Drive, Tampa, Florida, 33612, UNITED STATES
| | - Sui Hang
- Institute for Systems Biology, Systems Biology, WA , WA 98109, UNITED STATES
| | - Kishore Hari
- Indian Institute of Science, 560012 Bangalore, Bangalore, 560012, INDIA
| | - Mohit Kumar Jolly
- Centre for BioSystems Science and Engineering,, Indian Institute of Science, 560012 Bangalore, Bangalore, 560012, INDIA
| | - Haralampos Hatzikirou
- Khalifa University, P.O. Box: 127788, Abu Dhabi, Abu Dhabi, NA, UNITED ARAB EMIRATES
| | - Kamrine Poels
- Early Clinical Development, Pfizer Global Research and Development, Early Clinical Development, Groton, Connecticut, 06340, UNITED STATES
| | - Mary Spilker
- Medicine Design, Pfizer Global Research and Development, Medicine Design, Groton, Connecticut, 06340, UNITED STATES
| | - Blerta Shtylla
- Early Clinical Development, Pfizer Global Research and Development, Early Clinical Development, Groton, Connecticut, 06340, UNITED STATES
| | - Mark Robertson-Tessi
- Integrated Mathematical Oncology Department, Moffitt Cancer Center, 12902 USF Magnolia Drive, Tampa, Florida, 33612, UNITED STATES
| | - Alexander R A Anderson
- Integrated Mathematical Oncology, Moffitt Cancer Center, Co-Director of Integrated Mathematical Oncology, 12902 Magnolia Drive, SRB 4 Rm 24000H, Tampa, Florida 33612, Tampa, 33612, UNITED STATES
| |
Collapse
|
4
|
El Darsa H, Abdel-Rahman O, Sangha R. Pharmacological and clinical properties of lorlatinib in the treatment of ALK-rearranged advanced non-small cell lung cancer. Expert Opin Pharmacother 2020; 21:1547-1554. [PMID: 32511029 DOI: 10.1080/14656566.2020.1774552] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
INTRODUCTION Approximately 3-7% of advanced non-small cell lung cancers (NSCLC) are driven by an anaplastic lymphoma kinase (ALK) rearrangement. Crizotinib, ceritinib, alectinib, and brigatinib are active ALK inhibitors (ALKi) used to treat this oncogene-driven subset of NSCLC. Resistance occurs with time to ALKi and new therapeutics are being developed. Lorlatinib is an efficacious third-generation ALKi with an ability to overcome resistance mutations that develop with first- or second-generation ALKi. AREAS COVERED Herein, the authors review the mechanism of action, pharmacokinetics, pharmacodynamics, clinical efficacy, and safety of lorlatinib and provide their future perspectives on this drug. EXPERT COMMENTARY Lorlatinib is a potent ALK and ROS-1 inhibitor that also has activity against many acquired ALK resistance mutations. Clinical trials show the robust systemic and intracranial anti-tumor activity of lorlatinib in ALK rearranged advanced NSCLC. Adverse events of lorlatinib are unique and manageable. These include hypocholesteremia, hypertriglyceridemia, edema, cognitive effects, weight gain, and diarrhea. Loratinib will play an increasing role in the management of ALK-rearranged NSCLC with the optimal sequencing of ALKi undergoing further research.
Collapse
Affiliation(s)
- Haidar El Darsa
- Department of Oncology, University of Alberta, Cross Cancer Institute , Edmonton, Canada
| | - Omar Abdel-Rahman
- Department of Oncology, University of Alberta, Cross Cancer Institute , Edmonton, Canada
| | - Randeep Sangha
- Department of Oncology, University of Alberta, Cross Cancer Institute , Edmonton, Canada
| |
Collapse
|
5
|
Gu Y, Sai Y, Wang J, Yu M, Wang G, Zhang L, Ren H, Fan S, Ren Y, Qing W, Su W. Preclinical pharmacokinetics, disposition, and translational pharmacokinetic/pharmacodynamic modeling of savolitinib, a novel selective cMet inhibitor. Eur J Pharm Sci 2019; 136:104938. [PMID: 31132401 DOI: 10.1016/j.ejps.2019.05.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 05/14/2019] [Accepted: 05/23/2019] [Indexed: 01/16/2023]
Abstract
Savolitinib is a novel small-molecule selective cMet inhibitor. This work characterized its pharmacokinetics in preclinical phase, established the preclinical relationships between PK, cMet modulation and anti-tumor efficacy. In vitro and in vivo animal studies were performed for PK characterization. Savolitinib showed good absorption, moderate tissue distribution, low to intermediate clearance, and low accumulation. Hepatic oxidative metabolism followed by urinary and biliary excretions was the major elimination pathway. Based on preclinical PK data, human PK profiles were predicted using empirical methods. Pharmacodynamic studies for evaluating cMet inhibition and anti-tumor efficacy were conducted in nude mice bearing Hs746t xenograft. PK/PD models were built to link the PD measurements to nude mouse PK. The established integrated preclinical PK/PD model contained a two-compartment non-linear PK model, a biomarker link model and a tumor growth transit model. The IC50 of cMet inhibition and the concentration achieving half of the maximal Hs746t tumor reduction by savolitinib were equal to 12.5 and 3.7 nM (free drug), respectively. Based on the predicted human PK data, as well as the established PK/PD model in nude mouse, the human PD (cMet inhibition) profiles were also simulated. This research supported clinical development of savolitinib. Understanding the preclinical PK/PD relationship of savolitinib provides translational insights into the cMet-targeted drug development.
Collapse
Affiliation(s)
- Yi Gu
- Hutchison MediPharma Limited, Building 4, 720 Cailun Road, Zhang-Jiang Hi-Tech Park, Shanghai 201203, China.
| | - Yang Sai
- Hutchison MediPharma Limited, Building 4, 720 Cailun Road, Zhang-Jiang Hi-Tech Park, Shanghai 201203, China.
| | - Jian Wang
- Hutchison MediPharma Limited, Building 4, 720 Cailun Road, Zhang-Jiang Hi-Tech Park, Shanghai 201203, China.
| | - Meijing Yu
- Hutchison MediPharma Limited, Building 4, 720 Cailun Road, Zhang-Jiang Hi-Tech Park, Shanghai 201203, China.
| | - Guanglin Wang
- Hutchison MediPharma Limited, Building 4, 720 Cailun Road, Zhang-Jiang Hi-Tech Park, Shanghai 201203, China.
| | - Li Zhang
- Hutchison MediPharma Limited, Building 4, 720 Cailun Road, Zhang-Jiang Hi-Tech Park, Shanghai 201203, China.
| | - Hongcan Ren
- Hutchison MediPharma Limited, Building 4, 720 Cailun Road, Zhang-Jiang Hi-Tech Park, Shanghai 201203, China.
| | - Shiming Fan
- Hutchison MediPharma Limited, Building 4, 720 Cailun Road, Zhang-Jiang Hi-Tech Park, Shanghai 201203, China.
| | - Yongxin Ren
- Hutchison MediPharma Limited, Building 4, 720 Cailun Road, Zhang-Jiang Hi-Tech Park, Shanghai 201203, China.
| | - Weiguo Qing
- Hutchison MediPharma Limited, Building 4, 720 Cailun Road, Zhang-Jiang Hi-Tech Park, Shanghai 201203, China.
| | - Weiguo Su
- Hutchison MediPharma Limited, Building 4, 720 Cailun Road, Zhang-Jiang Hi-Tech Park, Shanghai 201203, China.
| |
Collapse
|
6
|
Daryaee F, Tonge PJ. Pharmacokinetic-pharmacodynamic models that incorporate drug-target binding kinetics. Curr Opin Chem Biol 2019; 50:120-127. [PMID: 31030171 DOI: 10.1016/j.cbpa.2019.03.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 03/08/2019] [Accepted: 03/09/2019] [Indexed: 01/30/2023]
Abstract
Pharmacokinetic/pharmacodynamic (PK/PD) models predict the effect time course resulting from a drug dose. In this review, we summarize the development of mechanistic PK/PD models that explicitly integrate the kinetics of drug-target interactions into predictions of drug activity. Such mechanistic models are expected to have several advantages over approaches in which concentration and effect are linked using variations of the Hill equation, and where preclinical data are often used as a starting point for modeling drug activity. Instead, explicit use of the full kinetic scheme for drug binding enables time-dependent changes in target occupancy to be calculated using the kinetics of drug-target interactions and drug PK, providing a more precise picture of target engagement and drug action in the non-equilibrium environment of the human body. The mechanistic PK/PD models also generate target vulnerability functions that link target occupancy and effect, and inform on the sensitivity of a target to engagement by a drug. Key factors such as the rate of target turnover can also be integrated into the modeling which, together with target vulnerability, provide additional information on the PK profile required to achieve the desired pharmacological effect and on the utility of kinetic selectivity in developing drugs for specific targets.
Collapse
Affiliation(s)
- Fereidoon Daryaee
- Center for Advanced Study of Drug Action, Department of Chemistry, New York, USA
| | - Peter J Tonge
- Center for Advanced Study of Drug Action, Department of Chemistry, New York, USA; Department of Radiology, Stony Brook University, Stony Brook, New York, USA.
| |
Collapse
|
7
|
Chen W, Shi Y, Qi S, Zhou H, Li C, Jin D, Li G. Pharmacokinetic Study and Tissue Distribution of Lorlatinib in Mouse Serum and Tissue Samples by Liquid Chromatography-Mass Spectrometry. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2019; 2019:7574369. [PMID: 30949374 PMCID: PMC6425379 DOI: 10.1155/2019/7574369] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 02/01/2019] [Indexed: 05/14/2023]
Abstract
In the present study, we developed and validated a rapid and simple liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for the determination of lorlatinib in mouse serum and tissue samples, and such a method was successfully applied to investigate the pharmacokinetic study and tissue distribution of lorlatinib after oral administration. Samples were processed with methanol to precipitate protein and extract drugs, and Afatinib-d6 was used as the internal standard (IS). For LC-MS/MS analysis, compounds were separated on a C18 column by gradient elution (0.1% of formic acid and methanol) at 0.5 mL/min in the positive-ion mode with m/z 407.28 [M + H]+ for lorlatinib and m/z 492.10 [M + H]+ for IS. Good linearity was observed within the calibration ranges. Selectivity, accuracy (-6.42% to 8.84%), precision (1.69% to 10.98%), recoveries (91.4% to 115.0%), and matrix effect (84.2% to 110.6%) were all within the acceptable ranges. After oral administration, serum concentration of lorlatinib quickly achieved the maximal concentration (2,705.683 ± 539.779 μg/L) at 0.625 ± 0.231 h. The highest concentration was detected in the liver (3,153.93 ng/100 mg), followed by the stomach (2,159.92 ng/100 mg) and the kidney (548.83 ng/100 mg). In conclusion, a simple and rapid detection method was established and validated for determination of lorlatinib in blood and tissue samples of mouse. The pharmacokinetic study and tissue distribution of lorlatinib were successfully investigated using this method.
Collapse
Affiliation(s)
- Wei Chen
- Department of Pharmacy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Yafei Shi
- Department of Pharmacy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Shuya Qi
- Department of Pharmacy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Haiyan Zhou
- Department of Pharmacy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Chunyu Li
- Department of Pharmacy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Dujia Jin
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Guohui Li
- Department of Pharmacy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| |
Collapse
|
8
|
Sparidans RW, Li W, Schinkel AH, Schellens JHM, Beijnen JH. Bioanalytical liquid chromatography-tandem mass spectrometric assay for the quantification of the ALK inhibitors alectinib, brigatinib and lorlatinib in plasma and mouse tissue homogenates. J Pharm Biomed Anal 2018; 161:136-143. [PMID: 30149189 DOI: 10.1016/j.jpba.2018.08.038] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 08/15/2018] [Accepted: 08/18/2018] [Indexed: 02/08/2023]
Abstract
Several second and third generation ALK inhibitors have been introduced in recent years. A bioanalytical assay for simultaneous quantification of alectinib, brigatinib, and lorlatinib was developed and validated for human plasma. The method was also partially validated for diluted mouse plasma and tissue homogenates of brain, liver, kidney, and spleen. Samples (40 μl) were pretreated in a 96-well plate by protein precipitation with acetonitrile containing the internal standard [2H8]-alectinib. After chromatographic separation on an ethylene bridged octadecyl silica column by gradient elution at 600 μl/min using 1% (v/v) formic acid (in water) and acetonitrile, compounds were ionized by a turbo electrospray and monitored by selected reaction monitoring on a triple quadrupole mass spectrometer. Validation was performed in a 2-2000 ng/ml concentration range for alectinib and lorlatinib and a 4-4000 ng/ml range for brigatinib. Precisions (within-day and between-day) were in the range 2.2-15.0% and accuracies were in between 87.2 and 110.2% for all matrices and levels. Compounds were sufficiently stable under most investigated conditions. Results of a pilot pharmacokinetic and tissue distribution study for brigatinib in mice are reported. Finally, successful incurred samples reanalysis of tissue homogenate samples containing brigatinib and lorlatinib is presented. Lorlatinib homogenate samples were also successfully reanalyzed using a second independent assay (cross-validation).
Collapse
Affiliation(s)
- Rolf W Sparidans
- Utrecht University, Faculty of Science, Department of Pharmaceutical Sciences, Division of Pharmacoepidemiology & Clinical Pharmacology, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands; Utrecht University, Faculty of Science, Department of Pharmaceutical Sciences, Division of Chemical Biology & Drug Development, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands.
| | - Wenlong Li
- The Netherlands Cancer Institute, Division of Pharmacology, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands.
| | - Alfred H Schinkel
- The Netherlands Cancer Institute, Division of Pharmacology, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands.
| | - Jan H M Schellens
- Utrecht University, Faculty of Science, Department of Pharmaceutical Sciences, Division of Pharmacoepidemiology & Clinical Pharmacology, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands; The Netherlands Cancer Institute, Department of Clinical Pharmacology, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands.
| | - Jos H Beijnen
- Utrecht University, Faculty of Science, Department of Pharmaceutical Sciences, Division of Pharmacoepidemiology & Clinical Pharmacology, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands; The Netherlands Cancer Institute, Department of Clinical Pharmacology, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands; MC Slotervaart, Department of Pharmacy & Pharmacology, Louwesweg 6, 1066 EC Amsterdam, The Netherlands.
| |
Collapse
|
9
|
Spatari C, Li W, Schinkel AH, Ragno G, Schellens JHM, Beijnen JH, Sparidans RW. Bioanalytical assay for the quantification of the ALK inhibitor lorlatinib in mouse plasma using liquid chromatography-tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2018; 1083:204-208. [PMID: 29550682 DOI: 10.1016/j.jchromb.2018.03.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 02/09/2018] [Accepted: 03/09/2018] [Indexed: 11/15/2022]
Abstract
A bio-analytical assay for the first third generation ALK inhibitor lorlatinib in mouse plasma was developed and validated. Ten-μl plasma samples were prepared by adding rucaparib as the internal standard and precipitation of the plasma proteins. For LC-MS/MS analysis, compounds were eluted at 0.5 mL/min and separated on a 3-μm particle-size, polar embedded octadecyl silica column by gradient elution using 0.1% of formic acid (in water) and methanol. Compounds were monitored with positive electrospray ionization using a triple quadrupole mass spectrometer in selected reaction monitoring mode. The assay was fully validated in the 2-2000 ng/mL calibration range. Within-day (8.0-11.6%) and between-day (10.0-15.0%) precisions and accuracies (99.0-113.3%) were within acceptable range. Plasma samples were deemed stable for 6 h at ambient temperature, during three freeze-thaw cycles and for 2 months at -30 °C. Finally, the new assay was applied successfully to pilot pharmacokinetic studies in male and female wild-type mice.
Collapse
Affiliation(s)
- Claudia Spatari
- Utrecht University, Faculty of Science, Department of Pharmaceutical Sciences, Division of Pharmacoepidemiology & Clinical Pharmacology, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands; Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Polifunzionale, 87036 Rende, Italy.
| | - Wenlong Li
- The Netherlands Cancer Institute, Division of Pharmacology, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands.
| | - Alfred H Schinkel
- The Netherlands Cancer Institute, Division of Pharmacology, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands.
| | - Gaetano Ragno
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Polifunzionale, 87036 Rende, Italy.
| | - Jan H M Schellens
- Utrecht University, Faculty of Science, Department of Pharmaceutical Sciences, Division of Pharmacoepidemiology & Clinical Pharmacology, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands; The Netherlands Cancer Institute, Department of Clinical Pharmacology, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands.
| | - Jos H Beijnen
- Utrecht University, Faculty of Science, Department of Pharmaceutical Sciences, Division of Pharmacoepidemiology & Clinical Pharmacology, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands; The Netherlands Cancer Institute, Department of Clinical Pharmacology, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands; MC Slotervaart, Department of Pharmacy & Pharmacology, Louwesweg 6, 1066 EC Amsterdam, The Netherlands.
| | - Rolf W Sparidans
- Utrecht University, Faculty of Science, Department of Pharmaceutical Sciences, Division of Pharmacoepidemiology & Clinical Pharmacology, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands; Utrecht University, Faculty of Science, Department of Pharmaceutical Sciences, Division of Chemical Biology & Drug Development, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands.
| |
Collapse
|
10
|
Carrara L, Lavezzi SM, Borella E, De Nicolao G, Magni P, Poggesi I. Current mathematical models for cancer drug discovery. Expert Opin Drug Discov 2017; 12:785-799. [PMID: 28595492 DOI: 10.1080/17460441.2017.1340271] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
INTRODUCTION Pharmacometric models represent the most comprehensive approaches for extracting, summarizing and integrating information obtained in the often sparse, limited, and less-than-optimally designed experiments performed in the early phases of oncology drug discovery. Whilst empirical methodologies may be enough for screening and ranking candidate drugs, modeling approaches are needed for optimizing and making economically viable the learn-confirm cycles within an oncology research program and anticipating the dose regimens to be investigated in the subsequent clinical development. Areas covered: Papers appearing in the literature of approximately the last decade reporting modeling approaches applicable to anticancer drug discovery have been listed and commented. Papers were selected based on the interest in the proposed methodology or in its application. Expert opinion: The number of modeling approaches used in the discovery of anticancer drugs is consistently increasing and new models are developed based on the current directions of research of new candidate drugs. These approaches have contributed to a better understanding of new oncological targets and have allowed for the exploitation of the relatively sparse information generated by preclinical experiments. In addition, they are used in translational approaches for guiding and supporting the choice of dosing regimens in early clinical development.
Collapse
Affiliation(s)
- Letizia Carrara
- a Dipartimento di Ingegneria Industriale e dell'Informazione , Università degli Studi di Pavia , Pavia , Italy
| | - Silvia Maria Lavezzi
- a Dipartimento di Ingegneria Industriale e dell'Informazione , Università degli Studi di Pavia , Pavia , Italy
| | - Elisa Borella
- a Dipartimento di Ingegneria Industriale e dell'Informazione , Università degli Studi di Pavia , Pavia , Italy
| | - Giuseppe De Nicolao
- a Dipartimento di Ingegneria Industriale e dell'Informazione , Università degli Studi di Pavia , Pavia , Italy
| | - Paolo Magni
- a Dipartimento di Ingegneria Industriale e dell'Informazione , Università degli Studi di Pavia , Pavia , Italy
| | - Italo Poggesi
- b Global Clinical Pharmacology , Janssen Research and Development , Cologno Monzese , Italy
| |
Collapse
|
11
|
Yamazaki S, Spilker ME, Vicini P. Translational modeling and simulation approaches for molecularly targeted small molecule anticancer agents from bench to bedside. Expert Opin Drug Metab Toxicol 2016; 12:253-65. [PMID: 26799750 DOI: 10.1517/17425255.2016.1141895] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
INTRODUCTION Recent advances in molecular biology have enabled personalized cancer therapies with molecularly targeted agents (MTAs), which offer a promising future for cancer therapy. Dynamic modeling and simulation (M&S) is a powerful mathematical approach linking drug exposures to pharmacological responses, providing a quantitative assessment of in vivo drug potency. Accordingly, a growing emphasis is being placed upon M&S to quantitatively understand therapeutic exposure-response relationships of MTAs in nonclinical models. AREAS COVERED An overview of M&S approaches for MTAs in nonclinical models is presented with discussion about mechanistic extrapolation of antitumor efficacy from bench to bedside. Emphasis is placed upon recent advances in M&S approaches linking drug exposures, biomarker responses (e.g. target modulation) and pharmacological outcomes (e.g. antitumor efficacy). EXPERT OPINION For successful personalized cancer therapies with MTAs, it is critical to mechanistically and quantitatively understand their exposure-response relationships in nonclinical models, and to logically and properly apply such knowledge to the clinic. Particularly, M&S approaches to predict pharmacologically active concentrations of MTAs in patients based upon nonclinical data would be highly valuable in guiding the design and execution of clinical trials. Proactive approaches to understand their exposure-response relationships could substantially increase probability of achieving a positive proof-of-concept in the clinic.
Collapse
Affiliation(s)
- Shinji Yamazaki
- a Pharmacokinetics, Dynamics & Metabolism , Pfizer Worldwide Research & Development , San Diego , CA , USA
| | - Mary E Spilker
- a Pharmacokinetics, Dynamics & Metabolism , Pfizer Worldwide Research & Development , San Diego , CA , USA
| | - Paolo Vicini
- a Pharmacokinetics, Dynamics & Metabolism , Pfizer Worldwide Research & Development , San Diego , CA , USA
| |
Collapse
|
12
|
Guan J, Tucker ER, Wan H, Chand D, Danielson LS, Ruuth K, El Wakil A, Witek B, Jamin Y, Umapathy G, Robinson SP, Johnson TW, Smeal T, Martinsson T, Chesler L, Palmer RH, Hallberg B. The ALK inhibitor PF-06463922 is effective as a single agent in neuroblastoma driven by expression of ALK and MYCN. Dis Model Mech 2016; 9:941-52. [PMID: 27483357 PMCID: PMC5047689 DOI: 10.1242/dmm.024448] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 07/04/2016] [Indexed: 12/24/2022] Open
Abstract
The first-in-class inhibitor of ALK, c-MET and ROS1, crizotinib (Xalkori), has shown remarkable clinical efficacy in treatment of ALK-positive non-small cell lung cancer. However, in neuroblastoma, activating mutations in the ALK kinase domain are typically refractory to crizotinib treatment, highlighting the need for more potent inhibitors. The next-generation ALK inhibitor PF-06463922 is predicted to exhibit increased affinity for ALK mutants prevalent in neuroblastoma. We examined PF-06463922 activity in ALK-driven neuroblastoma models in vitro and in vivo In vitro kinase assays and cell-based experiments examining ALK mutations of increasing potency show that PF-06463922 is an effective inhibitor of ALK with greater activity towards ALK neuroblastoma mutants. In contrast to crizotinib, single agent administration of PF-06463922 caused dramatic tumor inhibition in both subcutaneous and orthotopic xenografts as well as a mouse model of high-risk neuroblastoma driven by Th-ALK(F1174L)/MYCN Taken together, our results suggest PF-06463922 is a potent inhibitor of crizotinib-resistant ALK mutations, and highlights an important new treatment option for neuroblastoma patients.
Collapse
Affiliation(s)
- J Guan
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg SE-405 30, Sweden
| | - E R Tucker
- Division of Clinical Studies Cancer Therapeutics, The Institute of Cancer Research, London and Royal Marsden NHS Foundation Trust, Sutton SM2 5NG, UK
| | - H Wan
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg SE-405 30, Sweden
| | - D Chand
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg SE-405 30, Sweden
| | - L S Danielson
- Division of Clinical Studies Cancer Therapeutics, The Institute of Cancer Research, London and Royal Marsden NHS Foundation Trust, Sutton SM2 5NG, UK
| | - K Ruuth
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg SE-405 30, Sweden Department of Molecular Biology, Building 6L, Umeå University, Umeå 901 87, Sweden
| | - A El Wakil
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg SE-405 30, Sweden Department of Molecular Biology, Building 6L, Umeå University, Umeå 901 87, Sweden
| | - B Witek
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg SE-405 30, Sweden Department of Molecular Biology, Building 6L, Umeå University, Umeå 901 87, Sweden
| | - Y Jamin
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London and Royal Marsden NHS Foundation Trust, Sutton SM2 5NG, UK
| | - G Umapathy
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg SE-405 30, Sweden
| | - S P Robinson
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London and Royal Marsden NHS Foundation Trust, Sutton SM2 5NG, UK
| | - T W Johnson
- La Jolla Laboratories, Pfizer Worldwide Research and Development, San Diego, CA 92121, USA
| | - T Smeal
- La Jolla Laboratories, Pfizer Worldwide Research and Development, San Diego, CA 92121, USA
| | - T Martinsson
- Department of Clinical Genetics, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg SE-405 30, Sweden
| | - L Chesler
- Division of Clinical Studies Cancer Therapeutics, The Institute of Cancer Research, London and Royal Marsden NHS Foundation Trust, Sutton SM2 5NG, UK
| | - R H Palmer
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg SE-405 30, Sweden
| | - B Hallberg
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg SE-405 30, Sweden
| |
Collapse
|
13
|
Cameron L, Solomon B. New Treatment Options for ALK-Rearranged Non-Small Cell Lung Cancer. Curr Treat Options Oncol 2016; 16:49. [PMID: 26318457 DOI: 10.1007/s11864-015-0367-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
OPINION STATEMENT ALK rearrangements are present in 3-5% of patients with non-small cell lung cancer (NSCLC) and after epidermal growth factor receptor (EGFR) mutations represent the second molecular target in NSCLC to be validated through phase III clinical trials. The PROFILE 1014 international multicentre phase III trial demonstrated the superiority of crizotinib over standard chemotherapy, establishing crizotinib as standard first-line therapy for patients with advanced ALK-positive NSCLC and indicating the requirement for ALK testing to guide selection of optimal first-line therapy for non-squamous NSCLC. Despite impressive and durable responses, progression on treatment reflecting the development of acquired resistance is inevitable. There are several mechanisms of resistance including ALK kinase mutation or copy number gain, activation of bypass pathways and potentially pharmacokinetic failure of therapy (most commonly in CNS). A broad array of newer generation ALK inhibitors are in development that appear effective in the crizotinib-resistant setting including in patients with intracranial progression. These agents, including ceritinib and alectinib, have a higher potency against ALK kinase than crizotinib, activity against mutations that confer resistance to crizotinib and potentially improved CNS penetration. While in selected patients, continued therapy with crizotinib after local ablative treatments of oligo-progressive systemic or CNS disease may be an option, for many patients use of a newer generation compound will be effective. First-line treatment with newer generation ALK inhibitors may have potential advantages over sequential treatment after crizotinib; however, the optimal sequence of therapy with ALK inhibitors has not been determined and is being explored in ongoing phase III studies.
Collapse
Affiliation(s)
- Laird Cameron
- Department of Medical Oncology, Peter MacCallum Cancer Centre, St Andrew's Place, East Melbourne, VIC, 3002, Australia
| | | |
Collapse
|
14
|
Mologni L, Ceccon M, Pirola A, Chiriano G, Piazza R, Scapozza L, Gambacorti-Passerini C. NPM/ALK mutants resistant to ASP3026 display variable sensitivity to alternative ALK inhibitors but succumb to the novel compound PF-06463922. Oncotarget 2016; 6:5720-34. [PMID: 25749034 PMCID: PMC4467397 DOI: 10.18632/oncotarget.3122] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 01/09/2015] [Indexed: 01/12/2023] Open
Abstract
ALK is involved in the onset of several tumors. Crizotinib (XalkoriTM), a potent ALK inhibitor, represents the current front-line treatment for ALK+ NSCLC and shows great clinical efficacy. However, resistant disease often develops after initial response. ASP3026 is a novel second-generation ALK inhibitor with activity on crizotinib-resistant ALK-L1196M gatekeeper mutant. As resistance is likely to be a relevant hurdle for any drug, we sought to determine the resistance profile of ASP3026 in the context of NPM/ALK+ ALCL. We selected six ASP3026-resistant cell lines by culturing human ALCL cells in the presence of increasing concentrations of drug. The established resistant cell lines carry several point mutations in the ALK kinase domain (G1128S, C1156F, I1171N/T, F1174I, N1178H, E1210K and C1156F/D1203N were the most frequent) that are shown to confer resistance to ASP3026 in the Ba/F3 cell model. All mutants were profiled for cross-resistance against a panel of clinically relevant inhibitors including ceritinib, alectinib, crizotinib, AP26113 and PF-06463922. Finally, a genetically heterogeneous ASP3026-resistant cell line was exposed to second-line treatment simulations with all inhibitors. The population evolved according to relative sensitivity of its mutant subclones to the various drugs. Compound PF-06463922 did not allow the outgrowth of any resistant clone, at non-toxic doses.
Collapse
Affiliation(s)
- Luca Mologni
- University of Milano-Bicocca, Dept. of Health Sciences, Monza, Italy
| | - Monica Ceccon
- University of Milano-Bicocca, Dept. of Health Sciences, Monza, Italy
| | - Alessandra Pirola
- University of Milano-Bicocca, Dept. of Health Sciences, Monza, Italy
| | - Gianpaolo Chiriano
- University of Geneva, School of Pharmaceutical Sciences, Geneva, Switzerland
| | - Rocco Piazza
- University of Milano-Bicocca, Dept. of Health Sciences, Monza, Italy
| | - Leonardo Scapozza
- University of Geneva, School of Pharmaceutical Sciences, Geneva, Switzerland
| | - Carlo Gambacorti-Passerini
- University of Milano-Bicocca, Dept. of Health Sciences, Monza, Italy.,San Gerardo Hospital, Hematology Unit, Monza, Italy
| |
Collapse
|
15
|
Katayama R, Lovly CM, Shaw AT. Therapeutic targeting of anaplastic lymphoma kinase in lung cancer: a paradigm for precision cancer medicine. Clin Cancer Res 2016; 21:2227-35. [PMID: 25979929 DOI: 10.1158/1078-0432.ccr-14-2791] [Citation(s) in RCA: 206] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The anaplastic lymphoma kinase (ALK) receptor tyrosine kinase was initially discovered as a component of the fusion protein nucleophosmin (NPM)-ALK in anaplastic large-cell lymphoma (ALCL). Genomic alterations in ALK, including rearrangements, point mutations, and genomic amplification, have now been identified in several malignancies, including lymphoma, non-small cell lung cancer (NSCLC), neuroblastoma, inflammatory myofibroblastic tumor, and others. Importantly, ALK serves as a validated therapeutic target in these diseases. Several ALK tyrosine kinase inhibitors (TKI), including crizotinib, ceritinib, and alectinib, have been developed, and some of them have already been approved for clinical use. These ALK inhibitors have all shown remarkable clinical outcomes in ALK-rearranged NSCLC. Unfortunately, as is the case for other kinase inhibitors in clinical use, sensitive tumors inevitably relapse due to acquired resistance. This review focuses on the discovery, function, and therapeutic targeting of ALK, with a particular focus on ALK-rearranged NSCLC.
Collapse
Affiliation(s)
- Ryohei Katayama
- Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo, Japan.
| | | | - Alice T Shaw
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts. Department of Medicine, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
16
|
Sardu ML, Poggesi I, De Nicolao G. Biomarker- versus drug-driven tumor growth inhibition models: an equivalence analysis. J Pharmacokinet Pharmacodyn 2015. [PMID: 26209955 DOI: 10.1007/s10928-015-9427-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The mathematical modeling of tumor xenograft experiments following the dosing of antitumor drugs has received much attention in the last decade. Biomarker data can further provide useful insights on the pathological processes and be used for translational purposes in the early clinical development. Therefore, it is of particular interest the development of integrated pharmacokinetic-pharmacodynamic (PK-PD) models encompassing drug, biomarker and tumor-size data. This paper investigates the reciprocal consistency of three types of models: drug-to-tumor, such as established drug-driven tumor growth inhibition (TGI) models, drug-to-biomarker, e.g. indirect response models, and biomarker-to-tumor, e.g. the more recent biomarker-driven TGI models. In particular, this paper derives a mathematical relationship that guarantees the steady-state equivalence of the cascade of drug-to-biomarker and biomarker-to-tumor models with a drug-to-tumor TGI model. Using the Simeoni TGI model as a reference, conditions for steady-state equivalence are worked out and used to derive a new biomarker-driven model. Simulated and real data are used to show that in realistic cases the steady-state equivalence extends also to transient responses. The possibility of predicting the drug-to-tumor potency of a new candidate drug based only on biomarker response is discussed.
Collapse
Affiliation(s)
- Maria Luisa Sardu
- Dipartimento di Ingegneria Industriale e dell'Informazione, Università di Pavia, Via Ferrata 1, 27100, Pavia, Italy.
| | - Italo Poggesi
- Clinical Pharmacology & Pharmacometrics, Janssen Research & Development, 2340, Beerse, Belgium
| | - Giuseppe De Nicolao
- Dipartimento di Ingegneria Industriale e dell'Informazione, Università di Pavia, Via Ferrata 1, 27100, Pavia, Italy
| |
Collapse
|
17
|
Zou HY, Friboulet L, Kodack DP, Engstrom LD, Li Q, West M, Tang RW, Wang H, Tsaparikos K, Wang J, Timofeevski S, Katayama R, Dinh DM, Lam H, Lam JL, Yamazaki S, Hu W, Patel B, Bezwada D, Frias RL, Lifshits E, Mahmood S, Gainor JF, Affolter T, Lappin PB, Gukasyan H, Lee N, Deng S, Jain RK, Johnson TW, Shaw AT, Fantin VR, Smeal T. PF-06463922, an ALK/ROS1 Inhibitor, Overcomes Resistance to First and Second Generation ALK Inhibitors in Preclinical Models. Cancer Cell 2015; 28:70-81. [PMID: 26144315 PMCID: PMC4504786 DOI: 10.1016/j.ccell.2015.05.010] [Citation(s) in RCA: 335] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 03/16/2015] [Accepted: 05/18/2015] [Indexed: 01/15/2023]
Abstract
We report the preclinical evaluation of PF-06463922, a potent and brain-penetrant ALK/ROS1 inhibitor. Compared with other clinically available ALK inhibitors, PF-06463922 displayed superior potency against all known clinically acquired ALK mutations, including the highly resistant G1202R mutant. Furthermore, PF-06463922 treatment led to regression of EML4-ALK-driven brain metastases, leading to prolonged mouse survival, in a superior manner. Finally, PF-06463922 demonstrated high selectivity and safety margins in a variety of preclinical studies. These results suggest that PF-06463922 will be highly effective for the treatment of patients with ALK-driven lung cancers, including those who relapsed on clinically available ALK inhibitors because of secondary ALK kinase domain mutations and/or brain metastases.
Collapse
Affiliation(s)
- Helen Y Zou
- Pfizer World Wide Research and Development, 10724 Science Center Drive, San Diego, CA 92121, USA
| | - Luc Friboulet
- Department of Medicine, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA 02114, USA
| | - David P Kodack
- Department of Radiation Oncology, Edwin L. Steele Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Lars D Engstrom
- Pfizer World Wide Research and Development, 10724 Science Center Drive, San Diego, CA 92121, USA
| | - Qiuhua Li
- Pfizer World Wide Research and Development, 10724 Science Center Drive, San Diego, CA 92121, USA
| | - Melissa West
- Pfizer World Wide Research and Development, 10724 Science Center Drive, San Diego, CA 92121, USA
| | - Ruth W Tang
- Pfizer World Wide Research and Development, 10724 Science Center Drive, San Diego, CA 92121, USA
| | - Hui Wang
- Pfizer World Wide Research and Development, 10724 Science Center Drive, San Diego, CA 92121, USA
| | - Konstantinos Tsaparikos
- Pfizer World Wide Research and Development, 10724 Science Center Drive, San Diego, CA 92121, USA
| | - Jinwei Wang
- Pfizer World Wide Research and Development, 10724 Science Center Drive, San Diego, CA 92121, USA
| | - Sergei Timofeevski
- Pfizer World Wide Research and Development, 10724 Science Center Drive, San Diego, CA 92121, USA
| | - Ryohei Katayama
- Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan
| | - Dac M Dinh
- Pfizer World Wide Research and Development, 10724 Science Center Drive, San Diego, CA 92121, USA
| | - Hieu Lam
- Pfizer World Wide Research and Development, 10724 Science Center Drive, San Diego, CA 92121, USA
| | - Justine L Lam
- Pfizer World Wide Research and Development, 10724 Science Center Drive, San Diego, CA 92121, USA
| | - Shinji Yamazaki
- Pfizer World Wide Research and Development, 10724 Science Center Drive, San Diego, CA 92121, USA
| | - Wenyue Hu
- Pfizer World Wide Research and Development, 10724 Science Center Drive, San Diego, CA 92121, USA
| | - Bhushankumar Patel
- Department of Radiation Oncology, Edwin L. Steele Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Divya Bezwada
- Department of Radiation Oncology, Edwin L. Steele Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Rosa L Frias
- Department of Medicine, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA 02114, USA
| | - Eugene Lifshits
- Department of Medicine, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA 02114, USA
| | - Sidra Mahmood
- Department of Medicine, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA 02114, USA
| | - Justin F Gainor
- Department of Medicine, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA 02114, USA
| | - Timothy Affolter
- Pfizer World Wide Research and Development, 10724 Science Center Drive, San Diego, CA 92121, USA
| | - Patrick B Lappin
- Pfizer World Wide Research and Development, 10724 Science Center Drive, San Diego, CA 92121, USA
| | - Hovhannes Gukasyan
- Pfizer World Wide Research and Development, 10724 Science Center Drive, San Diego, CA 92121, USA
| | - Nathan Lee
- Pfizer World Wide Research and Development, 10724 Science Center Drive, San Diego, CA 92121, USA
| | - Shibing Deng
- Pfizer World Wide Research and Development, 10724 Science Center Drive, San Diego, CA 92121, USA
| | - Rakesh K Jain
- Department of Radiation Oncology, Edwin L. Steele Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Ted W Johnson
- Pfizer World Wide Research and Development, 10724 Science Center Drive, San Diego, CA 92121, USA
| | - Alice T Shaw
- Department of Medicine, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA 02114, USA
| | - Valeria R Fantin
- Pfizer World Wide Research and Development, 10724 Science Center Drive, San Diego, CA 92121, USA
| | - Tod Smeal
- Pfizer World Wide Research and Development, 10724 Science Center Drive, San Diego, CA 92121, USA.
| |
Collapse
|
18
|
Treatment of ALK-Rearranged Non-Small Cell Lung Cancer: Recent Progress and Future Directions. Drugs 2015; 75:1059-70. [DOI: 10.1007/s40265-015-0415-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
19
|
Crescenzo R, Inghirami G. Anaplastic lymphoma kinase inhibitors. Curr Opin Pharmacol 2015; 23:39-44. [PMID: 26051994 DOI: 10.1016/j.coph.2015.05.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 05/10/2015] [Accepted: 05/15/2015] [Indexed: 11/30/2022]
Abstract
The anaplastic lymphoma kinase (ALK) gene is a member of the insulin receptor superfamily and it has been associated with more than twenty distinct chimera, including established drivers of several human cancers. Multiple clinical trials have proven that the pharmacological inhibition of ALK signaling leads to remarkable clinical improvement and improves the quality of life of ALK+ cancer patients. Crizotinib was the first ALKi to achieve approval from the Food and Drug Administration, although additional compounds are now moving into diversified clinical trials.
Collapse
Affiliation(s)
- Ramona Crescenzo
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY 10021, USA; Department of Molecular Biotechnology and Health Science, Center for Experimental Research and Medical Studies (CeRMS), University of Torino, Torino 10126, Italy
| | - Giorgio Inghirami
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY 10021, USA; Department of Molecular Biotechnology and Health Science, Center for Experimental Research and Medical Studies (CeRMS), University of Torino, Torino 10126, Italy; Department of Pathology, NYU Cancer Center, New York University School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
20
|
Liu Y, Yang H, Chen T, Luo Y, Xu Z, Li Y, Yang J. Silencing of Receptor Tyrosine Kinase ROR1 Inhibits Tumor-Cell Proliferation via PI3K/AKT/mTOR Signaling Pathway in Lung Adenocarcinoma. PLoS One 2015; 10:e0127092. [PMID: 25978653 PMCID: PMC4433279 DOI: 10.1371/journal.pone.0127092] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 04/10/2015] [Indexed: 12/28/2022] Open
Abstract
Receptor tyrosine kinase ROR1, an embryonic protein involved in organogenesis, is expressed in certain hematological malignancies and solid tumors, but is generally absent in adult tissues. This makes the protein an ideal drug target for cancer therapy. In order to assess the suitability of ROR1 as a cell surface antigen for targeted therapy of lung adenocarcinoma, we carried out a comprehensive analysis of ROR1 protein expression in human lung adenocarcinoma tissues and cell lines. Our data show that ROR1 protein is selectively expressed on lung adenocarcinoma cells, but do not support the hypothesis that expression levels of ROR1 are associated with aggressive disease. However silencing of ROR1 via siRNA treatment significantly down-regulates the activity of the PI3K/AKT/mTOR signaling pathway. This is associated with significant apoptosis and anti-proliferation of tumor cells. We found ROR1 protein expressed in lung adenocarcinoma but almost absent in tumor-adjacent tissues of the patients. The finding of ROR1-mediated proliferation signals in both tyrosine kinase inhibitor (TKI)-sensitive and -resistant tumor cells provides encouragement to develop ROR1-directed targeted therapy in lung adenocarcinoma, especially those with TKI resistance.
Collapse
Affiliation(s)
- Yanchun Liu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Hui Yang
- Department of Pathology, The First People’s Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Tianxing Chen
- Department of Pathology, The First People’s Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Yongbin Luo
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Zheyuan Xu
- Department of Thoracic Surgery, The First People’s Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Ying Li
- Department of Pathology, The First People’s Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Jiahui Yang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
- * E-mail:
| |
Collapse
|
21
|
PF-06463922 is a potent and selective next-generation ROS1/ALK inhibitor capable of blocking crizotinib-resistant ROS1 mutations. Proc Natl Acad Sci U S A 2015; 112:3493-8. [PMID: 25733882 DOI: 10.1073/pnas.1420785112] [Citation(s) in RCA: 207] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Oncogenic c-ros oncogene1 (ROS1) fusion kinases have been identified in a variety of human cancers and are attractive targets for cancer therapy. The MET/ALK/ROS1 inhibitor crizotinib (Xalkori, PF-02341066) has demonstrated promising clinical activity in ROS1 fusion-positive non-small cell lung cancer. However, emerging clinical evidence has shown that patients can develop resistance by acquiring secondary point mutations in ROS1 kinase. In this study we characterized the ROS1 activity of PF-06463922, a novel, orally available, CNS-penetrant, ATP-competitive small-molecule inhibitor of ALK/ROS1. In vitro, PF-06463922 exhibited subnanomolar cellular potency against oncogenic ROS1 fusions and inhibited the crizotinib-refractory ROS1(G2032R) mutation and the ROS1(G2026M) gatekeeper mutation. Compared with crizotinib and the second-generation ALK/ROS1 inhibitors ceritinib and alectinib, PF-06463922 showed significantly improved inhibitory activity against ROS1 kinase. A crystal structure of the PF-06463922-ROS1 kinase complex revealed favorable interactions contributing to the high-affinity binding. In vivo, PF-06463922 showed marked antitumor activity in tumor models expressing FIG-ROS1, CD74-ROS1, and the CD74-ROS1(G2032R) mutation. Furthermore, PF-06463922 demonstrated antitumor activity in a genetically engineered mouse model of FIG-ROS1 glioblastoma. Taken together, our results indicate that PF-06463922 has potential for treating ROS1 fusion-positive cancers, including those requiring agents with CNS-penetrating properties, as well as for overcoming crizotinib resistance driven by ROS1 mutation.
Collapse
|
22
|
Yamazaki S, Lam JL, Zou HY, Wang H, Smeal T, Vicini P. Mechanistic understanding of translational pharmacokinetic-pharmacodynamic relationships in nonclinical tumor models: a case study of orally available novel inhibitors of anaplastic lymphoma kinase. Drug Metab Dispos 2014; 43:54-62. [PMID: 25349124 DOI: 10.1124/dmd.114.061143] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The orally available novel small molecules PF06463922 [(10R)-7-amino-12-fluoro-2,10,16-trimethyl-15-oxo-10,15,16,17-tetrahydro-2H-8,4-(metheno)pyrazolo[4,3-h][2,5,11]benzoxadiazacyclotetradecine-3-carbonitrile] and PF06471402 [(10R)-7-amino-12-fluoro-2,10,16-trimethyl-15-oxo-10,15,16,17-tetrahydro-2H-8,4-(azeno)pyrazolo[4,3-h][2,5,11]benzoxadiazacyclo-tetradecine-3-carbonitrile] are second-generation anaplastic lymphoma kinase (ALK) inhibitors targeted to both naïve and resistant patients with non-small cell lung cancer (NSCLC) to the first-generation ALK inhibitor crizotinib. The objectives of the present study were to characterize and compare the pharmacokinetic-pharmacodynamic (PKPD) relationships of PF06463922 and PF06471402 for target modulation in tumor and antitumor efficacy in athymic mice implanted with H3122 NSCLC cells expressing a crizotinib-resistant echinoderm microtubule-associated protein-like 4 (EML4)-ALK mutation, EML4-ALK(L1196M). Furthermore, the PKPD relationships for these ALK inhibitors were evaluated and compared between oral administration and subcutaneous constant infusion (i.e., between different pharmacokinetic [PK] profiles). Oral and subcutaneous PK profiles of these ALK inhibitors were adequately described by a one-compartment PK model. An indirect response model extended with a modulator fit the time courses of PF06463922- and PF06471402-mediated target modulation (i.e., ALK phosphorylation) with an estimated unbound EC50,in vivo of 36 and 20 nM, respectively, for oral administration, and 100 and 69 nM, respectively, for subcutaneous infusion. A drug-disease model based on the turnover concept fit tumor growth curves inhibited by PF06463922 and PF06471402 with estimated unbound tumor stasis concentrations of 51 and 27 nM, respectively, for oral administration, and 116 and 70 nM, respectively, for subcutaneous infusion. Thus, the EC50,in vivo to EC60,in vivo estimates for ALK inhibition corresponded to the concentrations required tumor stasis in all cases, suggesting that the pharmacodynamic relationships of target modulation to antitumor efficacy were consistent among the ALK inhibitors, even when the PK profiles with different administration routes were considerably different.
Collapse
Affiliation(s)
- Shinji Yamazaki
- Pharmacokinetics, Dynamics and Metabolism (S.Y., J.L.L., P.V.) and Oncology Research Unit (H.Y.Z., H.W., T.S.), Pfizer Worldwide Research & Development, San Diego, California
| | - Justine L Lam
- Pharmacokinetics, Dynamics and Metabolism (S.Y., J.L.L., P.V.) and Oncology Research Unit (H.Y.Z., H.W., T.S.), Pfizer Worldwide Research & Development, San Diego, California
| | - Helen Y Zou
- Pharmacokinetics, Dynamics and Metabolism (S.Y., J.L.L., P.V.) and Oncology Research Unit (H.Y.Z., H.W., T.S.), Pfizer Worldwide Research & Development, San Diego, California
| | - Hui Wang
- Pharmacokinetics, Dynamics and Metabolism (S.Y., J.L.L., P.V.) and Oncology Research Unit (H.Y.Z., H.W., T.S.), Pfizer Worldwide Research & Development, San Diego, California
| | - Tod Smeal
- Pharmacokinetics, Dynamics and Metabolism (S.Y., J.L.L., P.V.) and Oncology Research Unit (H.Y.Z., H.W., T.S.), Pfizer Worldwide Research & Development, San Diego, California
| | - Paolo Vicini
- Pharmacokinetics, Dynamics and Metabolism (S.Y., J.L.L., P.V.) and Oncology Research Unit (H.Y.Z., H.W., T.S.), Pfizer Worldwide Research & Development, San Diego, California
| |
Collapse
|