1
|
Tiligada E, Stefanaki C, Ennis M, Neumann D. Opportunities and challenges in the therapeutic exploitation of histamine and histamine receptor pharmacology in inflammation-driven disorders. Pharmacol Ther 2024; 263:108722. [PMID: 39306197 DOI: 10.1016/j.pharmthera.2024.108722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/31/2024] [Accepted: 09/13/2024] [Indexed: 09/26/2024]
Abstract
Inflammation-driven diseases encompass a wide array of pathological conditions characterised by immune system dysregulation leading to tissue damage and dysfunction. Among the myriad of mediators involved in the regulation of inflammation, histamine has emerged as a key modulatory player. Histamine elicits its actions through four rhodopsin-like G-protein-coupled receptors (GPCRs), named chronologically in order of discovery as histamine H1, H2, H3 and H4 receptors (H1-4R). The relatively low affinity H1R and H2R play pivotal roles in mediating allergic inflammation and gastric acid secretion, respectively, whereas the high affinity H3R and H4R are primarily linked to neurotransmission and immunomodulation, respectively. Importantly, however, besides the H4R, both H1R and H2R are also crucial in driving immune responses, the H2R tending to promote yet ill-defined and unexploited suppressive, protective and/or resolving processes. The modulatory action of histamine via its receptors on inflammatory cells is described in detail. The potential therapeutic value of the most recently discovered H4R in inflammatory disorders is illustrated via a selection of preclinical models. The clinical trials with antagonists of this receptor are discussed and possible reasons for their lack of success described.
Collapse
Affiliation(s)
- Ekaterini Tiligada
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Athens, Greece.
| | - Charikleia Stefanaki
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Athens, Greece; University Research Institute of Maternal and Child Health and Precision Medicine, "Aghia Sophia" Children's Hospital, Athens, Greece
| | - Madeleine Ennis
- The Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queens University Belfast, Belfast, UK
| | - Detlef Neumann
- Institute of Pharmacology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
2
|
Sarasola MDLP, Táquez Delgado MA, Nicoud MB, Medina VA. Histamine in cancer immunology and immunotherapy. Current status and new perspectives. Pharmacol Res Perspect 2021; 9:e00778. [PMID: 34609067 PMCID: PMC8491460 DOI: 10.1002/prp2.778] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 03/25/2021] [Indexed: 12/11/2022] Open
Abstract
Cancer is the second leading cause of death globally and its incidence and mortality are rapidly increasing worldwide. The dynamic interaction of immune cells and tumor cells determines the clinical outcome of cancer. Immunotherapy comes to the forefront of cancer treatments, resulting in impressive and durable responses but only in a fraction of patients. Thus, understanding the characteristics and profiles of immune cells in the tumor microenvironment (TME) is a necessary step to move forward in the design of new immunomodulatory strategies that can boost the immune system to fight cancer. Histamine produces a complex and fine-tuned regulation of the phenotype and functions of the different immune cells, participating in multiple regulatory responses of the innate and adaptive immunity. Considering the important actions of histamine-producing immune cells in the TME, in this review we first address the most important immunomodulatory roles of histamine and histamine receptors in the context of cancer development and progression. In addition, this review highlights the current progress and foundational developments in the field of cancer immunotherapy in combination with histamine and pharmacological compounds targeting histamine receptors.
Collapse
Affiliation(s)
- María de la Paz Sarasola
- Laboratory of Tumor Biology and Inflammation, Institute for Biomedical Research (BIOMED), School of Medical Sciences, Pontifical Catholic University of Argentina (UCA), and the National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| | - Mónica A Táquez Delgado
- Laboratory of Tumor Biology and Inflammation, Institute for Biomedical Research (BIOMED), School of Medical Sciences, Pontifical Catholic University of Argentina (UCA), and the National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| | - Melisa B Nicoud
- Laboratory of Tumor Biology and Inflammation, Institute for Biomedical Research (BIOMED), School of Medical Sciences, Pontifical Catholic University of Argentina (UCA), and the National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| | - Vanina A Medina
- Laboratory of Tumor Biology and Inflammation, Institute for Biomedical Research (BIOMED), School of Medical Sciences, Pontifical Catholic University of Argentina (UCA), and the National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| |
Collapse
|
3
|
Seibel-Ehlert U, Plank N, Inoue A, Bernhardt G, Strasser A. Label-Free Investigations on the G Protein Dependent Signaling Pathways of Histamine Receptors. Int J Mol Sci 2021; 22:9739. [PMID: 34575903 PMCID: PMC8467282 DOI: 10.3390/ijms22189739] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/03/2021] [Accepted: 09/06/2021] [Indexed: 01/14/2023] Open
Abstract
G protein activation represents an early key event in the complex GPCR signal transduction process and is usually studied by label-dependent methods targeting specific molecular events. However, the constrained environment of such "invasive" techniques could interfere with biological processes. Although histamine receptors (HRs) represent (evolving) drug targets, their signal transduction is not fully understood. To address this issue, we established a non-invasive dynamic mass redistribution (DMR) assay for the human H1-4Rs expressed in HEK cells, showing excellent signal-to-background ratios above 100 for histamine (HIS) and higher than 24 for inverse agonists with pEC50 values consistent with literature. Taking advantage of the integrative nature of the DMR assay, the involvement of endogenous Gαq/11, Gαs, Gα12/13 and Gβγ proteins was explored, pursuing a two-pronged approach, namely that of classical pharmacology (G protein modulators) and that of molecular biology (Gα knock-out HEK cells). We showed that signal transduction of hH1-4Rs occurred mainly, but not exclusively, via their canonical Gα proteins. For example, in addition to Gαi/o, the Gαq/11 protein was proven to contribute to the DMR response of hH3,4Rs. Moreover, the Gα12/13 was identified to be involved in the hH2R mediated signaling pathway. These results are considered as a basis for future investigations on the (patho)physiological role and the pharmacological potential of H1-4Rs.
Collapse
Affiliation(s)
- Ulla Seibel-Ehlert
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, 93040 Regensburg, Germany; (N.P.); (G.B.)
| | - Nicole Plank
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, 93040 Regensburg, Germany; (N.P.); (G.B.)
| | - Asuka Inoue
- Department of Pharmacological Sciences, Tohoku University, Sendai 980-8578, Japan;
| | - Guenther Bernhardt
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, 93040 Regensburg, Germany; (N.P.); (G.B.)
| | - Andrea Strasser
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, 93040 Regensburg, Germany; (N.P.); (G.B.)
| |
Collapse
|
4
|
Histamine in the Crosstalk Between Innate Immune Cells and Neurons: Relevance for Brain Homeostasis and Disease. Curr Top Behav Neurosci 2021; 59:261-288. [PMID: 34432259 DOI: 10.1007/7854_2021_235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Histamine is a biogenic amine playing a central role in allergy and peripheral inflammatory reactions and acts as a neurotransmitter and neuromodulator in the brain. In the adult, histamine is produced mainly by mast cells and hypothalamic neurons, which project their axons throughout the brain. Thus, histamine exerts a range of functions, including wakefulness control, learning and memory, neurogenesis, and regulation of glial activity. Histamine is also known to modulate innate immune responses induced by brain-resident microglia cells and peripheral circulating monocytes, and monocyte-derived cells (macrophages and dendritic cells). In physiological conditions, histamine per se causes mainly a pro-inflammatory phenotype while counteracting lipopolysaccharide-induced inflammation both in microglia, monocytes, and monocyte-derived cells. In turn, the activation of the innate immune system can profoundly affect neuronal survival and function, which plays a critical role in the onset and development of brain disorders. Therefore, the dual role of histamine/antihistamines in microglia and monocytes/macrophages is relevant for identifying novel putative therapeutic strategies for brain diseases. This review focuses on the effects of histamine in innate immune responses and the impact on neuronal survival, function, and differentiation/maturation, both in physiological and acute (ischemic stroke) and chronic neurodegenerative conditions (Parkinson's disease).
Collapse
|
5
|
The Function of the Histamine H4 Receptor in Inflammatory and Inflammation-Associated Diseases of the Gut. Int J Mol Sci 2021; 22:ijms22116116. [PMID: 34204101 PMCID: PMC8200986 DOI: 10.3390/ijms22116116] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/31/2021] [Accepted: 06/03/2021] [Indexed: 02/07/2023] Open
Abstract
Histamine is a pleiotropic mediator involved in a broad spectrum of (patho)-physiological processes, one of which is the regulation of inflammation. Compounds acting on three out of the four known histamine receptors are approved for clinical use. These approved compounds comprise histamine H1-receptor (H1R) antagonists, which are used to control allergic inflammation, antagonists at H2R, which therapeutically decrease gastric acid release, and an antagonist at H3R, which is indicated to treat narcolepsy. Ligands at H4R are still being tested pre-clinically and in clinical trials of inflammatory diseases, including rheumatoid arthritis, asthma, dermatitis, and psoriasis. These trials, however, documented only moderate beneficial effects of H4R ligands so far. Nevertheless, pre-clinically, H4R still is subject of ongoing research, analyzing various inflammatory, allergic, and autoimmune diseases. During inflammatory reactions in gut tissues, histamine concentrations rise in affected areas, indicating its possible biological effect. Indeed, in histamine-deficient mice experimentally induced inflammation of the gut is reduced in comparison to that in histamine-competent mice. However, antagonists at H1R, H2R, and H3R do not provide an effect on inflammation, supporting the idea that H4R is responsible for the histamine effects. In the present review, we discuss the involvement of histamine and H4R in inflammatory and inflammation-associated diseases of the gut.
Collapse
|
6
|
Schneider EH. Microglial histamine H4R in the pathophysiology of Parkinson’s disease—a new actor on the stage? Naunyn Schmiedebergs Arch Pharmacol 2019; 392:641-645. [DOI: 10.1007/s00210-019-01635-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 02/14/2019] [Indexed: 12/11/2022]
|
7
|
Tatarkiewicz J, Rzodkiewicz P, Żochowska M, Staniszewska A, Bujalska-Zadrożny M. New antihistamines - perspectives in the treatment of some allergic and inflammatory disorders. Arch Med Sci 2019; 15:537-553. [PMID: 30899308 PMCID: PMC6425212 DOI: 10.5114/aoms.2017.68534] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 03/13/2017] [Indexed: 12/29/2022] Open
Affiliation(s)
- Jan Tatarkiewicz
- Department of Pharmacodynamics, Centre for Preclinical Research and Technology, Medical University of Warsaw, Warsaw, Poland
| | - Przemysław Rzodkiewicz
- Department of Biochemistry and Molecular Biology, National Institute of Geriatrics, Rheumatology and Rehabilitation, Warsaw, Poland
- Department of General and Experimental Pathology, Medical University of Warsaw, Warsaw, Poland
| | - Małgorzata Żochowska
- Department of Pharmacodynamics, Centre for Preclinical Research and Technology, Medical University of Warsaw, Warsaw, Poland
| | - Anna Staniszewska
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Warsaw, Poland
| | - Magdalena Bujalska-Zadrożny
- Department of Pharmacodynamics, Centre for Preclinical Research and Technology, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
8
|
The histamine H4 receptor modulates the differentiation process of human monocyte-derived M1 macrophages and the release of CCL4/MIP-1β from fully differentiated M1 macrophages. Inflamm Res 2018; 67:503-513. [PMID: 29600327 DOI: 10.1007/s00011-018-1140-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 03/02/2018] [Accepted: 03/21/2018] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVE Histamine is an important mediator of biological functions and present in high amounts in inflammatory skin lesions which are characterised by a marked infiltration of myeloid derived cell populations. The aim of the study was to investigate the expression and function of histamine receptors, with a focus on the histamine H4 receptor (H4R) in detail during the differentiation process from monocytes to macrophages and on fully differentiated M1 macrophages. METHODS Quantitative PCR, ELISA technique, and flow cytometry were applied to analyze expression levels of histamine receptors, of CXCL10, CCL4, CCL3, or IL-23 and of the macrophage differentiation marker CD68, respectively. RESULTS We demonstrated that monocytes and fully differentiated M1 macrophages express H1R-, H2R-, and H4R mRNA which were differentially regulated during the differentiation process and in IFN-Ƴ and LPS classically activated M1 macrophages. The H3R mRNA was not expressed. During in vitro differentiation from monocytes to macrophages, the H4R agonist ST-1006 modified the M1 phenotype by up-regulating the macrophage differentiation marker CD68, by down-regulating the production of CXCL10, and by changing the morphology. In fully differentiated M1 macrophages, histamine or ST-1006 decreased the IFN-Ƴ- and LPS-induced CCL4 mRNA expression and protein production, whereas CCL3 or IL-23 production was not regulated via H4R. CONCLUSIONS We describe novel immunomodulatory functions of the H4R during the differentiation process of human monocyte-derived macrophages and in fully differentiated M1 macrophages. The down-regulation of Th1-related chemokines during the differentiation process or in classically activated macrophages via H4R may contribute to decreased migration of immune cells to the site of inflammation. This may have implications for the treatment of allergic diseases with H4R ligands regulating the dysbalance of Th2/Th1 polarizations in these disorders.
Collapse
|
9
|
Wunschel EJ, Schirmer B, Seifert R, Neumann D. Lack of Histamine H 4-Receptor Expression Aggravates TNBS-Induced Acute Colitis Symptoms in Mice. Front Pharmacol 2017; 8:642. [PMID: 28955241 PMCID: PMC5601386 DOI: 10.3389/fphar.2017.00642] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 08/30/2017] [Indexed: 12/22/2022] Open
Abstract
Inflammatory bowel diseases (IBD) are a growing health problem worldwide, severely affecting patients’ life qualities and life expectancies. Therapeutic options, which are rare and focus on symptoms associated with the disease, suffer from increasing numbers of patients refractory to the established strategies. Thus, in order to generate new therapeutic regimens, the detailed understanding of the pathogenic mechanisms causing IBD is necessary. Histamine is an inflammatory mediator associated with IBD. Four histamine receptors are currently known of which the histamine H4-receptor (H4R) has been shown to possess a pro-inflammatory function in several experimental models of inflammatory diseases, including dextran sodium sulfate (DSS)-induced colitis in mice. No single model reflects the complexity of human IBD, but each model provides valuable information on specific aspects of IBD pathogenesis. While DSS-induced colitis mostly relies on innate immune mechanisms, trinitrobenzene sulfonic acid (TNBS)-induced colitis rather reflects T-cell mechanisms. Consequently, an observation made in a single model has to be verified in at least one other model. Therefore, in the present study we investigated the effect of genetic blockade of H4R-signaling in mice subjected to the model of TNBS-induced acute colitis. We analyzed severity and progression of clinical signs of colitis, as well as histopathologic alterations in the colon and local cytokine production. Genetic ablation of H4R expression worsened clinical signs of acute colitis and histological appearance of colon inflammation after TNBS application. Moreover, TNBS instillation enhanced local synthesis of inflammatory mediators associated with a neutrophilic response, i.e., CXCL1, CXCL2, and interleukin-6. Lastly, also myeloperoxidase concentration, indicative for the presence of neutrophils, was elevated in cola of TNBS-treated mice due to the absence of H4R expression. Our results indicate an anti-inflammatory role of histamine via H4R in TNBS-induced acute neutrophilic colitis in mice, thus questioning the strategy of pharmacological H4R blocked as new therapeutic option for patients suffering from IBD.
Collapse
Affiliation(s)
- Eva J Wunschel
- Institute of Pharmacology, Hannover Medical SchoolHanover, Germany
| | - Bastian Schirmer
- Institute of Pharmacology, Hannover Medical SchoolHanover, Germany
| | - Roland Seifert
- Institute of Pharmacology, Hannover Medical SchoolHanover, Germany
| | - Detlef Neumann
- Institute of Pharmacology, Hannover Medical SchoolHanover, Germany
| |
Collapse
|
10
|
Hattori Y, Seifert R. Pharmacological Characterization of Human Histamine Receptors and Histamine Receptor Mutants in the Sf9 Cell Expression System. Handb Exp Pharmacol 2017; 241:63-118. [PMID: 28233175 PMCID: PMC7120522 DOI: 10.1007/164_2016_124] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
A large problem of histamine receptor research is data heterogeneity. Various experimental approaches, the complex signaling pathways of mammalian cells, and the use of different species orthologues render it difficult to compare and interpret the published results. Thus, the four human histamine receptor subtypes were analyzed side-by-side in the Sf9 insect cell expression system, using radioligand binding assays as well as functional readouts proximal to the receptor activation event (steady-state GTPase assays and [35S]GTPγS assays). The human H1R was co-expressed with the regulators of G protein signaling RGS4 or GAIP, which unmasked a productive interaction between hH1R and insect cell Gαq. By contrast, functional expression of the hH2R required the generation of an hH2R-Gsα fusion protein to ensure close proximity of G protein and receptor. Fusion of hH2R to the long (GsαL) or short (GsαS) splice variant of Gαs resulted in comparable constitutive hH2R activity, although both G protein variants show different GDP affinities. Medicinal chemistry studies revealed profound species differences between hH1R/hH2R and their guinea pig orthologues gpH1R/gpH2R. The causes for these differences were analyzed by molecular modeling in combination with mutational studies. Co-expression of the hH3R with Gαi1, Gαi2, Gαi3, and Gαi/o in Sf9 cells revealed high constitutive activity and comparable interaction efficiency with all G protein isoforms. A comparison of various cations (Li+, Na+, K+) and anions (Cl-, Br-, I-) revealed that anions with large radii most efficiently stabilize the inactive hH3R state. Potential sodium binding sites in the hH3R protein were analyzed by expressing specific hH3R mutants in Sf9 cells. In contrast to the hH3R, the hH4R preferentially couples to co-expressed Gαi2 in Sf9 cells. Its high constitutive activity is resistant to NaCl or GTPγS. The hH4R shows structural instability and adopts a G protein-independent high-affinity state. A detailed characterization of affinity and activity of a series of hH4R antagonists/inverse agonists allowed first conclusions about structure/activity relationships for inverse agonists at hH4R. In summary, the Sf9 cell system permitted a successful side-by-side comparison of all four human histamine receptor subtypes. This chapter summarizes the results of pharmacological as well as medicinal chemistry/molecular modeling approaches and demonstrates that these data are not only important for a deeper understanding of HxR pharmacology, but also have significant implications for the molecular pharmacology of GPCRs in general.
Collapse
Affiliation(s)
- Yuichi Hattori
- Department of Molecular and Medical Pharmacology, Graduate School of Medical and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Roland Seifert
- Institute of Pharmacology, Medical School of Hannover, Hannover, Germany
| |
Collapse
|
11
|
Dittmar F, Wolter S, Seifert R. Regulation of apoptosis by cyclic nucleotides in human erythroleukemia (HEL) cells and human myelogenous leukemia (K-562) cells. Biochem Pharmacol 2016; 112:13-23. [PMID: 27157412 DOI: 10.1016/j.bcp.2016.04.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 04/29/2016] [Indexed: 10/21/2022]
Abstract
The cyclic pyrimidine nucleotides cCMP and cUMP have been recently identified in numerous mammalian cell lines, in primary cells and in intact organs, but very little is still known about their biological function. A recent study of our group revealed that the membrane-permeable cCMP analog cCMP-acetoxymethylester (cCMP-AM) induces apoptosis in mouse lymphoma cells independent of protein kinase A via an intrinsic and mitochondria-dependent pathway. In our present study, we examined the effects of various cNMP-AMs in human tumor cell lines. In HEL cells, a human erythroleukemia cell line, cCMP-AM effectively reduced the number of viable cells, effectively induced apoptosis by altering the mitochondrial membrane potential and thereby caused changes in the cell cycle. cCMP itself was biologically inactive, indicating that membrane penetration is required to trigger intracellular effects. cCMP-AM did not induce apoptosis in K-562 cells, a human chronic myelogenous leukemia cell line, due to rapid export via multidrug resistance-associated proteins. The biological effects of cCMP-AM differed from those of other cNMP-AMs. In conclusion, cCMP effectively induces apoptosis in HEL cells, cCMP export prevents apoptosis of K-562 cells and cNMPs differentially regulate various aspects of apoptosis, cell growth and mitochondrial function. In a broader perspective, our data support the concept of distinct second messenger roles of cAMP, cGMP, cCMP and cUMP.
Collapse
Affiliation(s)
- Fanni Dittmar
- Institute of Pharmacology, Hannover Medical School, Carl-Neuberg-Str. 1, D-30625 Hannover, Germany.
| | - Sabine Wolter
- Institute of Pharmacology, Hannover Medical School, Carl-Neuberg-Str. 1, D-30625 Hannover, Germany.
| | - Roland Seifert
- Institute of Pharmacology, Hannover Medical School, Carl-Neuberg-Str. 1, D-30625 Hannover, Germany.
| |
Collapse
|
12
|
Geyer R, Nordemann U, Strasser A, Wittmann HJ, Buschauer A. Conformational Restriction and Enantioseparation Increase Potency and Selectivity of Cyanoguanidine-Type Histamine H4 Receptor Agonists. J Med Chem 2016; 59:3452-70. [PMID: 27007611 DOI: 10.1021/acs.jmedchem.6b00120] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
2-Cyano-1-[4-(1H-imidazol-4-yl)butyl]-3-[2-(phenylsulfanyl)ethyl]guanidine (UR-PI376, 1) is a potent and selective agonist of the human histamine H4 receptor (hH4R). To gain information on the active conformation, we synthesized analogues of 1 with a cyclopentane-1,3-diyl linker. Affinities and functional activities were determined at recombinant hHxR (x: 1-4) subtypes on Sf9 cell membranes (radioligand binding, [(35)S]GTPγS, or GTPase assays) and in part in luciferase assays on human or mouse H4R (HEK-293 cells). The most potent H4R agonists among 14 racemates were separated by chiral HPLC, yielding eight enantiomerically pure compounds. Configurations were assigned based on X-ray structures of intermediates and a stereocontrolled synthetic pathway. (+)-2-Cyano-1-{[trans-(1S,3S)-3-(1H-imidazol-4-yl)cyclopentyl]methyl}-3-[2-(phenylsulfanyl)ethyl]guanidine ((1S,3S)-UR-RG98, 39a) was the most potent H4R agonist in this series (EC50 11 nM; H4R vs H3R, >100-fold selectivity; H1R, H2R, negligible activities), whereas the optical antipode proved to be an H4R antagonist ([(35)S]GTPγS assay). MD simulations confirmed differential stabilization of the active and inactive H4R state by the enantiomers.
Collapse
Affiliation(s)
- Roland Geyer
- Institute of Pharmacy, Pharmaceutical/Medicinal Chemistry, Faculty of Chemistry and Pharmacy, University of Regensburg , Universitätsstraße 31, D-93053 Regensburg, Germany
| | - Uwe Nordemann
- Institute of Pharmacy, Pharmaceutical/Medicinal Chemistry, Faculty of Chemistry and Pharmacy, University of Regensburg , Universitätsstraße 31, D-93053 Regensburg, Germany
| | - Andrea Strasser
- Institute of Pharmacy, Pharmaceutical/Medicinal Chemistry, Faculty of Chemistry and Pharmacy, University of Regensburg , Universitätsstraße 31, D-93053 Regensburg, Germany
| | - Hans-Joachim Wittmann
- Institute of Pharmacy, Pharmaceutical/Medicinal Chemistry, Faculty of Chemistry and Pharmacy, University of Regensburg , Universitätsstraße 31, D-93053 Regensburg, Germany
| | - Armin Buschauer
- Institute of Pharmacy, Pharmaceutical/Medicinal Chemistry, Faculty of Chemistry and Pharmacy, University of Regensburg , Universitätsstraße 31, D-93053 Regensburg, Germany
| |
Collapse
|
13
|
Panula P, Chazot PL, Cowart M, Gutzmer R, Leurs R, Liu WLS, Stark H, Thurmond RL, Haas HL. International Union of Basic and Clinical Pharmacology. XCVIII. Histamine Receptors. Pharmacol Rev 2016; 67:601-55. [PMID: 26084539 DOI: 10.1124/pr.114.010249] [Citation(s) in RCA: 379] [Impact Index Per Article: 47.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Histamine is a developmentally highly conserved autacoid found in most vertebrate tissues. Its physiological functions are mediated by four 7-transmembrane G protein-coupled receptors (H1R, H2R, H3R, H4R) that are all targets of pharmacological intervention. The receptors display molecular heterogeneity and constitutive activity. H1R antagonists are long known antiallergic and sedating drugs, whereas the H2R was identified in the 1970s and led to the development of H2R-antagonists that revolutionized stomach ulcer treatment. The crystal structure of ligand-bound H1R has rendered it possible to design new ligands with novel properties. The H3R is an autoreceptor and heteroreceptor providing negative feedback on histaminergic and inhibition on other neurons. A block of these actions promotes waking. The H4R occurs on immuncompetent cells and the development of anti-inflammatory drugs is anticipated.
Collapse
Affiliation(s)
- Pertti Panula
- Department of Anatomy, and Neuroscience Center, University of Helsinki, Finland (P.P.); School of Biological and Biomedical Sciences, University of Durham, United Kingdom (P.L.C.); AbbVie, Inc. North Chicago, Illinois (M.C.); Department of Dermatology and Allergy, Hannover Medical School, Hannover, Germany (R.G.); Department of Medicinal Chemistry, Amsterdam Institute of Molecules, Medicines and Systems, VU University Amsterdam, The Netherlands (R.L.); Ziarco Pharma Limited, Canterbury, United Kingdom (W.L.S.L.); Institute of Pharmaceutical and Medical Chemistry and Institute of Neurophysiology, Medical Faculty, Westfalische-Wilhelms-University, Muenster, Germany (H.L.H.); Heinrich-Heine-University Duesseldorf, Germany (H.S.); and Janssen Research & Development, LLC, San Diego, California (R.L.T.)
| | - Paul L Chazot
- Department of Anatomy, and Neuroscience Center, University of Helsinki, Finland (P.P.); School of Biological and Biomedical Sciences, University of Durham, United Kingdom (P.L.C.); AbbVie, Inc. North Chicago, Illinois (M.C.); Department of Dermatology and Allergy, Hannover Medical School, Hannover, Germany (R.G.); Department of Medicinal Chemistry, Amsterdam Institute of Molecules, Medicines and Systems, VU University Amsterdam, The Netherlands (R.L.); Ziarco Pharma Limited, Canterbury, United Kingdom (W.L.S.L.); Institute of Pharmaceutical and Medical Chemistry and Institute of Neurophysiology, Medical Faculty, Westfalische-Wilhelms-University, Muenster, Germany (H.L.H.); Heinrich-Heine-University Duesseldorf, Germany (H.S.); and Janssen Research & Development, LLC, San Diego, California (R.L.T.)
| | - Marlon Cowart
- Department of Anatomy, and Neuroscience Center, University of Helsinki, Finland (P.P.); School of Biological and Biomedical Sciences, University of Durham, United Kingdom (P.L.C.); AbbVie, Inc. North Chicago, Illinois (M.C.); Department of Dermatology and Allergy, Hannover Medical School, Hannover, Germany (R.G.); Department of Medicinal Chemistry, Amsterdam Institute of Molecules, Medicines and Systems, VU University Amsterdam, The Netherlands (R.L.); Ziarco Pharma Limited, Canterbury, United Kingdom (W.L.S.L.); Institute of Pharmaceutical and Medical Chemistry and Institute of Neurophysiology, Medical Faculty, Westfalische-Wilhelms-University, Muenster, Germany (H.L.H.); Heinrich-Heine-University Duesseldorf, Germany (H.S.); and Janssen Research & Development, LLC, San Diego, California (R.L.T.)
| | - Ralf Gutzmer
- Department of Anatomy, and Neuroscience Center, University of Helsinki, Finland (P.P.); School of Biological and Biomedical Sciences, University of Durham, United Kingdom (P.L.C.); AbbVie, Inc. North Chicago, Illinois (M.C.); Department of Dermatology and Allergy, Hannover Medical School, Hannover, Germany (R.G.); Department of Medicinal Chemistry, Amsterdam Institute of Molecules, Medicines and Systems, VU University Amsterdam, The Netherlands (R.L.); Ziarco Pharma Limited, Canterbury, United Kingdom (W.L.S.L.); Institute of Pharmaceutical and Medical Chemistry and Institute of Neurophysiology, Medical Faculty, Westfalische-Wilhelms-University, Muenster, Germany (H.L.H.); Heinrich-Heine-University Duesseldorf, Germany (H.S.); and Janssen Research & Development, LLC, San Diego, California (R.L.T.)
| | - Rob Leurs
- Department of Anatomy, and Neuroscience Center, University of Helsinki, Finland (P.P.); School of Biological and Biomedical Sciences, University of Durham, United Kingdom (P.L.C.); AbbVie, Inc. North Chicago, Illinois (M.C.); Department of Dermatology and Allergy, Hannover Medical School, Hannover, Germany (R.G.); Department of Medicinal Chemistry, Amsterdam Institute of Molecules, Medicines and Systems, VU University Amsterdam, The Netherlands (R.L.); Ziarco Pharma Limited, Canterbury, United Kingdom (W.L.S.L.); Institute of Pharmaceutical and Medical Chemistry and Institute of Neurophysiology, Medical Faculty, Westfalische-Wilhelms-University, Muenster, Germany (H.L.H.); Heinrich-Heine-University Duesseldorf, Germany (H.S.); and Janssen Research & Development, LLC, San Diego, California (R.L.T.)
| | - Wai L S Liu
- Department of Anatomy, and Neuroscience Center, University of Helsinki, Finland (P.P.); School of Biological and Biomedical Sciences, University of Durham, United Kingdom (P.L.C.); AbbVie, Inc. North Chicago, Illinois (M.C.); Department of Dermatology and Allergy, Hannover Medical School, Hannover, Germany (R.G.); Department of Medicinal Chemistry, Amsterdam Institute of Molecules, Medicines and Systems, VU University Amsterdam, The Netherlands (R.L.); Ziarco Pharma Limited, Canterbury, United Kingdom (W.L.S.L.); Institute of Pharmaceutical and Medical Chemistry and Institute of Neurophysiology, Medical Faculty, Westfalische-Wilhelms-University, Muenster, Germany (H.L.H.); Heinrich-Heine-University Duesseldorf, Germany (H.S.); and Janssen Research & Development, LLC, San Diego, California (R.L.T.)
| | - Holger Stark
- Department of Anatomy, and Neuroscience Center, University of Helsinki, Finland (P.P.); School of Biological and Biomedical Sciences, University of Durham, United Kingdom (P.L.C.); AbbVie, Inc. North Chicago, Illinois (M.C.); Department of Dermatology and Allergy, Hannover Medical School, Hannover, Germany (R.G.); Department of Medicinal Chemistry, Amsterdam Institute of Molecules, Medicines and Systems, VU University Amsterdam, The Netherlands (R.L.); Ziarco Pharma Limited, Canterbury, United Kingdom (W.L.S.L.); Institute of Pharmaceutical and Medical Chemistry and Institute of Neurophysiology, Medical Faculty, Westfalische-Wilhelms-University, Muenster, Germany (H.L.H.); Heinrich-Heine-University Duesseldorf, Germany (H.S.); and Janssen Research & Development, LLC, San Diego, California (R.L.T.)
| | - Robin L Thurmond
- Department of Anatomy, and Neuroscience Center, University of Helsinki, Finland (P.P.); School of Biological and Biomedical Sciences, University of Durham, United Kingdom (P.L.C.); AbbVie, Inc. North Chicago, Illinois (M.C.); Department of Dermatology and Allergy, Hannover Medical School, Hannover, Germany (R.G.); Department of Medicinal Chemistry, Amsterdam Institute of Molecules, Medicines and Systems, VU University Amsterdam, The Netherlands (R.L.); Ziarco Pharma Limited, Canterbury, United Kingdom (W.L.S.L.); Institute of Pharmaceutical and Medical Chemistry and Institute of Neurophysiology, Medical Faculty, Westfalische-Wilhelms-University, Muenster, Germany (H.L.H.); Heinrich-Heine-University Duesseldorf, Germany (H.S.); and Janssen Research & Development, LLC, San Diego, California (R.L.T.)
| | - Helmut L Haas
- Department of Anatomy, and Neuroscience Center, University of Helsinki, Finland (P.P.); School of Biological and Biomedical Sciences, University of Durham, United Kingdom (P.L.C.); AbbVie, Inc. North Chicago, Illinois (M.C.); Department of Dermatology and Allergy, Hannover Medical School, Hannover, Germany (R.G.); Department of Medicinal Chemistry, Amsterdam Institute of Molecules, Medicines and Systems, VU University Amsterdam, The Netherlands (R.L.); Ziarco Pharma Limited, Canterbury, United Kingdom (W.L.S.L.); Institute of Pharmaceutical and Medical Chemistry and Institute of Neurophysiology, Medical Faculty, Westfalische-Wilhelms-University, Muenster, Germany (H.L.H.); Heinrich-Heine-University Duesseldorf, Germany (H.S.); and Janssen Research & Development, LLC, San Diego, California (R.L.T.)
| |
Collapse
|
14
|
Capelo R, Lehmann C, Ahmad K, Snodgrass R, Diehl O, Ringleb J, Flamand N, Weigert A, Stark H, Steinhilber D, Kahnt AS. Cellular analysis of the histamine H4 receptor in human myeloid cells. Biochem Pharmacol 2016; 103:74-84. [PMID: 26774453 DOI: 10.1016/j.bcp.2016.01.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2015] [Accepted: 01/06/2016] [Indexed: 01/17/2023]
Abstract
The human histamine H4 receptor (H4R) is a Gαi/o-coupled receptor which is mainly expressed on hematopoietic cells. Accordingly, the receptor is implicated in the pathology of various diseases such as autoimmune disorders, bronchial asthma and pruritus. Due to complicated receptor pharmacology, the lack of a reliable antibody and limited availability of primary cells expressing the receptor the physiology of this receptor is still poorly understood. Therefore, we aimed to assess absolute receptor mRNA expression and functionality (intracellular Ca(2+) release) in various human myeloid cell types such as granulocytes, monocytes, macrophages and dendritic cells (DCs). This was put into context with the expression of the H1R and H2R. In addition, the influence of various inflammatory stimuli on H4R expression was investigated in macrophages and monocyte-derived DCs. We found that classically activated macrophages treated with pro-inflammatory stimuli down-regulated histamine receptor mRNA expression as did LPS and zymosan A matured monocyte-derived DCs. In contrast, alternatively activated macrophages (IL-4 or IL-13) upregulated H2R and H4R expression compared to controls. Consistent with existing literature, we found eosinophils to be the major source of the H4R. Since availability of primary eosinophils is limited, we developed a cell model based on the differentiated eosinophilic cell line EOL-1, in which H4R pharmacology and physiology may be studied.
Collapse
Affiliation(s)
- Ricardo Capelo
- Institute of Pharmaceutical Chemistry/ZAFES, Goethe University Frankfurt, Max-von-Laue Str. 9, D-60438 Frankfurt/Main, Germany.
| | - Christoph Lehmann
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Project Group Translational Medicine and Pharmacology, Theodor-Stern-Kai 7, D-60596 Frankfurt/Main, Germany.
| | - Khalil Ahmad
- Institute of Pharmaceutical Chemistry/ZAFES, Goethe University Frankfurt, Max-von-Laue Str. 9, D-60438 Frankfurt/Main, Germany.
| | - Ryan Snodgrass
- Faculty of Medicine, Institute of Biochemistry I, Goethe-University, Theodor-Stern-Kai 7, D-60596 Frankfurt/Main, Germany.
| | - Olaf Diehl
- Institute of Pharmaceutical Chemistry/ZAFES, Goethe University Frankfurt, Max-von-Laue Str. 9, D-60438 Frankfurt/Main, Germany.
| | - Julia Ringleb
- Faculty of Medicine, Institute of Biochemistry I, Goethe-University, Theodor-Stern-Kai 7, D-60596 Frankfurt/Main, Germany.
| | - Nicolas Flamand
- Université Laval, Centre de Recherche de l'IUCPQ, 2725 Chemin Sainte-Foy, Québec City, QC G1V 4G5, Canada.
| | - Andreas Weigert
- Faculty of Medicine, Institute of Biochemistry I, Goethe-University, Theodor-Stern-Kai 7, D-60596 Frankfurt/Main, Germany.
| | - Holger Stark
- Institute of Pharmaceutical Chemistry, Heinrich-Heine University, Universitaetsstr. 1, D-40225 Düsseldorf, Germany.
| | - Dieter Steinhilber
- Institute of Pharmaceutical Chemistry/ZAFES, Goethe University Frankfurt, Max-von-Laue Str. 9, D-60438 Frankfurt/Main, Germany.
| | - Astrid S Kahnt
- Institute of Pharmaceutical Chemistry/ZAFES, Goethe University Frankfurt, Max-von-Laue Str. 9, D-60438 Frankfurt/Main, Germany.
| |
Collapse
|
15
|
Werner K, Kälble S, Wolter S, Schneider EH, Buschauer A, Neumann D, Seifert R. Flow cytometric analysis with a fluorescently labeled formyl peptide receptor ligand as a new method to study the pharmacological profile of the histamine H2 receptor. Naunyn Schmiedebergs Arch Pharmacol 2015; 388:1039-52. [PMID: 26021872 DOI: 10.1007/s00210-015-1133-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 05/18/2015] [Indexed: 01/14/2023]
Abstract
The histamine H2 receptor (H2R) is a Gs protein-coupled receptor. Its activation leads to increases in the second messenger adenosine-3',5'-cyclic monophosphate (cAMP). Presently, several systems are established to characterize the pharmacological profile of the H2R, mostly requiring radioactive material, animal models, or human blood cells. This prompted us to establish a flow cytometric analysis with a fluorescently labeled formyl peptide receptor (FPR) ligand in order to investigate the H2R functionally and pharmacologically. First, we stimulated U937 promonocytes, which mature in a cAMP-dependent fashion upon H2R activation, with histamine (HA) or selective H2R agonists and measured increases in cAMP concentrations by mass spectrometry. Next, indicative for the maturation of U937 promonocytes, we assessed the FPR expression upon incubation with HA or H2R agonists. FPR expression was measured either indirectly by formyl peptide-induced changes in intracellular calcium concentrations ([Ca(2+)]i) or directly with the fluorescein-labeled FPR ligand fNleLFNleYK-Fl. HA and H2R agonists concentration-dependently induced FPR expression, and potencies and efficacies of fMLP-induced increases in [Ca(2+)]i and FPR density correlated linearly. Accordingly, flow cytometric analysis of FPR expression constitutes a simple, inexpensive, sensitive, and reliable method to characterize the H2R pharmacologically. Furthermore, we evaluated FPR expression at the mRNA level. Generally, quantitative real-time polymerase chain reaction confirmed functional data. Additionally, our study supports the concept of functional selectivity of the H2R, since we observed dissociations in the efficacies of HA and H2R agonists in cAMP accumulation and FPR expression.
Collapse
Affiliation(s)
- Kristin Werner
- Institute of Pharmacology, Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany
| | | | | | | | | | | | | |
Collapse
|
16
|
Histamine H4-receptor expression in the brain? Naunyn Schmiedebergs Arch Pharmacol 2014; 388:5-9. [DOI: 10.1007/s00210-014-1067-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 11/10/2014] [Indexed: 12/15/2022]
|