1
|
Wu P, Bie M, Zhou J, Wang J, Zhao L. Periodontal pathogen Fusobacterium nucleatum infection accelerates hepatic steatosis in high-fat diet-fed ApoE knockout mice by inhibiting Nrf2/Keap1 signaling. J Periodontal Res 2024; 59:1220-1233. [PMID: 38795023 DOI: 10.1111/jre.13278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 03/31/2024] [Accepted: 04/12/2024] [Indexed: 05/27/2024]
Abstract
AIMS This study sought to explore the impact of Fusobacterium nucleatum on hepatic steatosis in apolipoprotein E (ApoE) knockout (KO) mice induced by a high-fat diet (HFD) and elucidate the underlying mechanism. METHODS ApoE KO mice, on a HFD, received F. nucleatum oral inoculation every other day. After 24 weeks, body weight, liver weight, and liver index were assessed. Serum biochemistry and pro-inflammatory factors in serum and liver were analyzed. The histopathology of right maxilla and live were performed. Oil red O, immunohistochemistry, and immunofluorescence staining for the liver were conducted. Myeloperoxidase (MPO) activity, apoptosis, lipid reactive oxygen species (ROS), ROS, lipid peroxides, and hepatic lipids were also evaluated. Liver inflammation, fibrosis, de novo lipogenesis (DNL)-related molecule, and Nrf2/Keap1-related signaling molecule gene/protein expression were determined by real-time PCR (RT-PCR) and/or Western blot (WB) analysis. RESULTS HFD-fed ApoE KO mice infected by F. nucleatum demonstrated significant changes, including increased body and liver weight, elevated proinflammatory factors and lipids in serum and liver, as well as neutrophil infiltration, fibrosis, apoptosis, oxidative stress, and lipid peroxidation in the liver. Additionally, F. nucleatum stimulates hepatic lipid accumulation and activates de novo lipogenesis (DNL), while simultaneously suppressing the Nrf2/Keap1 antioxidant pathway. CONCLUSION In conclusion, our study reveals that oral inoculation of F. nucleatum might promote hepatic steatosis by inhibiting Nrf2/Keap1 pathway.
Collapse
Affiliation(s)
- Peiyao Wu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Periodontics, West China School & Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Mengyao Bie
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Periodontics, West China School & Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jieyu Zhou
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Periodontics, West China School & Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jun Wang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Periodontics, West China School & Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Lei Zhao
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Periodontics, West China School & Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
2
|
Esculetin Alleviates Nonalcoholic Fatty Liver Disease on High-Cholesterol-Diet-Induced Larval Zebrafish and FFA-Induced BRL-3A Hepatocyte. Int J Mol Sci 2023; 24:ijms24021593. [PMID: 36675107 PMCID: PMC9866237 DOI: 10.3390/ijms24021593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 01/15/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD), defined in recent years as metabolic-associated fatty liver disease (MAFLD), is one of the most common liver diseases in the world, with no drugs on market. Esculetin (ESC) is an active compound discovered in a variety of natural products that modulates a wide range of metabolic diseases and is a potential drug for the treatment of NAFLD. In this study, we used an HCD-induced NAFLD larval zebrafish model in vivo and an FFA-induced BRL-3A hepatocyte model in vitro to evaluate the anti-NAFLD effect of ESC. Lipid lowering, anti-oxidation and anti-inflammation effects were revealed on ESC and related gene changes were observed. This study provides a reference for further study and development of ESC as a potential anti-NAFLD/MAFLD drug.
Collapse
|
3
|
Estrogen as a key regulator of energy homeostasis and metabolic health. Biomed Pharmacother 2022; 156:113808. [DOI: 10.1016/j.biopha.2022.113808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/02/2022] [Accepted: 10/03/2022] [Indexed: 11/23/2022] Open
|
4
|
Ramos-Tovar E, Muriel P. Free radicals, antioxidants, nuclear factor-E2-related factor-2 and liver damage. VITAMINS AND HORMONES 2022; 121:271-292. [PMID: 36707137 DOI: 10.1016/bs.vh.2022.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The liver performs various biochemical and molecular functions. Its location as a portal to blood arriving from the intestines makes it susceptible to several insults, leading to diverse pathologies, including alcoholic liver disease, viral infections, nonalcoholic steatohepatitis, and hepatocellular carcinoma, which are causes of death worldwide. Illuminating the molecular mechanism underlying hepatic injury will provide targets to develop new therapeutic strategies to fight liver maladies. In this regard, reactive oxygen species (ROS) are well-recognized mediators of liver damage. ROS induce nuclear factor-κB and the nucleotide-binding oligomerization domain (NOD)-like receptor protein 3 inflammasome, which are the main proinflammatory signaling pathways that upregulate several proinflammatory and profibrogenic mediators. Additionally, oxygen-derived free radicals induce hepatic stellate cell activation to produce exacerbated quantities of extracellular matrix proteins, leading to fibrosis, cirrhosis and eventually hepatocellular carcinoma. Exogenous and endogenous antioxidants counteract the harmful effects of ROS, preventing liver necroinflammation and fibrogenesis. Therefore, several researchers have demonstrated that the administration of antioxidants, mainly derived from plants, affords beneficial effects on the liver. Notably, nuclear factor-E2-related factor-2 (Nrf2) is a major factor against oxidative stress in the liver. Increasing evidence has demonstrated that Nrf2 plays an important role in liver necroinflammation and fibrogenesis via the induction of antioxidant response element genes. The use of Nrf2 inducers seems to be an interesting approach to prevent/attenuate hepatic disorders, particularly under conditions where ROS play a causative role.
Collapse
Affiliation(s)
- Erika Ramos-Tovar
- Postgraduate Studies and Research Section, School of Higher Education in Medicine-IPN, Mexico City, Mexico.
| | - Pablo Muriel
- Laboratory of Experimental Hepatology, Department of Pharmacology, Cinvestav-IPN, Mexico City, Mexico.
| |
Collapse
|
5
|
Yang B, Hu M, Fu Y, Sun D, Zheng W, Liao H, Zhang Z, Chen X. LASS2 mediates Nrf2-driven progestin resistance in endometrial cancer. Am J Transl Res 2021; 13:1280-1289. [PMID: 33841656 PMCID: PMC8014362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 11/07/2020] [Indexed: 06/12/2023]
Abstract
UNLABELLED Progestin administration serves as the optimal conservative treatment method for women with endometrial cancer or precancer lesions who want to preserve fertility. However, there are still at least 30% of patients in which progestin resistance occurs. LASS2 (Ceramide Synthase 2) has been reported to be involved in chemotherapy resistance, whether it also plays a role in progestin resistance is not clear. Here, we explored the detailed mechanism by which Nrf2/LASS2 contributes to progestin resistance and disease progression. METHODS IHC assays were performed to estimate the expression pattern of Nrf2 and LASS2. Moreover, it bears three antioxidant response elements (ARE) in the promoter region of LASS2 gene, therefore, Luciferase assays were performed to determine if Nrf2 regulates LASS2 by binding with these ARE sequence. Western Blot assays were used to determine the expression of Nrf2 and LASS2 protein among various endometrial cell lines. Relative mRNA expression levels were detected by RT-PCR. Cellular growth was monitored with CCK-8 tests. Apoptosis was determined with Annexin V-PI staining and flow cytometry analysis. siRNA knockdown was performed to investigate the effects of Nrf2 on cell proliferation. RESULT Nrf2/LASS2 is highly expressed in endometrial cancer tissue, as compared to expression levels in normal endometrial tissue. Proliferation assays demonstrated that overexpression of Nrf2/LASS2 resulted in progestin resistance. Conversely, knockdown of LASS2 increased apoptosis and decreased cell viability. In addition, metformin overcame progestin resistance by down-regulating Nrf2/LASS2 expression. CONCLUSION Our findings provide new insight into the mechanism of progestin resistance in type I endometrial cancer. Nrf2/LASS2 may not only be a possible marker for predicting the prognosis of endometrial cancer but also serve as a potential therapeutic target.
Collapse
Affiliation(s)
- Bin Yang
- Jiangxi Medical College, Nanchang UniversityNanchang 330000, China
- Reproductive Medicine Center, Jiangxi Provincial Maternal and Child Health HospitalNanchang 330006, Jiangxi Province, China
| | - Meiyan Hu
- Jiangxi Medical College, Nanchang UniversityNanchang 330000, China
- Department of Obstetrics and Gynecology, Zhongshan Hospital Wusong Branch, Fudan UniversityShanghai 201900, China
- Reproductive Medicine Center, Shanghai General Hospital, Shanghai Jiaotong University100 Haining Road, Shanghai 200080, China
| | - Yue Fu
- Reproductive Medicine Center, Shanghai General Hospital, Shanghai Jiaotong University100 Haining Road, Shanghai 200080, China
| | - Di Sun
- Reproductive Medicine Center, Shanghai General Hospital, Shanghai Jiaotong University100 Haining Road, Shanghai 200080, China
| | - Wenxin Zheng
- Department of Pathology, University of Texas Southwestern Medical CenterDallas, TX 75390, USA
- Department of Obstetrics and Gynecology, University of Texas Southwestern Medical CenterDallas, TX 75390, USA
| | - Hong Liao
- The Graduate School, Tongji University School of MedicineShanghai 200040, China
- Department of Laboratory Medicine, Shanghai First Maternity and Infant Hospital, Tongji University School of MedicineShanghai 200040, China
| | - Zhenbo Zhang
- Reproductive Medicine Center, Shanghai General Hospital, Shanghai Jiaotong University100 Haining Road, Shanghai 200080, China
| | - Xiong Chen
- Jiangxi Medical College, Nanchang UniversityNanchang 330000, China
- Department of Obstetrics and Gynecology, Zhongshan Hospital Wusong Branch, Fudan UniversityShanghai 201900, China
| |
Collapse
|
6
|
Rui W, Li S, Xiao H, Xiao M, Shi J. Baicalein Attenuates Neuroinflammation by Inhibiting NLRP3/caspase-1/GSDMD Pathway in MPTP Induced Mice Model of Parkinson's Disease. Int J Neuropsychopharmacol 2020; 23:pyaa060. [PMID: 32761175 PMCID: PMC7745250 DOI: 10.1093/ijnp/pyaa060] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 07/12/2020] [Accepted: 07/31/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Inflammasome-induced neuroinflammation is a major pathogenic mechanism underlying the degeneration of nigral dopaminergic neurons in Parkinson's disease (PD). Baicalein is a flavonoid isolated from the traditional Chinese medicinal herbal Scutellaria baicalensis Georgi with known anti-inflammatory and neuroprotective efficacy in models of neurodegenerative diseases, including PD. However, its effects on inflammasome-induced neuroinflammation during PD remain unclear. METHODS We used N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) to induce PD-like pathology in mice. Behavioral assessments including the pole test, rotarod test and open filed test were conducted to evaluate the effects of baicalein on MPTP-induced motor dysfunction. The efficacies of baicalein against MPTP-induced dopaminergic neuron loss and glial cell activation in the substantia nigra compact (SNc) were examined by immunohistochemistry, effects on proinflammatory cytokines by qPCR and enzyme-linked immunosorbent assay (ELISA), effects on inflammasome pathway activation by immunoblotting and flow cytometry. RESULTS Administration of baicalein reversed MPTP-induced motor dysfunction, loss of dopaminergic neurons, and pro-inflammatory cytokine elevation. Baicalein also inhibited NLRP3 and caspase-1 activation and suppressed gasdermin D (GSDMD)-dependent pyroptosis. Additionally, baicalein inhibited the activation and proliferation of disease-associated proinflammatory microglia. CONCLUSIONS These findings suggest that baicalein can reverse MPTP-induced neuroinflammation in mice by suppressing NLRP3/caspase-1/GSDMD pathway. Our study provides potential insight of baicalein in PD therapy.
Collapse
Affiliation(s)
- Wenjuan Rui
- Department of Neurology, Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Neuro-Psychiatric Institute, Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Sheng Li
- Department of Neurology, Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hong Xiao
- Department of Neuro-Psychiatric Institute, Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ming Xiao
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jingping Shi
- Department of Neurology, Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
7
|
Wang C, Hu NH, Yu LY, Gong LH, Dai XY, Peng C, Li YX. 2,3,5,4'-tetrahydroxystilbence-2-O-β-D-glucoside attenuates hepatic steatosis via IKKβ/NF-κB and Keap1-Nrf2 pathways in larval zebrafish. Biomed Pharmacother 2020; 127:110138. [DOI: 10.1016/j.biopha.2020.110138] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 03/30/2020] [Accepted: 03/31/2020] [Indexed: 12/13/2022] Open
|
8
|
Gong Y, Yang Y. Activation of Nrf2/AREs-mediated antioxidant signalling, and suppression of profibrotic TGF-β1/Smad3 pathway: a promising therapeutic strategy for hepatic fibrosis - A review. Life Sci 2020; 256:117909. [PMID: 32512009 DOI: 10.1016/j.lfs.2020.117909] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 05/19/2020] [Accepted: 06/01/2020] [Indexed: 02/07/2023]
Abstract
Hepatic fibrosis (HF) is a wound-healing response that occurs during chronic liver injury and features by an excessive accumulation of extracellular matrix (ECM) components. Activation of hepatic stellate cell (HSC), the leading effector in HF, is responsible for overproduction of ECM. It has been documented that transforming growth factor-β1 (TGF-β1) stimulates superfluous accumulation of ECM and triggers HSCs activation mainly via canonical Smad-dependent pathway. Also, the pro-fibrogenic TGF-β1 is correlated with generation of reactive oxygen species (ROS) and inhibition of antioxidant mechanisms. Moreover, involvement of oxidative stress (OS) can be clearly elucidated as a fundamental event in liver fibrogenesis. Nuclear factor erythroid 2-related factor 2-antioxidant response elements (Nrf2-AREs) pathway, a group of OS-mediated transcription factors with diverse downstream targets, is associated with the induction of diverse detoxifying enzymes and the most pivotal endogenous antioxidative system. More specifically, Nrf2-AREs pathway has recently assigned as a new therapeutic target for cure of HF. The overall goal of this review will focus on recent findings about activation of Nrf2-AREs-mediated antioxidant and suppression of profibrotic TGF-β1/Smad3 pathway in the liver, providing an overview of recent advances in transcriptional repressors that dislocated during HF formation, and highlighting possible novel therapeutic targets for liver fibrosis.
Collapse
Affiliation(s)
- Yongfang Gong
- Department of Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Hefei 230032, China
| | - Yan Yang
- Department of Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Hefei 230032, China.
| |
Collapse
|
9
|
Wu X, Huang J, Shen C, Liu Y, He S, Sun J, Yu B. NRF2 deficiency increases obesity susceptibility in a mouse menopausal model. PLoS One 2020; 15:e0228559. [PMID: 32045430 PMCID: PMC7012419 DOI: 10.1371/journal.pone.0228559] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 01/17/2020] [Indexed: 12/11/2022] Open
Abstract
The risk of metabolic abnormalities in menopausal women increases significantly due to the decline in estrogen level. Nuclear factor E2-related factor 2 (NRF2) is an important oxidative stress sensor that plays regulatory role in energy metabolism. Therefore, an ovariectomized menopausal model in Nrf2-knockout (KO) mice was applied to evaluate the effect of Nrf2 deficiency on metabolism in menopausal females. The mice were divided into four groups according to their genotypes and treatments. Blood samples and bodyweights were obtained preoperatively and in the first to ninth postoperative weeks after overnight fasting. Serum levels of triglycerides (TG), total cholesterol (T-CHO), low-density lipoprotein (LDL), high-density lipoprotein (HDL), and glucose (GLU) were measured at postoperative weeks 0, 1, 3, 5, 7, and 9. Neurotransmitter dopamine (DA) and serotonin (5-HT) was analyzed in brain tissues after sacrifice at postoperative week 9. The results demonstrated that, compared with the corresponding wild-type (WT) mice, KO ovariectomized mice had a greater bodyweight gain (P<0.01). Serum analysis showed that the serum GLU, T-CHO, and TG were significantly lower (P<0.05) but LDL was significantly higher (P<0.05) in the KO control mice than that in WT control mice. However, different from the WT counterparts, an increase in blood GLU level (P<0.05), unchanged T-CHO, TG, and HDL levels, and a significant reduction in LDL (P<0.01) was found in the KO ovariectomized mice. In addition, the level of 5-HT was significantly reduced (P<0.05) in the KO mice after ovariectomy. In conclusion, the combination of Nrf2 deletion and a decline in estrogen level induced a significant increase in bodyweight, which may be associated with their altered glucose and LDL metabolism and decreased 5-HT levels. From a clinical perspective, women with antioxidant defense deficiency may have an increased risk of metabolic abnormalities after menopause.
Collapse
Affiliation(s)
- Xunwei Wu
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Guangdong Engineering and Technology Research Center of Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jun Huang
- Department of Obstetrics, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Cong Shen
- Third Clinical College, Guangzhou Medical University, Guangzhou, China
| | - Yeling Liu
- Third Clinical College, Guangzhou Medical University, Guangzhou, China
| | - Shengjie He
- Third Clinical College, Guangzhou Medical University, Guangzhou, China
| | - Junquan Sun
- Third Clinical College, Guangzhou Medical University, Guangzhou, China
| | - Bolan Yu
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Guangdong Engineering and Technology Research Center of Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- * E-mail:
| |
Collapse
|
10
|
Li L, Fu J, Liu D, Sun J, Hou Y, Chen C, Shao J, Wang L, Wang X, Zhao R, Wang H, Andersen ME, Zhang Q, Xu Y, Pi J. Hepatocyte-specific Nrf2 deficiency mitigates high-fat diet-induced hepatic steatosis: Involvement of reduced PPARγ expression. Redox Biol 2020; 30:101412. [PMID: 31901728 PMCID: PMC6940621 DOI: 10.1016/j.redox.2019.101412] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 12/02/2019] [Accepted: 12/12/2019] [Indexed: 02/07/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is an emerging global disease with increasing prevalence. However, the mechanism of NAFLD development is not fully understood. To elucidate the cell-specific role of nuclear factor erythroid-derived 2-like 2 (NRF2) in the pathogenesis of NAFLD, we utilized hepatocyte- and macrophage-specific Nrf2-knockout [Nrf2(L)-KO and Nrf2(Mϕ)-KO] mice to examine the progress of NAFLD induced by high-fat diet (HFD). Compared to Nrf2-LoxP littermates, Nrf2(L)-KO mice showed less liver enlargement, milder inflammation and less hepatic steatosis after HFD feeding. In contrast, Nrf2(Mϕ)-KO mice displayed no significant difference in HFD-induced hepatic steatosis from Nrf2-LoxP control mice. Mechanistic investigations revealed that Nrf2 deficiency in hepatocytes dampens the expression of peroxisome proliferator-activated receptor γ (PPARγ) and its downstream lipogenic genes in the liver and/or primary hepatocytes induced by HFD and palmitate exposure, respectively. While PPARγ agonists augmented PPARγ expression and its transcriptional activity in primary hepatocytes in a NRF2-dependent manner, forced overexpression of PPARγ1 or γ2 distinctively reversed the decreased expression of their downstream genes fatty acid binding protein 4, lipoprotein lipase and/or fatty acid synthase caused by Nrf2 deficiency. We conclude that NRF2-dependent expression of PPARγ in hepatocytes is a critical initiating process in the development of NAFLD, suggesting that inhibition of NRF2 specifically in hepatocytes may be a valuable approach to prevent the disease.
Collapse
Affiliation(s)
- Lu Li
- Program of Environmental Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, PR China
| | - Jingqi Fu
- Program of Environmental Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, PR China
| | - Dan Liu
- Program of Environmental Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, PR China
| | - Jing Sun
- Program of Environmental Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, PR China
| | - Yongyong Hou
- Program of Environmental Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, PR China
| | - Chengjie Chen
- Program of Environmental Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, PR China
| | - Junbo Shao
- Program of Environmental Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, PR China
| | - Linlin Wang
- School of Forensic Medicine, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, PR China
| | - Xin Wang
- Program of Environmental Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, PR China
| | - Rui Zhao
- School of Forensic Medicine, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, PR China
| | - Huihui Wang
- Group of Chronic Disease and Environmental Genomics, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, PR China
| | | | - Qiang Zhang
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, 30322, USA
| | - Yuanyuan Xu
- Group of Chronic Disease and Environmental Genomics, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, PR China.
| | - Jingbo Pi
- Program of Environmental Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, PR China.
| |
Collapse
|
11
|
Ahmad O, Wang B, Ma K, Deng Y, Li M, Yang L, Yang Y, Zhao J, Cheng L, Zhou Q, Shang J. Lipid Modulating Anti-oxidant Stress Activity of Gastrodin on Nonalcoholic Fatty Liver Disease Larval Zebrafish Model. Int J Mol Sci 2019; 20:E1984. [PMID: 31018538 PMCID: PMC6515101 DOI: 10.3390/ijms20081984] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 04/13/2019] [Accepted: 04/18/2019] [Indexed: 12/12/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH) is the most common chronic liver disease in the world. However, there are still no drugs for NAFLD/NASH in the market. Gastrodin (GAS) is a bioactive compound that is extracted from Gastrodia elata, which is used as an active compound on nervous system diseases. Recent reports showed that GAS and Gastrodia elata possess anti-oxidant activity and lipid regulating effects, which makes us curious to reveal the anti-NAFLD effect of GAS. A high cholesterol diet (HCD) was used to induce a NAFLD larval zebrafish model, and the lipid regulation and anti-oxidant effects were tested on the model. Furthermore, qRT-PCR studied the underlying mechanism of GAS. To conclude, this study revealed a lipid regulation and anti-oxidant insights of GAS on NAFLD larval zebrafish model and provided a potential therapeutic compound for NAFLD treatment.
Collapse
Affiliation(s)
- Owais Ahmad
- School of Life Sciences and Technology, China Pharmaceutical University, Nanjing 211198, China.
| | - Bing Wang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| | - Kejian Ma
- The Institution of Yunnan Traditional Chinese Medicine and Materia Medical, Kunming 650223, China.
| | - Yang Deng
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| | - Maoru Li
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| | - Liping Yang
- The Institution of Yunnan Traditional Chinese Medicine and Materia Medical, Kunming 650223, China.
| | - Yuqi Yang
- The Institution of Yunnan Traditional Chinese Medicine and Materia Medical, Kunming 650223, China.
| | - Jingyun Zhao
- The Institution of Yunnan Traditional Chinese Medicine and Materia Medical, Kunming 650223, China.
| | - Lijun Cheng
- Zhao Tong University, Zhaotong 657000, China.
| | - Qinyang Zhou
- College of Life Sciences, Hubei University, Wuhan 430062, China.
| | - Jing Shang
- School of Life Sciences and Technology, China Pharmaceutical University, Nanjing 211198, China.
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
12
|
Li L, Fu J, Sun J, Liu D, Chen C, Wang H, Hou Y, Xu Y, Pi J. Is Nrf2-ARE a potential target in NAFLD mitigation? CURRENT OPINION IN TOXICOLOGY 2019. [DOI: 10.1016/j.cotox.2018.12.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
13
|
Protective effects of cichoric acid on H 2O 2-induced oxidative injury in hepatocytes and larval zebrafish models. Biomed Pharmacother 2018; 104:679-685. [PMID: 29803928 DOI: 10.1016/j.biopha.2018.05.081] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 05/16/2018] [Accepted: 05/17/2018] [Indexed: 12/11/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most common liver disease with a broad spectrum of liver injury. Oxidant stress is believed to be the pathogenesis of NAFLD as the "second hit". Hydrogen peroxide is widely used as an oxidant reagent to induce the oxidant injury of cells and larval zebrafish. Recently, cichoric acid is being studied extensively for its obesity attenuating, hepatic steatosis reduction and anti-oxidant effects. In this study, to identify whether CRA could protect the H2O2 induced oxidant injury via anti-oxidant impact by using L02 and HepG2 hepatocytes as in vitro and larval zebrafish as in vivo injury models, and evaluated the protective and anti-oxidant effects of CRA by pretreated it on both in vitro and in vivo models. CRA was found to reduce the production of ROS and MDA, activate the anti-oxidant enzymes SOD and GSH-px, and pathways Keap1-Nrf2 and HO-1. These results demonstrated that CRA might protect the liver injury by its anti-oxidant effect, which could be a potential therapeutic agent of NAFLD.
Collapse
|