1
|
Patel M, Eberl HC, Wolf A, Pierre E, Polli JW, Zamek-Gliszczynski MJ. Mechanistic Basis of Cabotegravir-Glucuronide Disposition in Humans. J Pharmacol Exp Ther 2019; 370:269-277. [PMID: 31175220 DOI: 10.1124/jpet.119.258384] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 06/06/2019] [Indexed: 12/15/2022] Open
Abstract
Cabotegravir, a novel integrase inhibitor under development for treatment and prevention of HIV, is primarily metabolized by UDP-glucuronosyltransferase (UGT)1A1 and UGT1A9 to a direct ether glucuronide metabolite. The aim of these studies was to elucidate the mechanistic basis of cabotegravir-glucuronide disposition in humans. Cabotegravir glucuronidation was predominantly hepatic (>95%) with minimal intestinal and renal contribution. Rat liver perfusions demonstrated that cabotegravir-glucuronide formed in the liver undergoes comparable biliary and sinusoidal excretion, consistent with high concentrations of the glucuronide in human bile and urine. Cabotegravir-glucuronide biliary excretion was mediated by multidrug resistance-associated protein (MRP)2 (not transported by breast cancer resistance protein or P-glycoprotein), whereas hepatic basolateral excretion into sinusoidal blood was via both MRP3 [fraction transport (Ft) = 0.81] and MRP4 (Ft = 0.19). Surprisingly, despite high urinary recovery of hepatically-formed cabotegravir-glucuronide, metabolite levels in circulation were negligible, a phenomenon consistent with rapid metabolite clearance. Cabotegravir-glucuronide was transported by hepatic uptake transporters organic anion-transporting (OAT) polypeptide (OATP)1B1 and OATP1B3; however, metabolite clearance by hepatic uptake from circulation was low (2.7% of hepatic blood flow) and unable to explain the minimal systemic exposure. Instead, circulating cabotegravir-glucuronide undergoes efficient renal clearance, where uptake into the proximal tubule would be mediated by OAT3 (not transported by OAT1), and subsequent secretion into urine by MRP2 (Ft = 0.66) and MRP4 (Ft = 0.34). These studies provide mechanistic insight into the disposition of cabotegravir-glucuronide, a hepatically-formed metabolite with appreciable urinary recovery and minimal systemic exposure, including fractional contribution of redundant transporters to any given process based on quantitative proteomics. SIGNIFICANCE STATEMENT: The role of membrane transporters in metabolite disposition, especially glucuronides, and as sites of unexpected drug-drug interactions, which alter drug efficacy and safety, has been established. Cabotegravir-glucuronide, formed predominantly by direct glucuronidation of parent drug in liver, was the major metabolite recovered in human urine (27% of oral dose) but was surprisingly not detected in systemic circulation. To our knowledge, this is the first mechanistic description of this phenomenon for a major hepatically-formed metabolite to be excreted in the urine to a large extent, but not circulate at detectable levels. The present study elucidates the mechanistic basis of cabotegravir-glucuronide disposition in humans. Specific hepatic and renal transporters involved in the disposition of cabotegravir-glucuronide, with their fractional contribution, have been provided.
Collapse
Affiliation(s)
- Mitesh Patel
- Mechanistic Safety and Disposition (M.P., J.W.P., M.J.Z.-G.) and Bioanalysis, Immunogenicity, and Biomarkers (E.P.), GlaxoSmithKline, King of Prussia, Pennsylvania; and Cellzome, a GlaxoSmithKline Company, Heidelberg, Germany (H.C.E., A.W.)
| | - H Christian Eberl
- Mechanistic Safety and Disposition (M.P., J.W.P., M.J.Z.-G.) and Bioanalysis, Immunogenicity, and Biomarkers (E.P.), GlaxoSmithKline, King of Prussia, Pennsylvania; and Cellzome, a GlaxoSmithKline Company, Heidelberg, Germany (H.C.E., A.W.)
| | - Andrea Wolf
- Mechanistic Safety and Disposition (M.P., J.W.P., M.J.Z.-G.) and Bioanalysis, Immunogenicity, and Biomarkers (E.P.), GlaxoSmithKline, King of Prussia, Pennsylvania; and Cellzome, a GlaxoSmithKline Company, Heidelberg, Germany (H.C.E., A.W.)
| | - Esaie Pierre
- Mechanistic Safety and Disposition (M.P., J.W.P., M.J.Z.-G.) and Bioanalysis, Immunogenicity, and Biomarkers (E.P.), GlaxoSmithKline, King of Prussia, Pennsylvania; and Cellzome, a GlaxoSmithKline Company, Heidelberg, Germany (H.C.E., A.W.)
| | - Joseph W Polli
- Mechanistic Safety and Disposition (M.P., J.W.P., M.J.Z.-G.) and Bioanalysis, Immunogenicity, and Biomarkers (E.P.), GlaxoSmithKline, King of Prussia, Pennsylvania; and Cellzome, a GlaxoSmithKline Company, Heidelberg, Germany (H.C.E., A.W.)
| | - Maciej J Zamek-Gliszczynski
- Mechanistic Safety and Disposition (M.P., J.W.P., M.J.Z.-G.) and Bioanalysis, Immunogenicity, and Biomarkers (E.P.), GlaxoSmithKline, King of Prussia, Pennsylvania; and Cellzome, a GlaxoSmithKline Company, Heidelberg, Germany (H.C.E., A.W.)
| |
Collapse
|