1
|
de Rijk M, Hentzen C, Selai C, Musco S, Lombardo R, van Koeveringe G, Chapple C, Abrams P, Wyndaele JJ, McCloskey K. Systematic Evaluation of Lower Urinary Tract Sensations to Improve Management of LUTS: ICI-RS 2024. Neurourol Urodyn 2024. [PMID: 39676721 DOI: 10.1002/nau.25636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 11/21/2024] [Indexed: 12/17/2024]
Abstract
AIMS Lower urinary tract (LUT) sensations form an essential part of diagnostic criteria for many LUT symptoms, additionally LUT sensations are used to evaluate the effectivity of therapeutic interventions. The accurate measurement of LUT sensations, however, is severely hampered by the subjective nature of these sensations. METHODS This paper summarizes the discussions from the 2024 meeting of the International Consultation for Incontinence-Research Society (ICI-RS 2024) regarding systematic evaluations of LUT sensations and the design of more objective tools to measure these. RESULTS Here, we discuss factors that influence sensations that are under the control of the caregiver/investigator, the signaling of sensations from the LUT toward the central nervous system, and currently used diagnostic tools to measure LUT sensations. Recent methodological advances to objectively measure factors that correspond with changes in LUT sensations are introduced along with recommendations for future research to optimally enable objective assessment of processes underlying LUT sensations. CONCLUSIONS Advancing the objective measurement of LUT sensations will require interdisciplinary collaboration, integrating insights from neuroscience, engineering, and clinical practice. Such efforts hold the potential to transform patient care by enabling more precise diagnostics and personalized therapeutic strategies.
Collapse
Affiliation(s)
- Mathijs de Rijk
- Department of Urology, Mental Health and Neuroscience Research Institute, Maastricht University, Maastricht, The Netherlands
- Department of Urology, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Claire Hentzen
- GREEN Group of Clinical REsEarch in Neurourology, AP-HP, Hôpital Tenon, Sorbonne University, Paris, France
| | - Caroline Selai
- Queen Square Institute of Neurology, University College London, London, UK
- The National Hospital for Neurology and Neurosurgery/UCLH NHS Foundation Trust, London, UK
| | - Stefania Musco
- Neuro-urology, Careggi University Hospital, Florence, Italy
| | | | - Gommert van Koeveringe
- Department of Urology, Mental Health and Neuroscience Research Institute, Maastricht University, Maastricht, The Netherlands
- Department of Urology, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Christopher Chapple
- Department of Urology, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Paul Abrams
- Bristol Urological Institute, Southmead Hospital, Bristol, UK
| | - Jean J Wyndaele
- Faculty of Medicine and Health Sciences, University of Antwerp, Edegem, Belgium
| | - Karen McCloskey
- Patrick G. Johnston Centre for Cancer Research, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, Northern Ireland, UK
| |
Collapse
|
2
|
Soriano-Ursúa MA, Arias-Montaño JA, Ocampo-Néstor AL, Hernández-Martínez CF, Santillán-Torres I, Andrade-Jorge E, Valdez-Ortiz R, Fernández-Del Valle C, Trujillo-Ferrara JG. In silico identification of a biarylamine acting as agonist at human β 3 adrenoceptors and exerting BRL37344-like effects on mouse metabolism. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:2159-2170. [PMID: 37792048 DOI: 10.1007/s00210-023-02753-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 09/26/2023] [Indexed: 10/05/2023]
Abstract
Human β3-adrenoceptor (β3AR) agonists were considered potential agents for the treatment of metabolic disorders. However, compounds tested as β3AR ligands have shown marked differences in pharmacological profile in rodent and human species, although these compounds remain attractive as they were successfully repurposed for the therapy of urinary incontinence. In this work, some biarylamine compounds were designed and tested in silico as potential β3AR agonists on 3-D models of mouse or human β3ARs. Based on the theoretical results, we identified, synthesized and tested a biarylamine compound (polibegron). In CHO-K1 cells expressing the human β3AR, polibegron and the β3AR agonist BRL 37344 were partial agonists for stimulating cAMP accumulation (50 and 57% of the response to isoproterenol, respectively). The potency of polibegron was 1.71- and 4.5-fold higher than that of isoproterenol and BRL37344, respectively. These results indicate that polibegron acts as a potent, but partial, agonist at human β3ARs. In C57BL/6N mice with obesity induced by a high-fat diet, similar effects of the equimolar intraperitoneal administration of polibegron and BRL37344 were observed on weight, visceral fat and plasma levels of glucose, cholesterol and triglycerides. Similarities and differences between species related to ligand-receptor interactions can be useful for drug designing.
Collapse
Affiliation(s)
- Marvin A Soriano-Ursúa
- Departamentos de Fisiología, Bioquímica y Sección de Estudios de Posgrado E Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, 11340, Mexico City, Mexico.
| | - José-Antonio Arias-Montaño
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del I.P.N., Av. IPN 2508, 07360, Mexico City, Mexico
| | - Ana-Lilia Ocampo-Néstor
- Departamentos de Fisiología, Bioquímica y Sección de Estudios de Posgrado E Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, 11340, Mexico City, Mexico
- Departamento de Nefrología, Hospital General de México "Dr. Eduardo Liceaga", Dr. Balmis 148, Alc. Cuauhtémoc, 06720, Mexico City, Mexico
| | - Christian F Hernández-Martínez
- Departamentos de Fisiología, Bioquímica y Sección de Estudios de Posgrado E Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, 11340, Mexico City, Mexico
| | - Iván Santillán-Torres
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del I.P.N., Av. IPN 2508, 07360, Mexico City, Mexico
| | - Erik Andrade-Jorge
- Departamentos de Fisiología, Bioquímica y Sección de Estudios de Posgrado E Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, 11340, Mexico City, Mexico
| | - Rafael Valdez-Ortiz
- Departamento de Nefrología, Hospital General de México "Dr. Eduardo Liceaga", Dr. Balmis 148, Alc. Cuauhtémoc, 06720, Mexico City, Mexico
| | - Cecilia Fernández-Del Valle
- Área de Investigación Médica, Productos Medix, S.A. de C.V., Calzada del Hueso 39, Ejido Viejo Santa Úrsula Coapa, Coyoacán, 04650, Mexico City, Mexico
| | - José G Trujillo-Ferrara
- Departamentos de Fisiología, Bioquímica y Sección de Estudios de Posgrado E Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, 11340, Mexico City, Mexico.
| |
Collapse
|
3
|
Sirmakesyan S, Hajj A, Hamouda A, Cammisotto P, Campeau L. Synthesis and secretion of Nerve Growth Factor is regulated by Nitric Oxide in bladder cells in vitro under a hyperglycemic environment. Nitric Oxide 2023; 140-141:30-40. [PMID: 37699453 DOI: 10.1016/j.niox.2023.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/23/2023] [Accepted: 09/09/2023] [Indexed: 09/14/2023]
Abstract
Urine samples of female patients with overactive bladder (OAB) are characterized by low levels of nerve growth factor (NGF) and elevated concentrations of nitric oxide (NO) compared to healthy controls. We therefore examined how NO might regulate NGF synthesis using rat bladder smooth muscle (SMCs) and urothelial (UROs) cells in culture. In UROs, incubation in hyperglycemic conditions to mimic insulin insensitivity present in the OAB cohort increased secretion of NO and concomitantly decreased NGF, except when the NO synthase inhibitor, l-NAME (1 mM) was present. Sodium nitroprusside (SNP) (300 μM, 24 h), a NO generator, decreased NGF levels and decreased cyclic GMP (cGMP) content, a process validated by the cGMP synthase inhibitor ODQ (100 μM). Alternatively, SNP increased mRNA of both NGF and matrix metalloproteinase-9 (MMP-9). MMP-9 knockout of UROs by Crispr-Cas9 potently decreased the effect of SNP on NGF, implying a dependent role of NO on MMP-9. On the other hand, matrix metalloproteinase-7 (MMP-7) activity was increased by SNP, which taken together with increase in NGF mRNA, suggests a compensatory mechanism. In SMCs, hyperglycemic conditions had the same effect on extracellular content of NO and NGF than in UROs. SNP also decreased NGF secretion but increased cGMP content. Stable permeable analogs of cGMP 8-(4-Chlorophenylthio)-cGMP (1 mM) and N2,2'-O-Dibutyryl-cGMP (3 mM) inhibited NGF release. NGF and MMP-9 mRNA expression was unchanged by SNP. Deletion of MMP-9 in SMCs by Crispr-Cas9 did not alter the effect of SNP. Finally, SNP decreased MMP-7 activity, diminishing the conversion of proNGF to NGF. These results demonstrate that enhanced NO secretion triggered by high glucose decreases NGF secretion through pathways unique for each cell type that involve cGMP and proteases MMP-7 and MMP-9. These results might help to explain our observations from the urine from patients with OAB associated with metabolic syndrome.
Collapse
Affiliation(s)
| | - Aya Hajj
- Lady Davis Institute for Medical Research, Montreal, Quebec, Canada
| | - Aalya Hamouda
- Lady Davis Institute for Medical Research, Montreal, Quebec, Canada
| | | | - Lysanne Campeau
- Lady Davis Institute for Medical Research, Montreal, Quebec, Canada; Urology Department, Jewish General Hospital, Montreal, Quebec, Canada.
| |
Collapse
|
4
|
Lee WC, Yu HR, Tain YL, Wu KL, Chuang YC, Chan JY. Vinpocetine Ameliorates Metabolic-Syndrome-Associated Bladder Overactivity in Fructose-Fed Rats by Restoring Succinate-Modulated cAMP Levels and Exerting Anti-Inflammatory Effects in the Bladder Detrusor Muscle. Biomedicines 2022; 10:2716. [PMID: 36359236 PMCID: PMC9687486 DOI: 10.3390/biomedicines10112716] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 10/21/2022] [Accepted: 10/24/2022] [Indexed: 11/03/2023] Open
Abstract
Succinate and its receptor, the G protein-coupled receptor 91 (GPR91), have pathological implications in metabolic syndrome (MetS) and its associated bladder dysfunction, particularly in decreasing bladder cAMP levels and promoting proinflammation. Using fructose-fed rats (FFRs), a rat model of MetS, we investigate the effects of vinpocetine (a phosphodiesterase-1 inhibitor) and celecoxib (a selective cyclooxygenase-2 inhibitor) on MetS-associated bladder overactivity. Phenotypes of the overactive bladder, including increased micturition frequency and a shortened intercontractile interval in cystometry, were observed in FFRs, together with elevated succinate levels in the liver and serum and the downregulation of GPR91 in the liver and urinary bladder. Treatments with vinpocetine and celecoxib improved tissue fibrosis and ameliorated the overexpression of the inflammatory cytokines, such as IL-1β, in the liver and bladder. In bladder organ bath studies, vinpocetine, but not celecoxib, treatment restored the contraction and relaxation responses of the detrusor muscle strip in response to KCl, carbachol, and forskolin stimulation. At a molecular level, vinpocetine and celecoxib treatments modulated the downstream messengers of GPR91 (i.e., ERK1/2 and JNK), suppressed NF-κB and IL-1β expressions in the bladder, and prevented the fibrogenesis observed in FFRs. The exogenous application of succinate to a bladder organ bath significantly reduced the forskolin-induced cAMP production by the detrusor muscle, which was notably restored in the presence of vinpocetine. Together, these results suggest that vinpocetine may alleviate the MetS-associated bladder overactivity by restoring the succinate-modulated detrusor cAMP production and exerting the anti-inflammatory effects in the bladder detrusor muscle.
Collapse
Affiliation(s)
- Wei-Chia Lee
- Division of Urology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
| | - Hong-Ren Yu
- Department of Paediatrics, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
| | - You-Lin Tain
- Department of Paediatrics, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
| | - Kay L.H. Wu
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
| | - Yao-Chi Chuang
- Division of Urology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
| | - Julie Y.H. Chan
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
| |
Collapse
|
5
|
Hsu LN, Hu JC, Chen PY, Lee WC, Chuang YC. Metabolic Syndrome and Overactive Bladder Syndrome May Share Common Pathophysiologies. Biomedicines 2022; 10:1957. [PMID: 36009505 PMCID: PMC9405560 DOI: 10.3390/biomedicines10081957] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/06/2022] [Accepted: 08/09/2022] [Indexed: 11/18/2022] Open
Abstract
Metabolic syndrome (MetS) is defined by a group of cardiovascular risk factors, including impaired glucose tolerance, central obesity, hypertension, and dyslipidemia. Overactive bladder (OAB) syndrome consists of symptoms such as urinary urgency, frequency, and nocturia with or without urge incontinence. The high prevalences of metabolic syndrome (MetS) and overactive bladder (OAB) worldwide affect quality of life and cause profound negative impacts on the social economy. Accumulated evidence suggests that MetS might contribute to the underlying mechanisms for developing OAB, and MetS-associated OAB could be a subtype of OAB. However, how could these two syndromes interact with each other? Based on results of animal studies and observations in epidemiological studies, we summarized the common pathophysiologies existing between MetS and OAB, including autonomic and peripheral neuropathies, chronic ischemia, proinflammatory status, dysregulation of nutrient-sensing pathways (e.g., insulin resistance at the bladder mucosa and excessive succinate intake), and the probable role of dysbiosis. Since the MetS-associated OAB is a subtype of OAB with distinctive pathophysiologies, the regular and non-specific medications, such as antimuscarinics, beta-3 agonist, and botulinum toxin injection, might lead to unsatisfying results. Understanding the pathophysiologies of MetS-associated OAB might benefit future studies exploring novel biomarkers for diagnosis and therapeutic targets on both MetS and OAB.
Collapse
Affiliation(s)
- Lin-Nei Hsu
- Department of Urology, An Nan Hospital, China Medical University, Tainan City 833, Taiwan
| | - Ju-Chuan Hu
- Division of Urology, Department of Surgery, Taichung Veterans General Hospital, Taichung 407, Taiwan
| | - Po-Yen Chen
- Division of Urology, Yunlin Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Yunlin 638, Taiwan
| | - Wei-Chia Lee
- Division of Urology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 807, Taiwan
| | - Yao-Chi Chuang
- Division of Urology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 807, Taiwan
| |
Collapse
|
6
|
β3 Relaxant Effect in Human Bladder Involves Cystathionine γ-Lyase-Derived Urothelial Hydrogen Sulfide. Antioxidants (Basel) 2022; 11:antiox11081480. [PMID: 36009199 PMCID: PMC9405273 DOI: 10.3390/antiox11081480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 11/16/2022] Open
Abstract
It is now well established that the urothelium does not act as a passive barrier but contributes to bladder homeostasis by releasing several signaling molecules in response to physiological and chemical stimuli. Here, we investigated the potential contribution of the hydrogen sulfide (H2S) pathway in regulating human urothelium function in β3 adrenoceptor-mediated relaxation. The relaxant effect of BRL 37344 (0.1–300 µM), a selective β3 adrenoceptor agonist, was evaluated in isolated human bladder strips in the presence or absence of the urothelium. The relaxant effect of BRL 37344 was significantly reduced by urothelium removal. The inhibition of cystathionine-γ-lyase (CSE), but not cystathionine-β-synthase (CBS), significantly reduced the BRL 37344 relaxing effect to the same extent as that given by urothelium removal, suggesting a role for CSE-derived H2S. β3 adrenoceptor stimulation in the human urothelium or in T24 urothelial cells markedly increased H2S and cAMP levels that were reverted by a blockade of CSE and β3 adrenoceptor antagonism. These findings demonstrate a key role for urothelium CSE-derived H2S in the β3 effect on the human bladder through the modulation of cAMP levels. Therefore, the study establishes the relevance of urothelial β3 adrenoceptors in the regulation of bladder tone, supporting the use of β3 agonists in patients affected by an overactive bladder.
Collapse
|
7
|
Mossa A, Velasquez-Flores M, Cammisotto PG, Campeau L. Receptor GPR91 contributes to voiding function and detrusor relaxation mediated by succinate. Neurourol Urodyn 2020; 40:120-130. [PMID: 33098175 DOI: 10.1002/nau.24553] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/16/2020] [Accepted: 10/13/2020] [Indexed: 01/09/2023]
Abstract
AIM Succinate activates the receptor GPR91 identified in the bladder. The present study aims to unravel the mechanisms of bladder relaxation by succinate and how the receptor is involved in structural and functional changes of the bladder. METHODS Physiological recordings of bladder function were carried out by cystometry and organ bath from C57BL/6 mice, homozygous GPR91-/- mice, and Sprague-Dawley (SD) rats. GPR91 expression was confirmed by polymerase chain reaction and tissue morphology was examined by light (Masson trichrome) and fluorescence microscopy. Nitric oxide (NO) and ATP secretion were measured. RESULTS Bladders of GPR91 KO mice had a greater mass to body weight ratio with a thicker bladder wall compared to C57BL/6 mice. They also displayed increased basal and maximal bladder pressures, and decreased intercontraction intervals, bladder capacity, micturition volume, and compliance. During cystometry, bladders of SD rats and C57BL/6 mice instilled with succinate (10 mM) showed signs of relaxation while bladders of GPR91 KO mice were unresponsive. Similarly, in organ bath, succinate relaxed bladder strips preincubated with carbachol, except GPR91 KO ones. Relaxation was stronger in the presence of urothelium and independent of NO synthesis. Bladder strips from all mice groups showed similar responses to KCl, carbachol, and electrical stimulation. In vitro, succinate increased NO secretion in urothelial cell culture of both C57BL6 and GPR91 KO mice while ATP secretion was potently decreased by succinate in C57BL6 culture only. CONCLUSION Succinate through GPR91 is essential to bladder structure and contraction. GPR91 relaxes the detrusor partially by decreasing urothelial ATP secretion.
Collapse
Affiliation(s)
| | | | | | - Lysanne Campeau
- Lady Davis Institute, McGill University, Montreal, Quebec, Canada.,Department of Urology, Jewish General Hospital, Montreal, Quebec, Canada
| |
Collapse
|
8
|
Are Beta 3 Adrenergic Agonists Now the Preferred Pharmacologic Management of Overactive Bladder? Curr Urol Rep 2020; 21:49. [PMID: 33090278 DOI: 10.1007/s11934-020-01003-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/15/2020] [Indexed: 12/16/2022]
Abstract
PURPOSE OF THE REVIEW This paper discusses the recent evidence supporting beta 3 adrenergic agonists as the preferred pharmacological management of overactive bladder syndrome. RECENT FINDINGS Mirabegron has a similar efficacy profile to first-line antimuscarinics with favorable adverse effects profile. Treatment of OAB with beta-3 adrenergic agonist should be favored in patients at higher risk of anticholinergic adverse events. The efficacy and tolerability of beta-3 adrenergic agonists are consistently reported in older OAB patients, whether used alone or with other antimuscarinics. Mirabegron is cost-effective in treating OAB unless the symptoms were severe or refractory. Combination therapy of mirabegron and other pharmacotherapy has proven to be efficient in controlling OAB symptoms without inducing serious add-on adverse effects. While beta-3 adrenergic agonists bear favorable advantages in OAB treatment, physicians should perform a thorough and careful pre-treatment planning to optimize treatment benefits and adherence.
Collapse
|
9
|
Patel B, Perez F, Aronsson P, Alothmani R, Carlsson T, Winder M. Combination drug therapy against OAB normalizes micturition parameters and increases the release of nitric oxide during chemically induced cystitis. Pharmacol Res Perspect 2020; 8:e00564. [PMID: 32030913 PMCID: PMC7005531 DOI: 10.1002/prp2.564] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 01/15/2020] [Accepted: 01/16/2020] [Indexed: 01/25/2023] Open
Abstract
Today, monotherapy is the most common pharmacological treatment option for patients suffering from overactive bladder (OAB). Recent reports have indicated potential benefits of combination therapy, using a muscarinic antagonist and a β3 -adrenoceptor agonist. This may be of particular interest for therapy-resistant patients with OAB and concomitant cystitis. The objective of the current study was to assess how combination therapy affects bladder parameters in health and cystitis and if the efficacy of the drugs can be linked to altered release of nitric oxide (NO). Rats were pretreated with either a combination of the muscarinic antagonist tolterodine and β3 -selective adrenoceptor agonist mirabegron or saline for 10 days. Forty-eight hours prior to assessing micturition parameters in a metabolic cage, the rats were intraperitoneally injected with cyclophosphamide, causing cystitis, or saline. Urine samples were collected and analyzed for NO content. Bladder contractile properties were assessed in an organ bath setup. Induction of cystitis led to bladder overactivity. Combination therapy normalized bladder parameters. Both induction of cystitis and drug treatment increased the release of NO. The innate contractile properties of the bladder were unaffected by combination therapy. This study demonstrates positive effects of combination drug therapy on symptoms of OAB, possibly indicating it to be a good option for treatment of OAB during concomitant cystitis. It remains to be determined if increased release of NO is crucial for successful pharmacological treatment of bladder overactivity during cystitis.
Collapse
Affiliation(s)
- Bhavik Patel
- Department of Pharmacy and Biomolecular SciencesUniversity of BrightonBrightonUK
- Centre for Stress and Age‐Related DiseasesUniversity of BrightonBrightonUK
| | - Fernando Perez
- Department of Pharmacy and Biomolecular SciencesUniversity of BrightonBrightonUK
- Centre for Stress and Age‐Related DiseasesUniversity of BrightonBrightonUK
| | - Patrik Aronsson
- Department of PharmacologyInstitute of Neuroscience and PhysiologyThe Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Ranya Alothmani
- Department of PharmacologyInstitute of Neuroscience and PhysiologyThe Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Thomas Carlsson
- Department of PharmacologyInstitute of Neuroscience and PhysiologyThe Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Michael Winder
- Department of PharmacologyInstitute of Neuroscience and PhysiologyThe Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| |
Collapse
|
10
|
Fong Z, Griffin CS, Hollywood MA, Thornbury KD, Sergeant GP. β 3-Adrenoceptor agonists inhibit purinergic receptor-mediated contractions of the murine detrusor. Am J Physiol Cell Physiol 2019; 317:C131-C142. [PMID: 31042424 DOI: 10.1152/ajpcell.00488.2018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
β3-Adrenoceptor (β3-AR) agonists are used to treat overactive bladder syndrome; however, their mechanism of action has not been determined. The aims of this study were to compare the effects of β3-AR agonists on cholinergic versus purinergic receptor-mediated contractions of the detrusor and to examine the mechanisms underlying inhibition of the purinergic responses by β3-AR agonists. Isometric tension recordings were made from strips of murine detrusor and whole cell current recordings were made from freshly isolated detrusor myocytes using the patch-clamp technique. Transcriptional expression of exchange protein directly activated by cAMP (EPAC) subtypes in detrusor strips was assessed using RT-PCR and real-time quantitative PCR. The β3-AR agonists BRL37344 and CL316243 (100 nM) inhibited cholinergic nerve-mediated contractions of the detrusor by 19 and 23%, respectively, but did not reduce contractions induced by the cholinergic agonist carbachol (300 nM). In contrast, BRL37344 and CL316243 inhibited purinergic nerve-mediated responses by 55 and 56%, respectively, and decreased the amplitude of contractions induced by the P2X receptor agonist α,β-methylene ATP by 40 and 45%, respectively. The adenylate cyclase activator forskolin inhibited purinergic responses, and these effects were mimicked by a combination of the PKA activator N6-monobutyryl-cAMP and the EPAC activator 8-pCPT-2'-O-methyl-cAMP-AM (007-AM). Application of ATP (1 μM) evoked reproducible P2X currents in isolated detrusor myocytes voltage-clamped at -60 mV. These responses were reduced in amplitude in the presence of BRL37344 and also by 007-AM. This study demonstrates that β3-AR agonists reduce postjunctional purinergic responses in the detrusor via a pathway involving activation of the cAMP effector EPAC.
Collapse
Affiliation(s)
- Zhihui Fong
- Smooth Muscle Research Centre, Dundalk Institute of Technology , Dundalk , Ireland
| | - Caoimhín S Griffin
- Smooth Muscle Research Centre, Dundalk Institute of Technology , Dundalk , Ireland
| | - Mark A Hollywood
- Smooth Muscle Research Centre, Dundalk Institute of Technology , Dundalk , Ireland
| | - Keith D Thornbury
- Smooth Muscle Research Centre, Dundalk Institute of Technology , Dundalk , Ireland
| | - Gerard P Sergeant
- Smooth Muscle Research Centre, Dundalk Institute of Technology , Dundalk , Ireland
| |
Collapse
|
11
|
Peyronnet B, Mironska E, Chapple C, Cardozo L, Oelke M, Dmochowski R, Amarenco G, Gamé X, Kirby R, Van Der Aa F, Cornu JN. A Comprehensive Review of Overactive Bladder Pathophysiology: On the Way to Tailored Treatment. Eur Urol 2019; 75:988-1000. [PMID: 30922690 DOI: 10.1016/j.eururo.2019.02.038] [Citation(s) in RCA: 203] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Accepted: 02/28/2019] [Indexed: 01/06/2023]
Abstract
CONTEXT Current literature suggests that several pathophysiological factors and mechanisms might be responsible for the nonspecific symptom complex of overactive bladder (OAB). OBJECTIVE To provide a comprehensive analysis of the potential pathophysiology underlying detrusor overactivity (DO) and OAB. EVIDENCE ACQUISITION A PubMed-based literature search was conducted in April 2018, to identify randomised controlled trials, prospective and retrospective series, animal model studies, and reviews. EVIDENCE SYNTHESIS OAB is a nonspecific storage symptom complex with poorly defined pathophysiology. OAB was historically thought to be caused by DO, which was either "myogenic" (urgency initiated from autonomous contraction of the detrusor muscle) or "neurogenic" (urgency signalled from the central nervous system, which initiates a detrusor contraction). Patients with OAB are often found to not have objective evidence of DO on urodynamic studies; therefore, alternative mechanisms for the development of OAB have been postulated. Increasing evidence on the role of urothelium/suburothelium and bladder afferent signalling arose in the early 2000s, emphasising an afferent "urotheliogenic" hypothesis, namely, that urgency is initiated from the urothelium/suburothelium. The urethra has also recently been regarded as a possible afferent origin of OAB-the "urethrogenic" hypothesis. Several other pathophysiological factors have been implicated, including metabolic syndrome, affective disorders, sex hormone deficiency, urinary microbiota, gastrointestinal functional disorders, and subclinical autonomic nervous system dysfunctions. These various possible mechanisms should be considered as contributing to diagnostic and treatment algorithms. CONCLUSIONS There is a temptation to label OAB as "idiopathic" without obvious causation, given the poorly understood nature of its pathophysiology. OAB should be seen as a complex, multifactorial symptom syndrome, resulting from multiple potential pathophysiological mechanisms. Identification of the underlying causes on an individual basis may lead to the definition of OAB phenotypes, paving the way for personalised medical care. PATIENT SUMMARY Overactive bladder (OAB) is a storage symptom syndrome with multiple possible causes. Identification of the mechanisms causing a patient to experience OAB symptoms may help tailor treatment to individual patients and improve outcomes.
Collapse
Affiliation(s)
- Benoit Peyronnet
- Department of Urology, University Hospital of Rennes, Rennes, France.
| | - Emma Mironska
- Department of Urology, Sheffield Teaching Hospitals, Sheffield, UK
| | | | - Linda Cardozo
- Department of Urology, St. Antonius Hospital, Gronau, Germany
| | - Matthias Oelke
- Department of Urology, Vanderbilt University, Nashville, TN, USA
| | | | - Gérard Amarenco
- Department of Urogynaecology, King's College Hospital, London, UK
| | - Xavier Gamé
- Department of Urology, University Hospital of Toulouse, Toulouse, France
| | | | | | | |
Collapse
|