1
|
Adler-Wachter M, Tsai JY, Schweitzer BN, McDonough A, Snyder JM, Barker-Haliski M, Weinstein JR. Repeated administration of pharmaceutical-grade medium chain triglycerides, a common pharmacologic excipient, confers dose-dependent toxicity by the intraperitoneal but not oral route in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.24.625115. [PMID: 39651141 PMCID: PMC11623533 DOI: 10.1101/2024.11.24.625115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Pharmaceutical-grade medium chain triglycerides (MCTs) are common excipients for in vivo pharmacological studies in laboratory animals, and as an experimental therapeutic in certain metabolic and neurological disorders. In this study, we examined the tolerability of repeated administration of a pharmaceutical-grade formulation of three MCTs-caprylic, capric, and lauric acid - in mice via the oral (PO) and intraperitoneal (IP) routes. We administered either 8 or 4 µL of 100% MCTs or saline/gram of body weight twice daily for seven days. During administration and for seven days after, we monitored weight change and clinical presentation. On day 14, or upon meeting euthanasia criteria, animals were sacrificed for gross necropsy, histology, and complete blood count. We observed significant weight loss, clinical decline and 100% mortality in animals receiving 8 µL/g of MCTs via the IP route of administration. Gross necropsy revealed serosanguinous fluid in the thoracic cavity, dark red mottled lungs, and adhesions in the abdominal cavity. Histology confirmed inflammation of the lungs, mediastinum, and peritoneum. Mild gross lesions and initial weight loss (through day 3) were also present in mice receiving 4 µL/g of MCTs IP. However, these animals regained weight by day seven and exhibited no clinical decline or mortality. None of these adverse effects were seen in animals receiving either 8 µL/g of MCTs PO or 8 µL/g of saline IP. These findings suggest repeated IP administration of MCTs may cause dose-dependent toxicity, and mortality at high doses, but confers no adverse effects when administered via the PO route. SIGNIFICANCE STATEMENT Medium chain triglycerides (MCTs) are commonly used as an excipient in pharmacological studies involving laboratory animals. Our work provides much needed safety information regarding adverse effects of repeated MCTs administration via the intraperitoneal, but not the oral, route in mice.
Collapse
|
2
|
Knox KM, Davidson S, Lehmann LM, Skinner E, Lo A, Jayadev S, Barker-Haliski M. Alzheimer's disease-associated genotypes differentially influence chronic evoked seizure outcomes and antiseizure medicine activity in aged mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.06.616921. [PMID: 39416203 PMCID: PMC11482912 DOI: 10.1101/2024.10.06.616921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
INTRODUCTION Alzheimer's disease (AD) patients are at greater risk of focal seizures than similarly aged adults; these seizures, left untreated, may worsen functional decline. Older people with epilepsy generally respond well to antiseizure medications (ASMs). However, whether specific ASMs can differentially control seizures in AD is unknown. The corneal kindled mouse model of acquired chronic secondarily generalized focal seizures allows for precisely timed drug administration studies to quantify the efficacy and tolerability of ASMs in an AD-associated genetic model. Wh+e hypothesized that mechanistically distinct ASMs would exert differential anticonvulsant activity and tolerability in aged AD mice (8-15 months) to define whether rational ASM selection may benefit specific AD genotypes. METHODS Aged male and female PSEN2-N141I versus age-matched non-transgenic control (PSEN2 control) C57Bl/6J mice, and APPswe/PS1dE9 versus transgene negative (APP control) littermates underwent corneal kindling to quantify latency to fully kindled criterion. Dose-related ASM efficacy was then compared in each AD model versus matched control over 1-2 months using ASMs commonly prescribed in older adults with epilepsy: valproic acid, levetiracetam, lamotrigine, phenobarbital, and gabapentin. RESULTS Sex and AD genotype differentially impacted seizure susceptibility. Male PSEN2-N141I mice required more stimulations to attain kindling criterion (X2=5.521; p<0.05). Male APP/PS1 mice did not differ in kindling rate versus APP control mice, but they did have more severe seizures. There were significant ASM class-specific differences in acute seizure control and dose-related tolerability. APP/PS1 mice were more sensitive than APP controls to valproic acid, levetiracetam, and gabapentin. PSEN2-N141I mice were more sensitive than PSEN2 controls to valproic acid and lamotrigine. DISCUSSION AD genotypes may differentially impact ASMs activity and tolerability in vivo with advanced biological age. These findings highlight the heterogeneity of seizure risk in AD and suggest that precisely selected ASMs may beneficially control seizures in AD, thus reducing functional decline.
Collapse
Affiliation(s)
- Kevin M. Knox
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, WA 98195
| | - Stephanie Davidson
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, WA 98195
| | - Leanne M. Lehmann
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, WA 98195
| | - Erica Skinner
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, WA 98195
| | - Alexandria Lo
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, WA 98195
| | - Suman Jayadev
- Department of Neurology, School of Medicine, University of Washington, Seattle, WA 98195
| | - Melissa Barker-Haliski
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, WA 98195
| |
Collapse
|
3
|
Smukowski SN, Danyko C, Somberg J, Kaufman EJ, Course MM, Postupna N, Barker-Haliski M, Keene CD, Valdmanis PN. mRNA and circRNA mislocalization to synapses are key features of Alzheimer's disease. PLoS Genet 2024; 20:e1011359. [PMID: 39074152 PMCID: PMC11309398 DOI: 10.1371/journal.pgen.1011359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/08/2024] [Accepted: 07/02/2024] [Indexed: 07/31/2024] Open
Abstract
Proper transport of RNAs to synapses is essential for localized translation of proteins in response to synaptic signals and synaptic plasticity. Alzheimer's disease (AD) is a neurodegenerative disease characterized by accumulation of amyloid aggregates and hyperphosphorylated tau neurofibrillary tangles followed by widespread synapse loss. To understand whether RNA synaptic localization is impacted in AD, we performed RNA sequencing on synaptosomes and brain homogenates from AD patients and cognitively healthy controls. This resulted in the discovery of hundreds of mislocalized mRNAs in AD among frontal and temporal brain regions. Similar observations were found in an APPswe/PSEN1dE9 mouse model. Furthermore, major differences were observed among circular RNAs (circRNAs) localized to synapses in AD including two overlapping isoforms of circGSK3β, one upregulated, and one downregulated. Expression of these distinct isoforms affected tau phosphorylation in neuronal cells substantiating the importance of circRNAs in the brain and pointing to a new class of therapeutic targets.
Collapse
Affiliation(s)
- Samuel N. Smukowski
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA, United States of America
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
| | - Cassidy Danyko
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA, United States of America
- Fred Hutch Cancer Center, Basic Sciences Division, University of Washington, Seattle, Washington, United States of America
| | - Jenna Somberg
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA, United States of America
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Eli J. Kaufman
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA, United States of America
| | - Meredith M. Course
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA, United States of America
- Department of Molecular Biology, Colorado College, Colorado Springs, Colorado, United States of America
| | - Nadia Postupna
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Melissa Barker-Haliski
- Department of Pharmacy, University of Washington School of Pharmacy, Seattle, Washington, United States of America
| | - C. Dirk Keene
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, Washington, United States of America
- Department of Neurological Surgery, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Paul N. Valdmanis
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA, United States of America
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, Washington, United States of America
| |
Collapse
|
4
|
Del Pozo A, Knox KM, Lehmann LM, Davidson S, Rho SL, Jayadev S, Barker-Haliski M. Chronic evoked seizures in young pre-symptomatic APP/PS1 mice induce serotonin changes and accelerate onset of Alzheimer's disease-related neuropathology. Prog Neurobiol 2024; 235:102591. [PMID: 38484965 PMCID: PMC11015961 DOI: 10.1016/j.pneurobio.2024.102591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/29/2024] [Accepted: 03/05/2024] [Indexed: 03/18/2024]
Abstract
OBJECTIVE Hyperexcitability is intimately linked to Alzheimer's disease (AD) pathology, but the precise timing and contributions of neuronal hyperexcitability to disease progression is unclear. Seizure induction in rodent AD models can uncover new therapeutic targets. Further, investigator-evoked seizures can directly establish how hyperexcitability and AD-associated risk factors influence neuropathological hallmarks and disease course at presymptomatic stages. METHODS Corneal kindling is a well-characterized preclinical epilepsy model that allows for precise control of seizure history to pair to subsequent behavioral assessments. 2-3-month-old APP/PS1, PSEN2-N141I, and transgenic control male and female mice were thus sham or corneal kindled for 2 weeks. Seizure-induced changes in glia, serotonin pathway proteins, and amyloid β levels in hippocampus and prefrontal cortex were quantified. RESULTS APP/PS1 females were more susceptible to corneal kindling. However, regardless of sex, APP/PS1 mice experienced extensive seizure-induced mortality versus kindled Tg- controls. PSEN2-N141I mice were not negatively affected by corneal kindling. Mortality correlated with a marked downregulation of hippocampal tryptophan hydroxylase 2 and monoamine oxidase A protein expression versus controls; these changes were not detected in PSEN2-N141I mice. Kindled APP/PS1 mice also exhibited soluble amyloid β upregulation and glial reactivity without plaque deposition. SIGNIFICANCE Evoked convulsive seizures and neuronal hyperexcitability in pre-symptomatic APP/PS1 mice promoted premature mortality without pathological Aβ plaque deposition, whereas PSEN2-N141I mice were unaffected. Disruptions in serotonin pathway metabolism in APP/PS1 mice was associated with increased glial reactivity without Aβ plaque deposition, demonstrating that neuronal hyperexcitability in early AD causes pathological Aβ overexpression and worsens long-term outcomes through a serotonin-related mechanism.
Collapse
Affiliation(s)
- Aaron Del Pozo
- Center for Epilepsy Drug Discovery (CEDD), Department of Pharmacy, University of Washington, Seattle, WA 98195, USA
| | - Kevin M Knox
- Center for Epilepsy Drug Discovery (CEDD), Department of Pharmacy, University of Washington, Seattle, WA 98195, USA
| | - Leanne M Lehmann
- Center for Epilepsy Drug Discovery (CEDD), Department of Pharmacy, University of Washington, Seattle, WA 98195, USA
| | - Stephanie Davidson
- Center for Epilepsy Drug Discovery (CEDD), Department of Pharmacy, University of Washington, Seattle, WA 98195, USA
| | - Seongheon Leo Rho
- Center for Epilepsy Drug Discovery (CEDD), Department of Pharmacy, University of Washington, Seattle, WA 98195, USA
| | - Suman Jayadev
- Department of Neurology, University of Washington, Seattle, WA 98195, USA
| | - Melissa Barker-Haliski
- Center for Epilepsy Drug Discovery (CEDD), Department of Pharmacy, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
5
|
Zierath DK, Davidson S, Manoukian J, White HS, Meeker S, Ericsson A, Barker-Haliski M. Diet composition and sterilization modifies intestinal microbiome diversity and burden of Theiler's virus infection-induced acute seizures. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.17.562694. [PMID: 37905123 PMCID: PMC10614857 DOI: 10.1101/2023.10.17.562694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Objective Central nervous system infection with Theiler's murine encephalomyelitis virus (TMEV) in C57BL/6J mice can model acquired epileptogenesis. Diet alters the acute seizure incidence in TMEV-infected mice; yet it is unclear whether intestinal dysbiosis may also impact acute or chronic behavioral comorbidities. This study thus assessed the impact of diet sterilization in a specific pathogen-free vivarium on acute seizure presentation, the composition of the gut microbiome, and chronic behavioral comorbidities of epilepsy. Methods Baseline fecal samples were collected from male C57BL/6J mice (4-5 weeks-old; Jackson Labs) upon arrival. Mice were randomized to either autoclaved (AC) or irradiated (IR) diet (Prolab RMH 3000 - UU diets) or IR (Picolab 5053 - UW IR diet). Mice then underwent intracerebral TMEV or PBS injection three days later. Fecal samples were collected from a subset of mice at infection (Day 0) and Day 7 post-infection. Epilepsy-related working memory deficits and seizure threshold were assessed 6 weeks post-infection. Gut microbiome diversity was determined by 16S rRNA amplicon sequencing of fecal samples. Results TMEV-infected mice displayed acute handling-induced seizures, regardless of diet: 28/57 UW IR (49.1%), 30/41 UU IR (73.2%), and 47/77 UU AC (61%) mice displayed seizures. The number of observed seizures significantly differed: UW IR mice had 2.2±2.8 seizures (mean±standard deviation), UU IR mice had 3.5±2.9 seizures, and UU AC mice had 4.4±3.8 seizures during the 7-day monitoring period. The composition of the gut microbiome significantly differed in TMEV-infected mice fed the UU AC diet, with most measured differences occurring in Gram-positive bacteria. TMEV-infected mice fed the UU AC diet displayed worsened chronic working memory. Significance Intestinal dysbiosis evokes stark differences in acute seizure presentation in the TMEV model and vastly influences the trajectory of post-TMEV infection-induced behavioral comorbidities of epilepsy. Our study reveals a novel disease-modifying contribution of intestinal bacterial species after TMEV-induced acute seizures.
Collapse
Affiliation(s)
- Dannielle K. Zierath
- Department of Pharmacy, School of Pharmacy, University of Washington, Seattle, WA
| | - Stephanie Davidson
- Department of Pharmacy, School of Pharmacy, University of Washington, Seattle, WA
| | - Jonathan Manoukian
- Department of Pharmacy, School of Pharmacy, University of Washington, Seattle, WA
| | - H. Steve White
- Department of Pharmacy, School of Pharmacy, University of Washington, Seattle, WA
| | - Stacey Meeker
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH
| | - Aaron Ericsson
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO
| | | |
Collapse
|
6
|
Yang CS, Wu MC, Lai MC, Wu SN, Huang CW. Identification of New Antiseizure Medication Candidates in Preclinical Animal Studies. Int J Mol Sci 2023; 24:13143. [PMID: 37685950 PMCID: PMC10487685 DOI: 10.3390/ijms241713143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 08/09/2023] [Accepted: 08/17/2023] [Indexed: 09/10/2023] Open
Abstract
Epilepsy is a multifactorial neurologic disease that often leads to many devastating disabilities and an enormous burden on the healthcare system. Until now, drug-resistant epilepsy has presented a major challenge for approximately 30% of the epileptic population. The present article summarizes the validated rodent models of seizures employed in pharmacological researches and comprehensively reviews updated advances of novel antiseizure candidates in the preclinical phase. Newly discovered compounds that demonstrate antiseizure efficacy in preclinical trials will be discussed in the review. It is inspiring that several candidates exert promising antiseizure activities in drug-resistant seizure models. The representative compounds consist of derivatives of hybrid compounds that integrate multiple approved antiseizure medications, novel positive allosteric modulators targeting subtype-selective γ-Aminobutyric acid type A receptors, and a derivative of cinnamamide. Although the precise molecular mechanism, pharmacokinetic properties, and safety are not yet fully clear in every novel antiseizure candidate, the adapted approaches to design novel antiseizure medications provide new insights to overcome drug-resistant epilepsy.
Collapse
Affiliation(s)
- Chih-Sheng Yang
- Department of Neurology, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung City 42743, Taiwan;
- School of Post-Baccalaureate Chinese Medicine, Tzu Chi University, Hualien City 97004, Taiwan
| | - Man-Chun Wu
- Department of Family Medicine and Preventive Medicine Center, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung City 42743, Taiwan
| | - Ming-Chi Lai
- Department of Pediatrics, Chi-Mei Medical Center, Tainan City 71004, Taiwan;
| | - Sheng-Nan Wu
- Department of Physiology, College of Medicine, National Cheng Kung University, Tainan City 70101, Taiwan;
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan City 70101, Taiwan
| | - Chin-Wei Huang
- Department of Neurology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan City 70101, Taiwan
| |
Collapse
|
7
|
Lehmann LM, Barker-Haliski M. Loss of normal Alzheimer's disease-associated Presenilin 2 function alters antiseizure medicine potency and tolerability in the 6-Hz focal seizure model. Front Neurol 2023; 14:1223472. [PMID: 37592944 PMCID: PMC10427874 DOI: 10.3389/fneur.2023.1223472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 07/14/2023] [Indexed: 08/19/2023] Open
Abstract
Introduction Patients with early-onset Alzheimer's disease (EOAD) experience seizures and subclinical epileptiform activity, which may accelerate cognitive and functional decline. Antiseizure medicines (ASMs) may be a tractable disease-modifying strategy; numerous ASMs are marketed with well-established safety. However, little information is available to guide ASM selection as few studies have rigorously quantified ASM potency and tolerability in traditional seizure models in rodents with EOAD-associated risk factors. Presenilin 2 (PSEN2) variants evoke EOAD, and these patients experience seizures. This study thus established the anticonvulsant profile of mechanistically distinct ASMs in the frontline 6-Hz limbic seizure test evoked in PSEN2-knockout (KO) mice to better inform seizure management in EOAD. Methods The median effective dose (ED50) of prototype ASMs was quantified in the 6-Hz test in male and female PSEN2-KO and wild-type (WT) C57BL/6J mice (3-4 months old). Minimal motor impairment (MMI) was assessed to estimate a protective index (PI). Immunohistological detection of cFos established the extent to which 6-Hz stimulation activates discrete brain regions in KO vs. WT mice. Results There were significant genotype-related differences in the potency and tolerability of several ASMs. Valproic acid and levetiracetam were significantly more potent in male KO than in WT mice. Additionally, high doses of valproic acid significantly worsened MMI in KO mice. Conversely, carbamazepine was significantly less potent in female KO vs. WT mice. In both male and female KO mice vs. WTs, perampanel and lamotrigine were equally potent. However, there were marked genotype-related shifts in PI of both carbamazepine and perampanel, with KO mice exhibiting less MMI at the highest doses tested. Gabapentin was ineffective against 6-Hz seizures in KO mice vs. WTs without MMI changes. Neuronal activation 90 min following 6-Hz stimulation was significantly increased in the posterior parietal association cortex overlying CA1 and in the piriform cortex of WT mice, while stimulation-induced increases in cFos immunoreactivity were absent in KO mice. Discussion Acute ASM potency and tolerability in the high-throughput 6-Hz test may be significantly altered with loss of normal PSEN2 function. Seizures in discrete EOAD populations may benefit from precisely selected medicines optimized for primary ASM pharmacological mechanisms.
Collapse
Affiliation(s)
| | - Melissa Barker-Haliski
- Department of Pharmacy, School of Pharmacy, University of Washington, Seattle, WA, United States
| |
Collapse
|
8
|
Zierath D, Mizuno S, Barker-Haliski M. Frontline Sodium Channel-Blocking Antiseizure Medicine Use Promotes Future Onset of Drug-Resistant Chronic Seizures. Int J Mol Sci 2023; 24:4848. [PMID: 36902275 PMCID: PMC10003379 DOI: 10.3390/ijms24054848] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/25/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
The mechanisms of treatment-resistant epilepsy remain unclear. We have previously shown that frontline administration of therapeutic doses of lamotrigine (LTG), which preferentially inhibits the fast-inactivation state of sodium channels, during corneal kindling of mice promotes cross-resistance to several other antiseizure medicines (ASMs). However, whether this phenomenon extends to monotherapy with ASMs that stabilize the slow inactivation state of sodium channels is unknown. Therefore, this study assessed whether lacosamide (LCM) monotherapy during corneal kindling would promote future development of drug-resistant focal seizures in mice. Male CF-1 mice (n = 40/group; 18-25 g) were administered an anticonvulsant dose of LCM (4.5 mg/kg, i.p.), LTG (8.5 mg/kg, i.p.), or vehicle (0.5% methylcellulose) twice daily for two weeks during kindling. A subset of mice (n = 10/group) were euthanized one day after kindling for immunohistochemical assessment of astrogliosis, neurogenesis, and neuropathology. The dose-related antiseizure efficacy of distinct ASMs, including LTG, LCM, carbamazepine, levetiracetam, gabapentin, perampanel, valproic acid, phenobarbital, and topiramate, was then assessed in the remaining kindled mice. Neither LCM nor LTG administration prevented kindling: 29/39 vehicle-exposed mice were kindled; 33/40 LTG-exposed mice were kindled; and 31/40 LCM-exposed mice were kindled. Mice administered LCM or LTG during kindling became resistant to escalating doses of LCM, LTG, and carbamazepine. Perampanel, valproic acid, and phenobarbital were less potent in LTG- and LCM-kindled mice, whereas levetiracetam and gabapentin retained equivalent potency across groups. Notable differences in reactive gliosis and neurogenesis were also appreciated. This study indicates that early, repeated administration of sodium channel-blocking ASMs, regardless of inactivation state preference, promotes pharmacoresistant chronic seizures. Inappropriate ASM monotherapy in newly diagnosed epilepsy may thus be one driver of future drug resistance, with resistance being highly ASM class specific.
Collapse
Affiliation(s)
| | | | - Melissa Barker-Haliski
- Department of Pharmacy, School of Pharmacy, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
9
|
Chronic seizures induce sex-specific cognitive deficits with loss of presenilin 2 function. Exp Neurol 2023; 361:114321. [PMID: 36634751 DOI: 10.1016/j.expneurol.2023.114321] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 10/04/2022] [Accepted: 01/06/2023] [Indexed: 01/11/2023]
Abstract
Patients with early-onset Alzheimer's disease (EOAD) are at elevated risk for seizures, including patients with presenilin 2 (PSEN2) variants. Like people with epilepsy, uncontrolled seizures may worsen cognitive function in AD. While the relationship between seizures and amyloid beta accumulation has been more thoroughly investigated, the role of other drivers of seizure susceptibility in EOAD remain relatively understudied. We therefore sought to define the impact of loss of normal PSEN2 function and chronic seizures on cognitive function in the aged brain. Male and female PSEN2 KO and age- and sex-matched wild-type (WT) mice were sham or corneal kindled beginning at 6-months-old. Kindled and sham-kindled mice were then challenged up to 6 weeks later in a battery of cognitive tests: non-habituated open field (OF), T-maze spontaneous alternation (TM), and Barnes maze (BM), followed by immunohistochemistry for markers of neuroinflammation and neuroplasticity. PSEN2 KO mice required significantly more stimulations to kindle (males: p < 0.02; females: p < 0.02) versus WT. Across a range of behavioral tests, the cognitive performance of kindled female PSEN2 KO mice was most significantly impaired versus age-matched WT females. Male BM performance was generally worsened by seizures (p = 0.038), but loss of PSEN2 function did not itself worsen cognitive performance. Conversely, kindled PSEN2 KO females made the most BM errors (p = 0.007). Chronic seizures also significantly altered expression of hippocampal neuroinflammation and neuroplasticity markers in a sex-specific manner. Chronic seizures may thus significantly worsen hippocampus-dependent cognitive deficits in aged female, but not male, PSEN2 KO mice. Our work suggests that untreated focal seizures may worsen cognitive burden with loss of normal PSEN2 function in a sex-related manner.
Collapse
|
10
|
Wang X, Tian H, Liu H, Liang D, Qin C, Zhu Q, Meng L, Fu Y, Xu S, Zhai Y, Ding X, Wang X. Impaired Meningeal Lymphatic Flow in NMOSD Patients With Acute Attack. Front Immunol 2021; 12:692051. [PMID: 34194440 PMCID: PMC8236891 DOI: 10.3389/fimmu.2021.692051] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 05/25/2021] [Indexed: 12/28/2022] Open
Abstract
The meningeal lymphatic vessels (mLVs) in central nervous system (CNS) have been validated by rodent and human studies. The mLVs play a vital role in draining soluble molecules and trafficking lymphocytes, antigens and antibodies from CNS into cervical lymph nodes (CLNs). This indicates that mLVs may serve as a link between the CNS and peripheral immune system, perhaps involving in the neuroinflammatory disease. However, the morphology and drainage function of mLVs in patients with neuroinflammatory disease, such as neuromyelitis optica spectrum disorders (NMOSD), remains unexplored. Using the dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI), we found that slower flow through mLVs along superior sagittal sinus in NMOSD patients with acute attack instead of NMOSD patients in chronic phase. The reduced flow in mLVs correlated with the disease severity evaluated by expanded disability status scale (EDSS). The receiver operating characteristic curve (ROC) indicated DCE-MRI might provide objective evidence to predict the acute relapse of NMOSD through evaluating the function of mLVs. Promoting or restoring the function of mLVs might be a new target for the treatment of NMOSD relapse.
Collapse
Affiliation(s)
- Xinxin Wang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Institute of Parkinson and Movement Disorder, Zhengzhou University, Zhengzhou, China
| | - Haiyan Tian
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Institute of Parkinson and Movement Disorder, Zhengzhou University, Zhengzhou, China
| | - Han Liu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Institute of Parkinson and Movement Disorder, Zhengzhou University, Zhengzhou, China
| | - Dongxiao Liang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Institute of Parkinson and Movement Disorder, Zhengzhou University, Zhengzhou, China
| | - Chi Qin
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Institute of Parkinson and Movement Disorder, Zhengzhou University, Zhengzhou, China
| | - Qingyong Zhu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Institute of Parkinson and Movement Disorder, Zhengzhou University, Zhengzhou, China
| | - Lin Meng
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Institute of Parkinson and Movement Disorder, Zhengzhou University, Zhengzhou, China
| | - Yu Fu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Institute of Parkinson and Movement Disorder, Zhengzhou University, Zhengzhou, China
| | - Shuqin Xu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Institute of Parkinson and Movement Disorder, Zhengzhou University, Zhengzhou, China
| | - Yanping Zhai
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Institute of Parkinson and Movement Disorder, Zhengzhou University, Zhengzhou, China
| | - Xuebing Ding
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Institute of Parkinson and Movement Disorder, Zhengzhou University, Zhengzhou, China
| | - Xuejing Wang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Institute of Parkinson and Movement Disorder, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
11
|
Koneval Z, Knox KM, Memon A, Zierath DK, White HS, Barker-Haliski M. Antiseizure drug efficacy and tolerability in established and novel drug discovery seizure models in outbred vs inbred mice. Epilepsia 2020; 61:2022-2034. [PMID: 32757210 PMCID: PMC7722177 DOI: 10.1111/epi.16624] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 06/29/2020] [Accepted: 06/30/2020] [Indexed: 12/23/2022]
Abstract
OBJECTIVE Initial identification of new investigational drugs for the treatment of epilepsy is commonly conducted in well-established mouse acute and chronic seizure models: for example, maximal electroshock (MES), 6 Hz, and corneal kindling. Comparison of the median effective dose (ED50) of approved antiseizure drugs (ASDs) vs investigational agents in these models provides evidence of their potential for clinical efficacy. Inbred and outbred mouse strains exhibit differential seizure susceptibility. However, few comparisons exist of the ED50 or median behaviorally impairing dose (TD50) of prototype ASDs in these models in inbred C57Bl/6 vs outbred CF-1 mice, both of which are often used for ASD discovery. METHODS We defined the strain-related ED50s and TD50s of several mechanistically distinct ASDs across established acute seizure models (MES, 6 Hz, and corneal-kindled mouse). We further quantified the strain-related effect of the MES ED50 of each ASD on gross behavior in a locomotor activity assay. Finally, we describe a novel pharmacoresistant corneal-kindling protocol that is suitable for moderate-throughput ASD screening and demonstrates highly differentiated ASD sensitivity. RESULTS We report significant strain-related differences in the MES ED50 of valproic acid (CF-1 ED50: 90 mg/kg [95% confidence interval (CI) 165-214] vs C57Bl/6: 276 mg/kg [226-366]), as well as significant differences in the ED50 of levetiracetam in the pharmacoresistant 6 Hz test (CF-1: 22.5 mg/kg [14.7-30.2] vs C57Bl/6: >500 mg/kg [CI not defined]). There were no differences in the calculated TD50 of these ASDs between strains. Furthermore, the MES ED50 of phenobarbital significantly enhanced locomotor activity of outbred CF-1, but not C57Bl/6, mice. SIGNIFICANCE Altogether, this study provides strain-related information to differentiate investigational agents from ASD standards-of-care in commonly employed preclinical discovery models and describes a novel kindled seizure model to further explore the mechanisms of drug-resistant epilepsy.
Collapse
Affiliation(s)
- Zachery Koneval
- Department of Pharmacy, School of Pharmacy, University of Washington
| | - Kevin M. Knox
- Department of Pharmacy, School of Pharmacy, University of Washington
| | - Ali Memon
- Neuroscience Undergraduate Program, University of Washington
| | | | - H. Steve White
- Department of Pharmacy, School of Pharmacy, University of Washington
| | | |
Collapse
|
12
|
Barker-Haliski M, Steve White H. Validated animal models for antiseizure drug (ASD) discovery: Advantages and potential pitfalls in ASD screening. Neuropharmacology 2019; 167:107750. [PMID: 31469995 DOI: 10.1016/j.neuropharm.2019.107750] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 08/14/2019] [Accepted: 08/23/2019] [Indexed: 12/18/2022]
Abstract
Since 1993, over 20 new anti-seizure drugs (ASDs) have been identified in well-established animal seizure and epilepsy models and subsequently demonstrated to be clinically effective in double-blinded, placebo-controlled clinical trials in patients with focal onset seizures. All clinically-available ASDs on the market today are effective in at least one of only three preclinical seizure and epilepsy models: the acute maximal electroshock (MES), the acute subcutaneous pentylenetetrazol (scPTZ) test, or the kindled rodent with chronic evoked seizures. Thus, it reasons that preclinical ASD discovery does not need significant revision to successfully identify ASDs for the symptomatic treatment of epilepsy. Unfortunately, a significant need still persists for more efficacious and better tolerated ASDs. This is particularly true for those patients whose seizures remain drug resistant. This review will focus on the continued utility of the acute MES and scPTZ tests, as well as the kindled rodent for current and future ASD discovery. These are the only "clinically validated" rodent models to date and been heavily used in the search for novel and more efficacious ASDs. This is to say that promising ASDs have been brought to the clinic on the basis of efficacy in these particular seizure and epilepsy models alone. This review also discusses some of the inherent advantages and limitations of these models relative to existing and emerging preclinical models. It then offers insight into future efforts to develop a preclinical model that will advance a truly transformative therapy for the symptomatic treatment of difficult to treat focal onset epilepsy. This article is part of the special issue entitled 'New Epilepsy Therapies for the 21st Century - From Antiseizure Drugs to Prevention, Modification and Cure of Epilepsy'.
Collapse
Affiliation(s)
| | - H Steve White
- Department of Pharmacy, School of Pharmacy, University of Washington, Seattle, WA, USA
| |
Collapse
|