1
|
Zang R, Barth A, Wong H, Marik J, Shen J, Lade J, Grove K, Durk MR, Parrott N, Rudewicz PJ, Zhao S, Wang T, Yan Z, Zhang D. Design and Measurement of Drug Tissue Concentration Asymmetry and Tissue Exposure-Effect (Tissue PK-PD) Evaluation. J Med Chem 2022; 65:8713-8734. [PMID: 35790118 DOI: 10.1021/acs.jmedchem.2c00502] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The "free drug hypothesis" assumes that, in the absence of transporters, the steady state free plasma concentrations equal to that at the site of action that elicit pharmacologic effects. While it is important to utilize the free drug hypothesis, exceptions exist that the free plasma exposures, either at Cmax, Ctrough, and Caverage, or at other time points, cannot represent the corresponding free tissue concentrations. This "drug concentration asymmetry" in both total and free form can influence drug disposition and pharmacological effects. In this review, we first discuss options to assess total and free drug concentrations in tissues. Then various drug design strategies to achieve concentration asymmetry are presented. Last, the utilities of tissue concentrations in understanding exposure-effect relationships and translational projections to humans are discussed for several therapeutic areas and modalities. A thorough understanding in plasma and tissue exposures correlation with pharmacologic effects can provide insightful guidance to aid drug discovery.
Collapse
Affiliation(s)
- Richard Zang
- IDEAYA Biosciences, South San Francisco, California 94080, United States
| | - Aline Barth
- Global Blood Therapeutics, South San Francisco, California 94080, United States
| | - Harvey Wong
- The University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Jan Marik
- Genentech, South San Francisco, California 98080, United States
| | - Jie Shen
- AbbVie, Irvine, California 92612, United States
| | - Julie Lade
- Amgen Inc., South San Francisco, California 94080, United States
| | - Kerri Grove
- Novartis, Emeryville, California 94608, United States
| | - Matthew R Durk
- Genentech, South San Francisco, California 98080, United States
| | - Neil Parrott
- Roche Innovation Centre, Basel CH-4070, Switzerland
| | | | | | - Tao Wang
- Coherus BioSciences, Redwood City, California 94605, United States
| | - Zhengyin Yan
- Genentech, South San Francisco, California 98080, United States
| | - Donglu Zhang
- Genentech, South San Francisco, California 98080, United States
| |
Collapse
|
2
|
Choi YH, Zhang C, Liu Z, Tu MJ, Yu AX, Yu AM. A Novel Integrated Pharmacokinetic-Pharmacodynamic Model to Evaluate Combination Therapy and Determine In Vivo Synergism. J Pharmacol Exp Ther 2021; 377:305-315. [PMID: 33712506 PMCID: PMC8140393 DOI: 10.1124/jpet.121.000584] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 03/09/2021] [Indexed: 11/22/2022] Open
Abstract
Understanding pharmacokinetic (PK)-pharmacodynamic (PD) relationships is essential in translational research. Existing PK-PD models for combination therapy lack consideration of quantitative contributions from individual drugs, whereas interaction factor is always assigned arbitrarily to one drug and overstretched for the determination of in vivo pharmacologic synergism. Herein, we report a novel generic PK-PD model for combination therapy by considering apparent contributions from individual drugs coadministered. Doxorubicin (Dox) and sorafenib (Sor) were used as model drugs whose PK data were obtained in mice and fit to two-compartment model. Xenograft tumor growth was biphasic in mice, and PD responses were described by three-compartment transit models. This PK-PD model revealed that Sor (contribution factor = 1.62) had much greater influence on overall tumor-growth inhibition than coadministered Dox (contribution factor = 0.644), which explains the mysterious clinical findings on remarkable benefits for patients with cancer when adding Sor to Dox treatment, whereas there were none when adding Dox to Sor therapy. Furthermore, the combination index method was integrated into this predictive PK-PD model for critical determination of in vivo pharmacologic synergism that cannot be correctly defined by the interaction factor in conventional models. In addition, this new PK-PD model was able to identify optimal dosage combination (e.g., doubling experimental Sor dose and reducing Dox dose by 50%) toward much greater degree of tumor-growth inhibition (>90%), which was consistent with stronger synergy (combination index = 0.298). These findings demonstrated the utilities of this new PK-PD model and reiterated the use of valid method for the assessment of in vivo synergism. SIGNIFICANCE STATEMENT: A novel pharmacokinetic (PK)-pharmacodynamic (PD) model was developed for the assessment of combination treatment by considering contributions from individual drugs, and combination index method was incorporated to critically define in vivo synergism. A greater contribution from sorafenib to tumor-growth inhibition than that of coadministered doxorubicin was identified, offering explanation for previously inexplicable clinical observations. This PK-PD model and strategy shall have broad applications to translational research on identifying optimal dosage combinations with stronger synergy toward improved therapeutic outcomes.
Collapse
Affiliation(s)
- Young Hee Choi
- Department of Biochemistry and Molecular Medicine, University of California (UC) Davis School of Medicine, Sacramento, California (Y.H.C., C.Z., Z.L., M.-J.T., A.-M.Y.); College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, Gyonggi-do, Republic of Korea (Y.H.C.); and Department of Orthopedic Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China (A.-X.Y.)
| | - Chao Zhang
- Department of Biochemistry and Molecular Medicine, University of California (UC) Davis School of Medicine, Sacramento, California (Y.H.C., C.Z., Z.L., M.-J.T., A.-M.Y.); College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, Gyonggi-do, Republic of Korea (Y.H.C.); and Department of Orthopedic Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China (A.-X.Y.)
| | - Zhenzhen Liu
- Department of Biochemistry and Molecular Medicine, University of California (UC) Davis School of Medicine, Sacramento, California (Y.H.C., C.Z., Z.L., M.-J.T., A.-M.Y.); College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, Gyonggi-do, Republic of Korea (Y.H.C.); and Department of Orthopedic Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China (A.-X.Y.)
| | - Mei-Juan Tu
- Department of Biochemistry and Molecular Medicine, University of California (UC) Davis School of Medicine, Sacramento, California (Y.H.C., C.Z., Z.L., M.-J.T., A.-M.Y.); College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, Gyonggi-do, Republic of Korea (Y.H.C.); and Department of Orthopedic Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China (A.-X.Y.)
| | - Ai-Xi Yu
- Department of Biochemistry and Molecular Medicine, University of California (UC) Davis School of Medicine, Sacramento, California (Y.H.C., C.Z., Z.L., M.-J.T., A.-M.Y.); College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, Gyonggi-do, Republic of Korea (Y.H.C.); and Department of Orthopedic Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China (A.-X.Y.)
| | - Ai-Ming Yu
- Department of Biochemistry and Molecular Medicine, University of California (UC) Davis School of Medicine, Sacramento, California (Y.H.C., C.Z., Z.L., M.-J.T., A.-M.Y.); College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, Gyonggi-do, Republic of Korea (Y.H.C.); and Department of Orthopedic Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China (A.-X.Y.)
| |
Collapse
|